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Background
Genome editing is widely performed in various organisms [1–4]. This technology har-
nesses programmable nucleases including zinc finger nucleases (ZFNs) [5, 6], transcrip-
tion activator-like effector nucleases (TALENs) [7], and clustered regularly interspaced 
short palindromic repeat (CRISPR)-associated protein 9 (Cas9) [8–10]. Fundamentally, 
programmable nucleases induce site-specific DNA double-strand breaks (DSBs) in the 
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target genomic DNA. The induced DSB trigger endogenous DNA repair pathways, such 
as error-prone non-homologous end joining (NHEJ), microhomology-mediated end 
joining (MMEJ), single-strand annealing (SSA), and homologous recombination (HR), 
resulting in targeted mutagenesis, such as insertions and deletions (indels) and base sub-
stitutions in genomic DNA [11–13]. Site-specific DSBs induced by TALENs and ZFNs 
are mediated by DNA-binding proteins that recognize specific nucleotide patterns [6, 7, 
14, 15]. Targeted DSBs of genomic DNA by CRISPR-Cas9 systems are achieved through 
interactions with the protospacer region of a single guide RNA (sgRNA) and the proto-
spacer adjacent motif (PAM) sequence of the Cas9 nuclease [9, 16]. The patterns of the 
resultant indels and base substitutions generated by programmable nucleases are con-
tingent on the characteristics of nuclease dynamics and the activity of each DNA repair 
mechanism present within the cell [11, 17–19].

DNA sequencing has become an indispensable tool for analyzing indels and substitu-
tions resulting from genome editing. Originally, genotyping for genome editing utilized 
the cloning of amplicon fragments containing the target sequence into a cloning vec-
tor. The vector plasmid was then amplified by bacterial transformation and genotyping 
was performed by Sanger sequencing of the insert [20]. However, the cloning approach 
requires the generation of multiple cloning vectors to elucidate the editing efficiency and 
pattern of targeted mutagenesis in DNA samples from a bulk cell population. Adequate 
quantification of mutation patterns and editing efficiency requires considerable effort, 
making high-throughput analysis less practical.

In contrast, targeted deep sequencing using a short-read sequencer can read more 
than 1000 sequences in polymerase chain reaction (PCR) amplicons of the targeted 
region [21, 22]. However, this requires high cost and expert experience for sequencing 
library preparation. Moreover, when preparing libraries, it is often necessary to perform 
PCR amplification to add adapters, including the targeted region, to the amplicons. The 
amplification process can sometimes lead to PCR bias or the generation of chimeric 
reads, which can complicate the interpretation of genotyping results [21, 23]. These 
potential risks necessitate careful consideration of experimental design and data analysis 
to ensure accurate and reliable genotyping outcomes.

Tracking of Insertions and DEletions (TIDE) analysis is one of the popular methods in 
genotyping for genome editing samples [24]. TIDE analysis and similar tools (Table 1), 
such as Inference of CRISPR Edits (ICE) [25], can computationally deconvolute Sanger 
sequencing data (capillary sequencing data; sequencing trace data) obtained from 
direct sequencing of DNA amplicons containing the targeted region amplified from the 
genomic DNA of the bulk cell population, which includes edited DNA alleles. The TIDE 
analysis can deliver results in 1–2 days, whereas the targeted deep sequencing typically 

Table 1  A list of TIDE-like tools that were previously reported

The first column refers to the names of TIDE-like tools, while the second, third, and fourth columns indicate the type of cell 
population targeted by each tool, the detectable range of deletions, and the original research articles, respectively

Tools Sample type Detectable deletion size Reference

TIDE Bulk  ≤ 50 bp [24]

ICE Bulk  ≤ 30 bp (For one gRNA) [25]

DECODR Bulk/Clone No limitation [29]
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takes several weeks to analyze edited alleles [24]. These tools are referred to as the"TIDE 
analysis tools."TIDE analysis tools can align mutations and estimate editing efficiencies 
similar to those obtained through subcloning and deep sequencing approaches [24–26]. 
TIDE analysis leverages the modeling of DNA sequence trace chromatograms to detect 
and quantify the spectrum of edited alleles within a given population sample. TIDE anal-
ysis makes genotyping a more efficient and streamlined alternative to traditional sub-
cloning approaches. Moreover, other analytical tools such as CRISP-ID [27] and Poly 
Peak Parser [28], are specialized for genotyping two to three alleles in diploid cells using 
the decomposition algorithms of Sanger sequencing data.

TIDE [24] and ICE [25] share a common limitation in that detecting larger deletions 
(> 50 bp) is challenging [29]. The size limitation results from a shorter predefined range 
of possible mutations within which the tools estimate the mutation patterns. Bloh et al. 
developed the Deconvolution of Complex DNA Repair (DECODR) tool to address this 
issue [29]. The DECODR algorithm improves the TIDE analysis algorithm, thereby ena-
bling broader detection capabilities. However, there is a concern that expanding the 
detection range might make the analysis more susceptible to signal noise because TIDE 
analysis tools utilize fitting algorithms such as non-negative linear modeling (NNLS) 
[30–33] and non-negative LASSO regression (LASSO model) [33, 34] in the modeling of 
DNA sequence trace chromatograms, which present model uncertainty when more fac-
tors are considered [35, 36]. Extending the deconvolution range can result in inaccurate 
predictions.

To mitigate these concerns, we developed a novel tool, Progressive-type Wide-range 
Analysis of Varied Edits (PtWAVE), which constructs a more reliable mutation distri-
bution by systematically selecting among various possible mutation patterns. PtWAVE 
evaluates mutation distributions estimated using fitting algorithms and considers a 
lower Bayesian information criterion (BIC) [37, 38]. PtWAVE progressively adjusts the 
combinations of estimated mutation sequence patterns (EMSPs) to estimate muta-
tion distributions under reasonable conditions. We implemented PtWAVE as graphical 
online software (https://​www.​ptwave-​ptbio.​com/). Additionally, we assessed the accu-
racy of PtWAVE and three TIDE analysis tools equipped with fitting algorithms using 
artificially mixed dsDNA data, which imitated edited samples with deletions of more 
than 50 bp. Compared with existing tools, benchmarking assessed the capabilities and 
accuracy of PtWAVE in detecting large deletions with high and low content. Moreo-
ver, we confirmed whether PtWAVE could stably process trace sequencing data from 
genome-edited samples published in previous reports.

Implementation
Implementation and algorithm for deconvolution of sequence trace data in PtWAVE

PtWAVE was implemented using Python v3.8.5. The Supplementary Data (Supplemen-
tary Table  S1) includes a list of the modules used. PtWAVE requires sequence trace 
files (. ab1) from edited and unedited (WT) samples, protospacer sequence (plain text), 
and PAM sequence (plain text) for the CRISPR-Cas9 system. In contrast, the muta-
tion ranges of the detectable substitutions and indels were defined. The PtWAVE in the 
default parameters enables the detection of substitutions at position (−1) bp–(+ 1) bp, 
up to 3 bp insertions, and deletions at position (−50) bp–(+ 50) bp, which means it can 

https://www.ptwave-ptbio.com/
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detect up to 100 bp deletion. Moreover, fitting algorithms and variable selection meth-
ods can be selected (see the algorithm explanation below). A flowchart of the PtWAVE 
algorithm was shown in Fig. 1A. The key steps from alignment window determination 
through decomposition window determination are illustrated in Fig.  1B. The detailed 
process is described in the following sections.

Input data and user parameters

First, the chromatograms of the input sequencing trace files (ab1 file) from the edited 
and unedited samples were analyzed and converted into a matrix of peak values consist-
ing of distances and bases. Base calling of the unedited sequences was conducted based 
on the peak data of the control file (ab1). The cut site, which is located 3 bp upstream of 
the 3´ end of the protospacer in Cas9, was identified based on the input protospacer and 
PAM sequences in the determined WT sequence (Fig. 1B, step 1).

Alignment window determination

PtWAVE performs a quality check based on sequence quality and distance. The border 
of the initial reference region (alignment window) was determined based on the running 
mean of Phred scores. If no regions had a 30 bp running mean exceeding 30, PtWAVE 
did not perform decomposition analysis. The starting point of the alignment window 
is determined to be the 5´ end base that possesses the running mean of Phred Score 
higher than 30. The endpoint of the alignment window becomes the position obtained 
by subtracting a margin value from the position of the latest cut site, which is located 
furthest towards the 5´ end. The margin value was calculated as the sum of 10 bp and the 
maximum anticipated indel size on one side (Fig. 1B, step 2–5). However, if the length 
between the starting and ending points of the alignment window is less than 40 base 
pairs, the starting point is shifted towards the 5´ end as much as possible to ensure a 
length of 40 base pairs, if feasible. The above criteria are referred to implementation in 
ICE [25], which also employs a 30 bp window for optimal window adjustment.

(See figure on next page.)
Fig. 1  PtWAVE algorithm flow chart. A It requires four pieces of information as input data: (1) one sequencing 
trace file from the control (WT) sample, (2) one sequencing trace file from the edited sample, (3) target 
sequence information, including the protospacer sequence and PAM motif, and (4) parameter settings, 
including the mutation ranges, fitting algorithms, and variable selection methods. The algorithm first checks 
the input data and finds an alignment window based on the sequencing quality. The algorithm then aligns 
the primary peaks between the two samples by referring to the alignment window. The decomposition 
window was determined on the basis of the alignment window, alignment, and sequence quality. The 
algorithm also generated EMSPs and output vectors based on the input data to model the DNA sequence 
trace chromatograms of the edited sample in the decomposition window. There are various choices 
for modeling chromatograms, such as variable selection modes (all, random, and backstep) and fitting 
algorithms (NLLS and LASSO models). After modeling the chromatograms, the PtWAVE algorithm provided 
the composition ratios of the indels of the edited sample and the editing efficiency. B An illustration 
explaining the key nine steps from alignment window determination through decomposition window 
determination. These windows are determined based on user input, given sequencing traces, and quality 
values (phred score) from direct sequencing of pooled alleles, including allele 1, 2, 3, …, N. The borders of the 
alignment window (blue box) are called “aln_start” and “aln_end.” The borders of the decomposition window 
(green box) are called “inf_start” and “inf_end.”
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Alignment for primary peaks

Next, both primary peaks of the sequencing trace file of WT and edited samples are 
read and aligned between sequences of the WT and the edited sample. The same 
sequences were then aligned within the alignment window.

Fig. 1  (See legend on previous page.)
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EMSPs generation

Based on the position of the cut site and the specified ranges for deletions, inser-
tions, and substitutions, PtWAVE generates EMSPs introduced by a programmable 
nuclease. Along with EMSPs generation, PtWAVE attaches label information to each 
mutation sequence to identify the length of indels and the type of substitutions. For 
example, in the case of indels, it would be labeled as"(label) [g1],"and for substitu-
tions, it would be labeled as"Sub(label) [g1]."The “g1” label is an identifier for the 
input guide sequence. Currently, PtWAVE only supports a single guide RNA input, 
meaning that the label is always “g1.” Although this may appear redundant, we have 
designed the software with future expansions in mind, and this label serves as a place-
holder for forthcoming updates that will accommodate multiple guide RNAs.

Decomposition window determination

To imitate the sequencing trace data of the edited sample by fitting algorithms using 
EMSPs as explanatory variables, it was first necessary to define the range used in the 
deconvolution process. This range was referred to as the decomposition window. 
The starting point of the decomposition window is set to be the 3´ end of the align-
ment window. Next, the region where the 10 bp moving average of the Phred Score 
exceeded 35 in the WT sequence trace data was set as the quality window. The 3´ 
end of the decomposition window should be flexibly selected according to the data. 
If the coordinate of the cut site located furthest to the 3´ end exists within the range 
of the quality window, the 3´ end of the decomposition window is determined by the 
smallest coordinate among the following three: (i) the 100 bp downstream coordi-
nate from the cut site located furthest to the 3´ end, (ii) the 3’end coordinate of the 
quality window, and (iii) the 3´ end coordinate of the shortest sequence among the 
EMSPs. Meanwhile, if the coordinate of the cut site located furthest to the 3´ end 
does not exist within the range of the quality window, the 3´ end of the decomposi-
tion window is determined by the smallest coordinate between (i)–(iii) (Fig. 1B, step 
6–9). Finally, if the defined coordinate for the 3´ end of the Decomposition Window 
is located further towards the 3´ end than the coordinate 10 bp upstream from the 3´ 
end coordinate of the primary peak alignment, then the coordinate for the 3´ end of 
the Decomposition Window is updated to be 10 bp upstream coordinate from the 3´ 
end of the primary peak alignment.

Output vector generation

To model the DNA sequence trace chromatograms from the edited samples, the A, 
T, C, and G peak signals in the sequencing trace data of the edited samples were con-
verted into a one-dimensional matrix. The matrix is referred to as the output vector.

Modeling of DNA sequence trace chromatograms

Fitting algorithms using an artificial peak signal set estimated from the EMSPs were 
performed to find the proper coefficients of each EMSP to imitate the peak signal 
pattern of the sequencing trace data from the edited sample when multiplication 
between the coefficients and the corresponding EMSP peak signals were aggregated. 
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The coefficients were interpreted as the composition ratio of mutant alleles in the 
edited sample. In PtWAVE’s modeling, three variable selection methods are available: 
(1) “all,” (2) “random,” and (3) “backstep” modes. For each variable selection method, 
one can choose between the two fitting algorithms: non-negative linear modeling 
(NNLS [31, 32]; “linear_model.LinearRegression” function of scikit-learn module 
[33]) or non-negative LASSO regression (LASSO model; “linear_model.Lasso” func-
tion of scikit-learn module [33]). After fitting, the square of Pearson’s correlation coef-
ficient (R2), which represents accuracy, was calculated. The residual sum of squares 
(RSS) and Bayesian Information Criterion (BIC) [37, 38] were computed using the 
following formulas:

n: Total number of A, T, C, and G peak signals in the trace data.i: Position of trace data 
in one-dimensional expression.a: Actual peak height of DNA sequence trace chromato-
grams of the edited sample.p: Predicted peak height when the estimated coefficients and 
corresponding EMSP peak signals are aggregated.k: Total number of EMSPs.

The modes of variable selection are described as follows:

(1)	“All” mode

In the “all” mode, no variable selection is performed. The prediction made once by the 
fitting function is output as the result of the decomposition.

(2)	“Random” mode

In the “random” mode, three indel sizes to be excluded from consideration of fitting 
are randomly selected. modeling was performed using the fitting function without par-
tial EMSPs whose indel sizes were chosen. This operation was repeated ten times in the 
form of sampling with replacement, and the fitting result with the smallest BIC [37, 38] 
was output as the final result of the decomposition. To ensure reproducibility, the seed 
value was fixed during random selection. Additionally, in the random selection process, 
−1, 0, and + 1 bp indels are not applicable.

(3)	“Backstep” mode

In the “backstep” mode, backward elimination [39] is used to decrease the num-
ber of explanatory variables for the fitting function. Ten percent of the estimated indel 
sizes were randomly selected, and modeling was performed without the partial EMSPs 
whose indel sizes were chosen. This procedure was repeated up to ten times. Among 
the ten iterations, the fitting result that satisfies R2 > 0.8 and has the lowest BIC [37, 38] 
is chosen. For the Selected EMSPs (sEMSPs) of the chosen result, 10% of the indel sizes 

BIC = n ln

(

RSS

n

)

+ k ln (n)

RSS =

n
∑

i=1

(pi − ai)
2
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included in the sEMSPs were randomly selected again, and a new set of sEMSPs was 
determined in the same manner. The operation was repeated ten times, and the fitting 
result with n R2 > 0.8 and the lowest BIC [37, 38] among the fitting results with sEMSPs 
was output as the final result of the decomposition. To ensure reproducibility, the seed 
value was fixed during random selection. Additionally, in the random selection process, 
−1, 0, + 1 bp indels are not applicable for selection.

The detailed implementation was described in the GitHub repository (https://​github.​
com/​Kazuk​iNaka​mae/​PtWAVE_​imple​menta​tion_​summa​ry).

Output of deconvolution and quantification

The composition ratios of the indels, determined based on the estimated coefficients, are 
shown after normalization. Editing Efficiency was calculated by subtracting the unmodi-
fied value from 1. The unmodified value is the composition ratio of alleles that have not 
been mutated or normalized by the total coefficients. The discord between the WT and 
the edited trace data, distribution of indels, alignments, and other related information is 
output in JSON and text file formats in the PtWAVE server.

Results & discussion
Graphical user interface on web browser

We developed the front-end interface for PtWAVE using Streamlit, and the backend 
server was built with FastAPI and customized Python scripts. These components were 
deployed on a Linux system on an AWS EC2 instance. The detailed implementation was 
described in the GitHub repository (https://​github.​com/​Kazuk​iNaka​mae/​PtWAVE_​
imple​menta​tion_​summa​ry).

Fig. 2  PtWAVE provides an intuitive GUI for TIDE analysis online. A Screenshots of the"Input parameter"tab 
in PtWAVE. PtWAVE receives the input data from the forms. B Screenshots of a bar chart for the distribution 
of indels in the"Output"tab. Indel sizes are plotted on the horizontal axis. The presence ratio of each indel is 
plotted on the vertical axis. C Screenshots of the “Editing efficiency” Section in the"Output"tab. D Screenshots 
of the “Allele contribution” section in the"Output"tab

https://github.com/KazukiNakamae/PtWAVE_implementation_summary
https://github.com/KazukiNakamae/PtWAVE_implementation_summary
https://github.com/KazukiNakamae/PtWAVE_implementation_summary
https://github.com/KazukiNakamae/PtWAVE_implementation_summary
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Users can enter the analysis name, protospacer sequence, and PAM sequence as text 
on the input forms in the"Input parameter"tab (Fig. 2A). The ab1 files for WT and Edited 
samples can be specified by dragging and dropping or by selecting the “Browse files” 
button. It was also possible to set the range of mutations to be analyzed. The substitu-
tion range can be specified from 0 to 3 bp, either as PAM distal or PAM proximal. The 
range for deletions was specified as 0–100 bp. Since these numbers indicate positions 
from the cut site, considering both ends, it is possible to account for deletions of up to a 
maximum of 200 bp. The range of insertions can also be specified as 0–10 bp. PtWAVE 
typically performs the modeling using NNLS [30–33], but the LASSO model [33, 34] 
can be executed by checking the box marked “LASSO model.” The modes of variable 
selection can be selected from a list box with the options of all, random, or backstep. 
Clicking"Analysis"at the bottom executes the analysis immediately.

The analysis results are in the"output"tab (Fig. 2B–D). In the “Figure” section, a discord 
plot and a bar chart for the distribution of indels are shown. The discord plot allows 
users to check the differences between the WT (control) and Edited signals using align-
ment windows (aln_start and aln_end) and decomposition windows (inf_start and 
inf_end). The bar chart for the distribution of indels shows their tendency and editing 
efficiency (Fig. 2B). In the “Editing efficiency” section, editing efficiency is displayed in 
percentage notation, along with the Bayesian Information Criterion (BIC) [37, 38] indi-
cating the model uncertainty and the square of Pearson’s correlation coefficient (shown 
as r_sq or R2) representing the accuracy of the modeling (Fig.  2C). In the “sequence 
alignment” section, the alignment of primary peak sequences from each trace data is 
displayed. In the “Allele contribution” section, the sequences of the EMSPs and their cor-
responding predicted composition ratios, normalized, along with the indel sizes, are dis-
played (Fig. 2D).

Benchmarking of analysis mode in PtWAVE using in vitro experimental dataset 

from the mixture containing large‑deletion dsDNA

PtWAVE provides various options for accurate indel detection such as variable selection 
methods and fitting algorithms. First, we quantified an artificially mixed 85 bp deletion 
using fitting with the NNLS algorithm [31, 32] and various variable selection methods 
to measure the large-deletion detection capability of PtWAVE (Supplementary Meth-
ods; Fig. 3A–C). A significant correlation (Pearson’s correlation coefficient than 0.98 was 
confirmed between the predicted values and the actual measurements by PtWAVE for 
every variable selection method (Fig. 3C). Furthermore, the Coefficient of Determina-
tion (CoD) was greater than 0.97, thereby suggesting a linear relationship. Additionally, 
when comparing the Bayesian Information Criterion (BIC) [37, 38] across different vari-
able selection methods, it was found that BIC significantly decreased in the “random” 
and “backstep” methods compared to the “all” method. The result suggested that the 
modes of “random” and “backstep” can prevent model uncertainty in the deconvolution 
process.

In the analysis above, the deletion detection range was set to ± 50 bp from the cut 
site, meaning the capability to detect up to a maximum of 100 bp deletion. To verify 
the reproducibility of the analysis with a change in settings, a similar analysis was con-
ducted with the deletion detection range extended to ± 75 bp, thereby enabling the 
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detection of up to a maximum of 150 bp. As a result, the methods using “all” and “back-
step” maintained a significantly high correlation, whereas the “random” method failed 
to detect the 85 bp deletion in all sequencing trace data (Fig. S1). This outcome suggests 
that “random” variable selection may incidentally lose detection capability. Meanwhile, 
the “backstep” method, which performs variable selection while monitoring accuracy, 
may be less likely to encounter such losses in detection performance. When aggregat-
ing the fitting accuracy in each analysis, it was found that the values were significantly 
lower in the “random” method. In contrast, no significant difference in accuracy was 
observed between the “backstep” and “all” methods regarding the fitting accuracy (p = 
0.85) (Fig. S2). The fitting accuracy may also be a helpful indicator for preventing the loss 
of detection capability in the variable selection of TIDE analysis.

A scatter plot of the editing efficiency is also illustrated using the same dataset 
in Fig.  3C (Fig.  S3). The high performance in detecting the 85 bp deletion was also 
reflected in the editing efficiency, with a significant correlation of over 0.98 confirmed 
for every variable selection method. Subsequently, an analysis under the same condi-
tions was conducted using the LASSO model instead of the NNLS. The results showed 

Fig. 3  Benchmarking using raw sequencing data from artificially mixed dsDNA. A Schematic representation 
of the artificial dsDNA used. There are two types of artificial dsDNA: one is a 538 bp wild-type DNA sequence 
present in the mouse genome, and the other is a DNA sequence with an 85 bp deletion (indicated by a 
red dotted line), which is hypothesized to be a result of genome editing by the SpCas9-sgRNA complex. B 
Schematic of the sequencing and analysis of mixed artificial dsDNA used for benchmarking. The artificially 
synthesized wild-type DNA sequence and the 85 bp deletion DNA sequence were mixed at a certain ratio 
(% expected) and then subjected to Sanger sequencing. The sequencing data were analyzed using a TIDE 
analysis tool such as PtWAVE. The values derived from the analysis are the observed values (% observed). C 
Evaluation of large-deletion detection capabilities in various variable selection modes. The detection rates 
of the 85 bp deletion dsDNA mixed at various ratios are plotted on the horizontal axis, with the initially 
expected detection rates on the vertical axis presented as a scatter plot. The approximation line was drawn 
using the linear_model Linear Regression fit function from the scikit-learn module. The linear relationship was 
evaluated using the Coefficient of Determination (CoD), which has a maximum value of one and can take 
negative values. Correlations were assessed using Pearson’s correlation coefficient (R), and the p value from 
the no-correlation test was noted. D Evaluation of model uncertainty for various variable selection modes. 
The Bayesian Information Criterion (BIC) for each analysis result plotted in C is presented as a box plot. The 
horizontal axis represents the different variable selection modes and the vertical axis represents the BIC. 
The Wilcoxon signed-rank test was conducted as a two-sided test, and the p value was noted. The Wilcoxon 
signed-rank test was performed using the stats.wilcoxon function from the SciPy module
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that the detection performance was slightly inferior for all variable selection methods. 
Especially in low-frequency samples, where the expected proportion of 85 bp deletion 
dsDNA ranged from 0–20%, the correlation worsened with the LASSO model compared 
to NNLS in every variable selection method (Figs. S4, S5). Notably, the LASSO model 
with the “backstep” mode failed to detect the 85 bp deletion dsDNA in low-frequency 
samples (Fig. S5). The LASSO model introduced a penalty. We assume that the penalty 
eliminates the effect of rare indels. While the LASSO model can exhibit high accuracy in 
fitting data with complex and various alleles, it may treat low-frequency indels as noise 
in data with simpler allele sets, such as low-efficiency editing populations. These results 
highlight the drawbacks of the LASSO model used in the ICE [25] and DECODR [29].

Performance comparison with existing TIDE analysis tools using in vitro experimental 

dataset from the mixture containing large‑deletion dsDNA

PtWAVE is equipped with options for variable selection that are not available in exist-
ing TIDE analysis tools. We compared TIDE [24], ICE [25], and DECODR [29] with 
PtWAVE, while considering the detection of an 85 bp large deletion, editing efficiency, 
and fitting accuracy using an in  vitro experimental dataset from a mixture contain-
ing large-deletion dsDNA (Supplementary Materials and Methods). TIDE [24] allows 
adjustments to the decomposition window and the detectable indel size. Benchmarking 
analysis using TIDE [24] was performed using both default settings and a long deletion 
setting. DECODR [29] offers two modes of analysis: one for bulk cell populations and 
the other for clonal cell populations. Each mode of the DECODR [29] was utilized for 
the benchmarking analysis. The expected values and the tool’s measured values for the 
detection accuracy of the 85 bp deletion were plotted as scatter plots (Fig. 4A). As ICE 
[25] and TIDE [24] initially did not cover the detection range up to 85 bp deletions, they 
naturally did not detection of 85 bp deletions. DECODR [29] successfully detected 85 bp 
deletions, showing a significant correlation with a Pearson’s correlation coefficient above 
0.84, although its correlation was inferior to that of the PtWAVE all and backstep modes. 
The editing efficiencies were plotted for the same settings (Fig.  S6). The DECODR 
analysis mode of the recorded cDNA detection performance was similar to that of the 
PtWAVE backstep mode. The DECODR analysis mode of bulk DNA showed a signifi-
cant correlation, but it was slightly inferior in terms of detection accuracy compared to 
that of clonal DNA. In ICE [25], a significant correlation was observed within a nar-
row range (0–20%), but the expected and measured values were significantly divergent. 
Large-deletion alleles might be a disturbing factor for estimating the editing efficiency in 
TIDE [24] and ICE [25].

To further compare the characteristics of DECODR’s clonal DNA analysis mode 
with PtWAVE, the PtWAVE and DECODR detection results of the 85 bp dele-
tion in samples with a high frequency of large deletions (80–100%) and a low fre-
quency of large deletions (0–20%) were compared (Figs.  S7, S8). In samples with a 
high frequency of large deletions, the DECODR clonal DNA analysis mode reported 
a detection result of 0% for the expected 100% and 99% for 85 bp deletions (Fig. S7). 
This suggests that estimation using the DECODR algorithm [29] may become 
unstable when sequencing trace data with high homogeneity. However, PtWAVE 
did not exhibit loss of detection and successfully detected large deletions, thus, 
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indicating that this issue may not stem from the fundamental parts of the TIDE analy-
sis algorithm. In contrast, for low-frequency large-deletion samples (0–20%), while 
PtWAVE’s “backstep” mode was unable to detect the 85 bp deletion, both PtWAVE’s 
“all” mode and DECODR’s clonal DNA analysis mode showed a significant correla-
tion. This suggests that for samples with a low content of mutant alleles, where the 

Fig. 4  The evaluation of the large-deletion detection capability of various TIDE analysis tools. A The 
detection rates of the 85 bp deletion dsDNA at various ratios are plotted on the horizontal axis. The initially 
expected detection rates are plotted on the vertical axis. PtWAVE all and backstep modes uses NNLS for 
modeling. The figure for PtWAVE all and backstep modes are identical to that in Fig. 3C. The default setting 
for TIDE is specified as"left boundary of alignment window = 100, decomposition window: 115–685, 
indel size range = 10,"and the long deletion setting for TIDE is"left boundary of alignment window = 1, 
decomposition window: 1–700, indel size range = 50."A linear approximation curve was drawn using the 
linear_ model LinearRegression. fit function in the scikit-learn module. The linear relationship was evaluated 
using CoD, which can reach a maximum value of 1 and may take negative values. Correlations were 
assessed using R, and the p value from the no-correlation test was noted. The absence of R and p values 
indicated that the calculation was impossible. B Table presents the accuracy, recall, precision, F1 score, and 
Matthews correlation coefficient (MCC) for detecting the presence of large deletions (−85 bp) in empty and 
large-deletion samples, as analyzed by TIDE tools that validated the samples. These metrics are calculated 
separately for all samples and for those with R2 > 0.8. The numbers of empty and large-deletion samples were 
counted only if the corresponding tools successfully analyzed them. Red text indicates the results from our 
PtWAVE. Orange-, green-, and purple-highlighted cells denote scores of 1.000, > 0.8, and 0.000, respectively
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variety of mutant alleles is limited, both PtWAVE’s “all” mode and DECODR’s clonal 
DNA analysis mode are highly effective.

Finally, the accuracy of editing efficiency estimation between PtWAVE and 
DECODR was compared. The observed editing efficiency of PtWAVE and DECODR 
was significantly correlated with the expected editing efficiency (correlation test, p < 
0.01). Next, a benchmarking analysis with PtWAVE and DECODR was conducted 
using data from sequencing samples that were an equal mix of 85 bp deletion dsDNA 
and WT dsDNA to verify how close the editing efficiency was to 50%. The results are 
presented as box plots (Fig. S9). Unfortunately, neither the PtWAVE backstep mode 
nor the DECODR clonal DNA analysis mode were precisely equivalent to 50% with 
a one-sample t-test. However, both the PtWAVE backstep mode and the DECODR 
clonal DNA analysis mode had average values within the 45–55% range (averages of 
54.00% and 46.17%, respectively) and low measurement errors (standard error of the 
mean (SEM) were 0% and 0.19, respectively, n = 3). These results suggest that they can 
provide a practical level of measurement accuracy for genome editing experiments. In 
the benchmarking, DECODR always estimated the editing efficiency to be lower than 
that of PtWAVE. Because DECODR adopts the LASSO model for fitting [29], this 
could cause an underestimation, as described above. As an additional experiment, 
data from samples where the total DNA of an equal mix of 85 bp deletion dsDNA and 
WT dsDNA was diluted to one-tenth (low conc.) were analyzed using each analy-
sis mode of PtWAVE and DECODR (Figs. S10, S11). In PtWAVE and DECODR [29], 
the measured editing efficiency values for the normal total DNA amount (normal 
conc.) were higher than those in the low-concentration samples (Fig. S11). This result 
implied that the low concentration of template DNA caused an underestimation of 
editing efficiency in the TIDE analysis. The random mode of PtWAVE was nearly 
equivalent to 50% in a one-sample t-test (p = 0.18) for normal concentration data. 
Although the random mode of PtWAVE is unstable, as mentioned in the previous 
section, it suggests the possibility of accidentally constructing an excellent fit model. 
The benchmarking result was summarized in Table S3.

Finally, we evaluated the detection performance for large deletions (−85 bp) in 
in vitro artificially mixed dsDNA samples by PtWAVE all and backstep modes, TIDE 
with default and long-deletion settings, ICE, and DECODR bulk and clonal modes 
using standard binary classification metrics: accuracy, recall, precision, F1 score, and 
the Matthews correlation coefficient (MCC) using scikit-learn v1.0.2 (Fig. 4B). We cal-
culated these metrics by determining whether each tool detected the −85 bp deletion 
in the empty and large-deletion samples, regardless of whether the predicted quanti-
ties were over- or underestimated. As a result, PtWAVE and DECODR both showed a 
precision of 1.0, whereas TIDE and ICE showed 0, indicating that only PtWAVE and 
DECODR were able to detect the large deletion.

Moreover, the accuracy and recall of PtWAVE all mode each reached 1.0, imply-
ing that it did not miss any large-deletion samples and produced no false detections. 
Overall, PtWAVE all mode exhibited the highest performance, followed by DECODR 
and then PtWAVE backstep mode. Notably, while PtWAVE backstep mode outper-
formed DECODR in correlating predicted large deletions (Fig. 4A), DECODR showed 
slightly higher accuracy and recall for simply detecting their presence.
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Performance comparison with existing TIDE analysis tools using published dataset

We also verified PtWAVE using sequence data from DNA analyzed through genome 
editing. For verification, datasets published in prior research or available online were 
used [25, 40, 41]. Analysis in the backstep mode of PtWAVE successfully processed six 
sequence trace datasets (Fig. S12). This suggests that PtWAVE can also be used to ana-
lyze genome-edited samples.

Next, using data from a GFP locus [41], the results were compared with those of other 
TIDE analysis tools. The presence of 1  bp deletions was suggested in PtWAVE, TIDE 
[24], ICE [25], and DECODR [29]; however, deletions of more than 50 bp were detect-
able only with PtWAVE (Fig.  S13). These results indicate the potential of PtWAVE to 
detect large deletions with higher sensitivity than conventional tools, even in actual 
genome editing data. The benchmarking result was summarized in Table S4.

Recommended settings of variable selection mode and fitting algorithm in PtWAVE

PtWAVE can combine three types of variable selection modes (“all,” “random,” and 
“backstep”) with two types of fitting algorithms (NNLS [31, 32] and LASSO [34] model) 
(Fig.  1). Considering the results of the benchmarking using two types of dsDNA, the 
most versatile combination was believed to be “all” and NNLS. However, the combina-
tion tended to have relatively high BIC values (Fig. 3D), raising concerns about model 
uncertainty. The issue of model uncertainty was not pronounced in our benchmarking, 
which evaluated only two types of dsDNA sequences, but it might become apparent in 
bulk cell population including consideringly more various types of the indel sequences. 
In such cases, applying “backstep” could yield accurate results. Meanwhile, we should 
mention that the “backstep” mode suffered from reduced detection accuracy in the sim-
ple DNA composition, including the low-frequent deletion, which might mimic an anal-
ysis result of the clonal cell population (Fig. S8). As a side note, the LASSO model could 
potentially enhance accuracy in samples containing more complex indels, although our 
benchmarking identified a drawback of the LASSO model, which underestimated the 
indel rate (Figs. S4, S5). The “random” mode could achieve exceptionally accurate analy-
sis under certain conditions and samples (Fig. S10), yet large-deletion detection did not 
work under other conditions (Fig. S1). We offer users the LASSO model and “random” 
mode as experimental parameters, whereas we recommend combining “all” and NNLS 
for practical indel analysis. We also suggest combining “backstep” and NNLS for bulk 
cell populations, where encountering model uncertainty is possible.

Conclusions
In this study, we developed a novel TIDE analysis tool, PtWAVE, capable of detect-
ing large deletions. We evaluated the performance of PtWAVE using artificially mixed 
dsDNA sample data, data from previous studies, and external websites. PtWAVE 
demonstrated superior accuracy and sensitivity in detecting large deletions com-
pared with existing tools, suggesting its potential to improve the efficiency of genome 
editing research using organisms in which large deletions often occur when targeted 
DSB are introduced [42, 43]. Users can adjust the maximum deletion range (Fig. 2A), 
which is relative parameter of the “maximum anticipated indel size” (Fig. 1B, step 2), 
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to accurately detect deletions of around 100 bp if Sanger sequencing trace is suffi-
ciently long and of high quality. However, TIDE tools are still challenging to accu-
rately estimate the proportion of > 1 kb deletion alleles in pooled amplicons, because 
the Sanger sequencer cannot capture the 3′ end of the unmodified allele when it 
exceeds 1  kb, leading to miscounting of unmodified alleles. If the Sanger sequenc-
ing method can generate reads exceeding 1 kb, PtWAVE can more reliably estimate a 
broader range of indels in the future.

Moreover, PtWAVE uniquely integrates both the LASSO-based method (as in ICE 
[25] and DECODR [29]) and the non-linear least squares (NLLS) approach (as in 
TIDE [24]), enabling users to tailor the analysis to a wide range of experimental con-
ditions. This versatility is a major advantage of PtWAVE, ensuring that it remains a 
strong option even when large deletion detection is not the primary focus.

Availability and requirements

Project name: PtWAVE.
 Project home page: https://​www.​ptwave-​ptbio.​com/.
 Operating system(s): Platform independent.
 Programming language: Python.
 Other requirements: Streamlit v1.24.1 and FastAPI v0.100.0. 
License: CC BY 4.0 DEED.
 Any restrictions to use by non-academics: None.
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