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Background
Microbiome encompasses interacting communities of bacteria, fungi, archaea, protozoa, 
and viruses, which have been proven to directly and indirectly influence the health of 
plants and animals in various ecosystems [1]. The term ’meta-transcriptome’ refers to 
the collective microbial RNA sequences, which can bridge metagenomic annotations 
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and facilitate a unified classification framework. Analyzing the meta-transcriptome 
can reveal variations in gene expression that are associated with specific phenotypes 
and provide insights into the active metabolic and functional roles of microbes. Unlike 
traditional transcriptomics, which focuses on the gene expression of a single species, 
metatranscriptomics investigates the transcriptional activities of all microorganisms 
within complex ecosystems. This broad approach makes it highly applicable in fields 
such as ecology, environmental science, and public health [2–4]. For example, the soil 
microbiome provides critical contributions to soil fertility, biogeochemical cycling, and 
plant health [5, 6], while the gut microbiota regulates intestinal and immunological 
homeostasis [7, 8], further demonstrates the profound impact of microbial community 
diversity and functionality on ecosystem dynamics.

Although metatranscriptomics has shown great potential in revealing microbial 
functions and metabolic activities, its data analysis still faces numerous challenges. 
Metatranscriptomic data, typically generated by high-throughput sequencing 
technologies, are characterized by large volumes, high noise levels, and the complexity 
of multispecies gene information, which pose significant difficulties in data processing 
and analysis. Similar to metagenomes, technical sequencing errors and other technical 
artefacts are commonly present in RNA-Seq technologies customarily [9, 10]. Given the 
large sample size required for analysis to reveal large-scale patterns, it requires pipelines 
that integrate multiple computational tools for robust meta-analysis, including data 
exploration, quality control, differential genes expression analysis, functional annotation, 
and further downstream analyses. The standard operating procedures have become 
essential for the scalability and reproducibility of data [11].

In recent years, several tools focusing on metatranscriptomic data analysis have been 
developed. However, the entire analysis process involves the installation and execution 
of various software and requires substantial computational resources. Web-based analy-
sis platforms such as COMAN [12] and MG-RAST [13] are online tools dedicated to 
metatranscriptomic data analysis, but their analytical depth is limited, and their process-
ing speed is constrained by server performance, which may result in suboptimal per-
formance with large-scale datasets. IMP [14] provides a workflow that can handle both 
metagenomic and metatranscriptomic data, supporting reference genome-independ-
ent analysis methods, but its analysis speed is relatively slow, especially with complex 
samples, and it poses a learning curve for users without a bioinformatics background. 
HUMAnN2 [15] enables the integration of genomic and transcriptomic data for func-
tional annotation and metabolic pathway analysis; however, it has high computational 
resource requirements and is slower in processing. While these tools perform well for 
specific tasks, they often lack systematic integration, requiring trade-offs based on the 
specific task requirements, user technical background, and available computational 
resources, making it difficult to meet the needs of end-to-end analysis. Therefore, there 
is an urgent need for an integrated, automated analysis pipeline that can efficiently pro-
cess and comprehensively analyze data, simplifying the analysis process and improving 
the reliability and reproducibility of results.

To address the challenges, this study developed metaTP, an integrated automated 
pipeline designed to streamline the analysis of metatranscriptomic data. MetaTP 
seamlessly integrates modules for quality control, non-coding RNA removal, functional 
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annotation, and network analysis, providing a comprehensive, end-to-end automated 
pipeline from raw sequence data to downstream analysis. Compared to existing tools, 
metaTP provides superior efficiency and reproducibility. 

Implementation
metaTP is a command line software for Unix-like systems that can execute seven steps. 
The metaTP pipeline consists of an independent program responsible for preprocessing 
the reads, and sequence processing (Fig. 1). Compared to existing methods that involve 
manual execution of data processing steps, metaTP achieves a high degree of automa-
tion in the data processing workflow by integrating the Snakemake workflow engine, 
thereby optimizing various stages of metatranscriptomic analysis. The pipeline accepts 
paired or single-end sequencing reads in FASTQ format as input through command line 
flags. It also provides progress reports and visualization options suitable for conducting 
exploratory factor analysis.

Data collection, quality control and non‑coding RNA removal

The metaTP pipeline integrates data download options using the SRA Toolkit [16]. 
The target sequence run was downloaded in compressed sra format (.sra) using the 

Fig. 1  Flow chart of metaTP
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prefetch tool. The SRA files were then decompressed to fastq files using fasterq-dump. 
The quality of the FASTQ files is assessed using FastQC (http://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/). Trimmomatic was employed to handle poor quality 
or technical sequences such as adapters [17]. The quality-trimmed fastq files were 
imported into bowtie2 for rRNA removal [18]. All the high-quality reads after depletion 
are further assembled using megahit, which makes use of succinct de Bruijn graphs 
[19]. Transdecoder was used to identify putative coding regions from the assembled 
transcripts and/or contigs based on the NCBI non-redundant (nr) protein database 
(http://​trans​decod​er.​github.​io). Finally, the seqkit tool is used to deduplicate the 
predicted coding region sequences, generating a file free from redundant sequences.

Transcript expression quantification and differential gene expression analysis

MetaTP provides function Salmon for rapid transcript-level expression quantification. 
In meta-transcriptome analyses, traditional transcriptome quantitative analysis is not 
possible due to the absence of a reference genome annotation file (gtf/gff file). Salmon 
is the first transcriptome quantifier that corrects for GC fragment content bias, leading 
to improved accuracy of abundance estimates and reliability of subsequent differential 
expression analyses [20]. This makes it suitable for transcriptome and metagenomic 
analysis. To perform quantification, coding sequences obtained from Transdecoder 
are used to construct an index. A decoy aware transcriptome file is then created for 
Salmon transcript quantification, followed by the transcriptome index. Gene expression 
levels are normalized by transcript length and library size (TPM). Differential gene 
expression analysis in this study was performed using R and associated packages for data 
processing, with statistical testing of gene expression differences conducted based on the 
Wilcoxon rank-sum test. The analysis was carried out by filtering the expression values 
within the gene expression data matrix.

Functional annotation of genes and reads

Gene annotation was conducted using the metaTP that integrates eggNOG-mapper 
(http://​eggnog-​mapper.​embl.​de), a tool for functional annotation based on precomputed 
orthology assignments [21] and has been optimized for handling vast amounts of 
metagenomic data. It offers several key functionalities, including: (1) de novo gene 
prediction based on raw alignments, (2) integrated pairwise homology prediction, 
(3) rapid protein domain detection. The annotation results include gene functional 
categories, metabolic pathway information, GO annotations, and other relevant 
functional details. Additionally, functional enrichment analysis of the annotation results 
(such as GO and KEGG pathway analysis) is performed, and protein structure prediction 
is conducted to support the in-depth interpretation of the biological significance of 
differentially expressed genes.

Automation based on Snakemake execution

To enhance the automation level of the entire analysis workflow, metaTP utilizes 
Snakemake as the workflow engine to manage each step of data processing and analysis. 
Snakemake supports automated task execution, enabling tasks to be scheduled and 
processed in parallel based on dependency relationships, significantly improving analysis 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://transdecoder.github.io
http://eggnog-mapper.embl.de
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efficiency and reducing human errors. MetaTP leverages the Snakemake pipeline to 
achieve fully automated processing from data collection to differential expression 
analysis. Through automated management and efficient task scheduling, we successfully 
increased the efficiency of metatranscriptomic data analysis, providing researchers with 
a flexible and effective analysis tool. The innovation of metaTP lies in its high integration 
and automation in steps such as data collection, quality control, non-coding RNA 
removal, transcript expression quantification, and differential gene expression analysis, 
making the complex analysis workflow more convenient and user-friendly.

Results
Tool feature comparison

To assess the applicability of metaTP in metatranscriptomic analysis, we conducted 
a comparative evaluation with commonly utilized analysis pipelines, including 
HUMAnN [15], SAMSA2 [22], MetaTrans [23] and FMAP [24], as shown in Table  1. 
The comparison encompassed several key aspects: the analysis process, computational 
performance, functional coverage, and overall applicability.

MetaTP offers a comprehensive suite of integrated quality control and data preproc-
essing tools, such as FastQC and Trimmomatic, which effectively ensure data integ-
rity. In contrast, tools like HUMAnN3 require users to manually manage these steps. 

Table 1  Tool feature comparison

Comparative 
dimensions

metaTP HUMAnN3 SAMSA2 MetaTrans FMAP

Quality control √ FastQC, Trimmomatic  × (Need to be 
handled by 
the user)

√ PEAR, 
Trimmomatic

√ FastQC √ BMTagger

rRNA removal √ Bowtie2  ×  √SortMeRNA √ SortMeRNA √ SortMeRNA

Transcript 
assembly

√ MEGAHIT  ×   ×   ×   × 

Protein coding 
region prediction

√ TransDecoder  ×   ×  √ FragGeneScan  × 

Transcript 
expression 
quantification

√ Salmon  ×   ×   ×   × 

Differential 
gene expression 
analysis

√t-test  ×  √ DESeq2 √ DESeq2 √Kruskal–Wallis

Functional 
annotation

√ eggNOG, KEGG, GO √ rxn, GO, 
KO, level4ec, 
pfam, 
eggNOG

√DIAMOND √ eggNOG, MetaHIT, M5nr, 
SOAP2

√ ODB3

Functional 
enrichment 
analysis

√ clusterProfiler √ KEGG, 
MetaCyc

 ×   ×  √ KEGG, UniProt

Co-expression 
network analysis

√ ggClusterNet  ×   ×   ×   × 

Computational 
efficiency

√ Snakemake  ×   ×   ×   × 

Reproducibility √ Snakemake  ×   ×   ×   × 

Final analysis 
results

Gene 
expression + enrichment 
analysis + co-expression 
network

Functional 
annotation

Functional 
annotation

Gene 
expression + classification 
analysis

Differential 
abundance analy-
sis + enrichment 
analysis
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Furthermore, metaTP demonstrates notable advantages in areas such as transcript 
assembly, protein-coding region prediction, and transcript expression quantification. It 
integrates MEGAHIT for transcript assembly, TransDecoder for protein-coding region 
prediction, and supports the use of Salmon for expression quantification—features not 
typically found in other pipelines.

In terms of functional annotation, metaTP supports a range of databases, including 
eggNOG, KEGG, and GO, facilitating detailed functional annotations. Additionally, it 
incorporates functional enrichment analysis via clusterProfiler, which further enhances 
the depth of the analysis. Although other tools like SAMSA2 and FMAP also offer 
functional annotation, their capabilities for functional enrichment analysis are more 
limited. Moreover, metaTP integrates ggClusterNet for co-expression network analysis, 
enabling in-depth exploration of gene interactions, a feature that is often absent in other 
pipelines.

From a computational perspective, metaTP employs automated workflows based on 
Snakemake, supports parallel computing, and offers high computational efficiency and 
reproducibility, making it well-suited for processing large-scale datasets. In contrast, 
its computational efficiency and comprehensive workflow management provide greater 
flexibility and efficiency in handling complex analyses.

In summary, metaTP exhibits robust functionality across multiple facets of 
metatranscriptome analysis, particularly in data processing, functional annotation, 
expression quantification, and analytical efficiency. Its clear advantages make it 
particularly well-suited for research requiring multi-dimensional analysis and high-
performance computing.

Case study

To evaluate the effectiveness of the metaTP in analyzing meta-transcriptome, eight 
bulk and rhizosphere metatranscriptomic samples from the published study [25] were 
employed  for subsequent analysis. Exemplary output of metaTP for dimensionality 
reduction analysis (Fig. 2a), Venn analysis (Fig. 2b) and differential gene expression anal-
ysis (Fig. 2c) based on the soil microbiome dataset is summarized in Fig. 2. The PCoA 
scores demonstrated a significant separation between the rhizosphere samples and the 
different doses of bulk samples, indicating notable transcriptional differences in various 
soil environments. The Venn diagram provided a visual representation of the shared and 

Fig. 2  Dimensionality reduction analysis (a), Venn analysis (b) and differential gene expression analysis (c) 
from metaTP. a A Principal Coordinate Analysis (PCoA) ordination is shown based on the Bray–Curtis distance 
matrix of gene expression profiles; b displays a Venn diagram illustrating the shared and unique genes; c 
Volcano plot diagram analysis of differentially expressed genes (DEGs)
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unique genes between the bulk and rhizosphere soil. Figure 2b shows 995 unique genes 
for the rhizosphere soil and 7,533 shared genes. Additionally, the volcano plot depicted 
the differential expression of genes between the groups, with significantly upregulated or 
downregulated genes determined by Log 2 FC and log 10 FDR.

Functional profile analysis

The metaTP workflow provides an integrated analysis framework for the functional 
classification and enrichment analysis of differentially expressed genes (DEGs). By con-
structing sample-based local annotation packages, metaTP enhances the functional 
annotation capability for specific metatranscriptomic samples, improving target specific-
ity compared to generic annotation databases and reducing interference from non-target 
information. After annotating genes with the eggNOG database using eggNOG-mapper, 
the metaTP generates annotation packages for the meta-transcriptomic samples. The 
annotation package is created locally using the ’makeOrgPackage’ function from the R 
package ’AnnotationForge’. The generated annotation package contains gene information 
along with corresponding functional classifications, GO terms, and KEGG pathways, 
which play a crucial role in functional enrichment analysis of gene sets obtained from 
differential expression analysis. Gene Ontology (GO) and KEGG ontology (KO) enrich-
ment was then performed using the clusterProfiler package in R. The GO functional 
analysis includes biological process (BP), cellular component (CC), and molecular func-
tion (MF). In the up-regulated genes of the rhizosphere samples, we found that the most 
enriched terms were cellular process (GO: biological process), metabolic process (GO: 
biological process), cellular anatomical entity (GO: cellular component), binding (GO: 
molecular function), and structural molecule activity (GO: molecular function) (Fig. 3a). 
These results reveal the functional characteristics of specific genes in rhizosphere sam-
ples. With the help of local annotation packages, metaTP enables precise mapping of 
DEGs to KEGG pathways, thereby providing a deeper understanding of gene functions. 
The identified up-regulated genes were classified into 14 function classes based on the 
Clusters of Orthologous Groups of proteins (COG) function classification. These classes 
include replication/recombination/repair (L), transcription (K), and translation/riboso-
mal structure/biogenesis (J), with the majority of genes falling into these groups, except 
for unknown function genes (Fig.  3b). Although there were differences in the relative 
abundance of genes annotated to the component of the MICOS complex and struc-
tural molecule activity between bulk and rhizosphere samples, no significantly enriched 
GO terms were observed in the enrichment analysis of up-regulated DEGs (Fig. 3c, d). 
Although the annotation package design of metaTP depends on the coverage of the egg-
NOG database, its flexibility and specificity for particular samples compensate for the 
limitations of generic tools to some extent, providing efficient support for the classifica-
tion and annotation of functionally unknown genes.

Gene co‑expression network

The metaTP pipeline involved converting the correlation matrix of all possible pairs of 
ASVs into an adjacency matrix. A cutoff of correlation coefficients was set at 0.6, with 
a significance threshold of p < 0.001 using the random matrix theory (RMT)-based 
method. The network was then constructed and visualized using ggClusterNet (Fig. 4a, 
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b). In the network topologies, each node represents a gene. Degree represents the num-
ber of interaction partners for a node in a given network. The path length quantifies the 
level of integration in the network. Betweenness centrality is a measure of the number 
of shortest paths that go through a given node. Closeness centrality, on the other hand, 
measures the importance of a node and refers to how easily it can be reached from other 
nodes. In our case study, there was a high degree of average degree and density of the 
bulk network with respect to rhizosphere (Fig. 4e, l).

Conclusion
The study of microbiomes using meta-transcriptome sequencing enables the analysis 
of the activity of microbial communities that may have important roles in their 
environments. Over the past decade, omics technology has provided a theoretical 
foundation for understanding the distribution patterns and functional mechanisms of 
microorganisms under various conditions. Integrating different bioinformatic tools for 

Fig. 3  Functional annotation and enrichment analysis of differentially up-regulated genes: a Gene 
Ontology (GO) functional enrichment analysis; b Clusters of orthologous groups of proteins (COG) function 
classification; c GO enrichment analysis for up-regulated DEGs; d Heatmap showing functional gene relative 
abundance between bulk and rhizosphere samples
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this high-throughput data has become the burden for biologists. The data processing 
pipeline has strong potential to improve the reproducibility in meta-analysis studies. In 
our study, metaTP provides an analytical environment with reproducible workflows that 
efficiently process raw data into a gene expression matrix with reference-independent 
quantification methods. MetaTP also provides downstream analysis and visualization 
methods including functional enrichment and gene co-expression network analysis, 

Fig. 4  Gene co-expression network analysis. Gene expression network of bulk (a) and rhizosphere (b) 
samples. c–l are the differences of network topology properties between bulk and rhizosphere samples
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which contain network topology calculations. Our hope is that this tool will serve in the 
future as a valuable resource for researchers.
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