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Abstract 

Background: Association and cooperation among structural domains play an impor-
tant role in protein function and drug design. Despite remarkable advancements 
in highly accurate single-domain protein structure prediction through the collabora-
tive efforts of the community using deep learning, challenges still exist in predicting 
multi-domain protein structures when the evolutionary signal for a given domain pair 
is weak or the protein structure is large.

Results: To alleviate the above challenges, we proposed M-DeepAssembly, a protocol 
based on multi-objective protein conformation sampling algorithm for multi-domain 
protein structure prediction. Firstly, the inter-domain interactions and full-length 
sequence distance features are extracted through DeepAssembly and AlphaFold2, 
respectively. Secondly, subject to these features, we constructed a multi-objective 
energy model and designed a sampling algorithm for exploring and exploiting 
conformational space to generate ensembles. Finally, the output protein structure 
was selected from the ensembles using our in-house developed model quality 
assessment algorithm. On the test set of 164 multi-domain proteins, the results show 
that the average TM-score of M-DeepAssembly is 15.4% and 2.0% higher than Alpha-
Fold2 and DeepAssembly, respectively. It is worth noting that there are models 
with higher accuracy in ensembles, achieving an improvement of 20.3% and 6.4% 
relative to the two baseline methods, although these models were not selected. Fur-
thermore, when compared to the prediction results of AlphaFold2 for CASP15 multi-
domain targets, M-DeepAssembly demonstrates certain performance advantages.

Conclusions: M-DeepAssembly provides a distinctive multi-domain protein assem-
bly algorithm, which can alleviate the current challenges of weak evolutionary signals 
and large structures to some extent by forming diverse ensembles using multi-objec-
tive protein conformation sampling algorithm. The proposed method contributes 
to exploring the functions of multi-domain proteins, especially providing new insights 
into targets with multiple conformational states.

Keywords: Protein structure prediction, Multi-domain protein assembly, Multi-
objective energy model, Conformation sampling
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Introduction
Since the Mulder proposed the concept of proteins in 1838 [1], proteins have remained 
a central focus of molecular biology research. Proteins play diverse functional roles in 
various biological processes [2], such as catalysis of biochemical reactions, transport-
ing nutrients, recognizing and transmitting biological signals [3], etc. Traditional experi-
mental methods require significant time and resources, which made predicting protein 
structures a challenge in biology for decades [4]. Fortunately, with the development of 
deep learning, protein structure prediction technology has made significant progress 
in the past decade [5–9], especially with the emergence of a series of excellent meth-
ods such as AlphaFold2 [9] and RoseTTAFold [5], which tackled a 50-year challenge in 
the field of biology. The success of mapping homologous sequences to a single structure 
(e.g., AlphaFold2 and RoseTTAFold) does not signify the end of structural biology [4]. 
For instance, as mentioned in the recent 15th critical assessment of structure prediction 
(CASP15) review article, there are still challenges in multi-domain proteins when the 
domain pairing information obtained is weak or the protein structure is large [10].

Structural domains are states situated between the secondary and tertiary structures 
of a protein [11], representing independent units in evolution, structure, and function 
[12, 13]. In nature, multi-domain proteins often result from the repetitions and com-
binations of single domains [2]. Interactions among these structural domains directly 
impact a protein’s conformation and activity, thus influencing physiological processes 
in organisms. Currently, only one-third of multi-domain proteins have been resolved in 
the Protein Data Bank (PDB) [14]. Compared to single-domain proteins, multi-domain 
proteins exhibit higher degrees of freedom in the regions connecting structural domains 
and in interaction zones [15]. In addition, the lack of effective methods for assembling 
structural domains and linkers optimization strategy predicts that multi-domain protein 
structures are more urgent and crucial.

Due to the high computational demands for full-chain modeling of multi-domain 
proteins, a “divide and conquer” strategy can effectively decompose and address this 
complex problem [12]. The method involves splitting the full-length sequence based 
on domain boundaries, generating individual models for each structure, and ultimately 
assembling each structural domain into a complete full-chain model [16]. For instance, 
Rosetta [17] employs a strategy that keeps the skeleton of each domain fixed and uses a 
sampling strategy for the full range of rotamers. AIDA [18] realizes a de novo method 
guided by ab initio folding potentials, but methods based on de novo- or ab initio-based 
calculations will lead to the final structure being largely randomly oriented [19]. The rep-
resentative methods based on structural domain rigid-body docking include DEMO [20] 
and SADA [19], both of which mainly rely on structure templates. With the advance-
ment of deep learning and the improvement of single-domain prediction, full-chain 
protein modeling based on deep learning has also become one of the mainstream meth-
ods. The E2EDA [12] leverages deep learning to achieve end-to-end multi-domain pro-
tein structure prediction, transforming the predicted inter-domain rigid motions into 
direct assembly of full-chain models. However, E2EDA tends to result in atomic con-
flict. Meanwhile, our recently developed DeepAssembly [21] assembles multi-domain 
proteins by predicting inter-domain interactions using a convolutional neural network. 
DeepAssembly mainly focuses on the inter-domain interactions, whereas AlphaFold2 
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mainly focuses on the full-chain and ignores inter-domain interactions to some extent. 
Thereby, better results can be obtained for multi-domain proteins by combining the 
advantages of both methods.

Here, we propose a multi-domain protein assembly method, M-DeepAssembly, which 
is based on a multi-objective protein conformation sampling algorithm. This method 
obtains inter-domain interactions using DeepAssembly [21] while extracting distance 
features of the full-length sequence using AlphaFold2 [9]. Subject to the above features, 
population-based dihedral angle optimization is performed under the guidance of a 
multi-objective optimization algorithm to output diverse ensembles [22–24]. Ultimately, 
the ensembles are screened using our model quality assessment algorithm to output 
the final structure. M-DeepAssembly was tested on 164 multi-domain proteins and 13 
CASP15 multi-domain protein targets, consistently outperforming AlphaFold2. These 
results suggest that our algorithm can overcome the limitations of DeepAssembly to 
some extent by exploring large-scale conformation sampling.

Methods
Overview

The pipeline of M-DeepAssembly is illustrated in Fig.  1. The full-length protein 
sequence is segmented into multiple single-domain sequences using our previously pro-
posed method, the sequence-based domain parser DomBpred [25]. Firstly, the Multiple 
Sequence Alignment (MSA) feature, inter-domain feature, and template feature are fed 
into the interaction prediction network to acquire inter-domain interactions (For more 
details, see DeepAssembly [21]). Simultaneously, the single-domain structures and the 
full-length sequence distance features were obtained using AlphaFold2 [9]. Based on the 
single-domain structures, the dihedral angles of the linkers are randomly initialized to 
generate an initial conformational population. The ensembles are obtained through a 

Fig. 1 Pipeline of the M-DeepAssemby. a Protein sequence domain parsing and features extraction; b 
Multi-objective protein conformation sampling; c The part of MQA, which is used to rank and select output 
structure from the ensembles
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multi-objective conformational sampling. Finally, the model quality assessment (MQA) 
algorithm is used to select the top-ranking models from given ensembles. The flowchart 
and specific details of M-DeepAssembly are shown in Additional file 1: Fig. S1.

Material preparation

Based on the input sequence, the MSA feature is obtained by searching Uniclust30 [26] 
and BFD [27] databases through HHblits [28], the template feature is searched PDB 
database using HHsearch [28], and the inter-domain feature is extracted through our 
previously proposed DomBpred [25]. All these features are fed into our DeepAssembly 
network to predict inter-domain interactions, combined with full-length sequence dis-
tance features obtained from AlphaFold2 to construct the multi-objective energy model.

Multi‑objective energy model

Generally, it is not possible to find a single solution to meet all tasks because different 
tasks might conflict with each other [29]. Instead, the multi-objective optimization strat-
egy is able to divide the multi-problem into multiple sub-problems. By solving the sub-
problems in parallel, a set of well-distributed pareto optimal solutions is obtained. In our 
multi-objective conformation sampling algorithm, based on the obtained inter-domain 
interactions and the full-length sequence distance, two energy functions are constructed 
to guide the sampling process.

The energy function of the inter-domain interactions for the target conformation x is 
described as follows:

where l is the number of residues in the linkers; and di,j represent the predicted Cα dis-
tance between the i-th and j-th residues, and d∗i,j represents Cα distance between the i-th 
and j-th residues of the target conformation.

In fact, capturing the full-length protein structural interactions can compensate to 
some extent for the lack of information on inter-domain interactions. To address this, 
we designed an energy function to measure protein full-length sequence interactions. 
Referring to our previous work [30], the energy function is designed as follows:

where L represents the length of protein sequence; dw,q , d∗w,q represent the predicted Cα 
distance between the w-th and q-th residues and the Cα distance of the target conforma-
tion, respectively; ε is a very small number to avoid d′ being zero.

Based on Eqs. (1) and (2), we constructed a multi-objective energy model f (x) , which 
is described as follows:
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where fi(x) , i ∈
{

1, 2, . . . , k
}

 is the i-th energy function; k represents the total number of 
energy functions, x is the decision vector in the decision space � , in this study, it can be 
regarded as a conformation in the ensembles. The algorithm optimizes all energy func-
tions simultaneously by exploiting the shared information among them. For the two con-
formations xa and xb in the ensembles, for all energy functions fi(x) , if fj

(

xa
)

≤ fj
(

xb
)

 , 
∀j ∈ {1, 2, . . . ,m} and fq

(

xa
)

< fq
(

xb
)

 , ∃q ∈ {1, 2, . . . ,m}[31], then xa is said to dominate 
xb
(

xa ≺ xb
)

 . If there does not exist a decision vector dominates x∗ in the whole decision 
space, then x∗ is called a pareto optimal solution or non-dominated solution (see Fig. 2).

Initialization

The single-domain protein structures predicted by AlphaFold2 [9] are connected 
from N-terminal to C-terminal in sequence order, and the dihedral angles of the link-
ers are randomly perturbed to generate N  full-length conformations that form the 
initial population. The random initial dihedral angle vector �initial

i  of the i-th confor-
mation is set according to the following equation:

where X is an M-dimensional vector composed of random numbers between 0 and 1, 
I is an M -dimensional vector of ones, and dmax represents the maximum perturbation 
value for initial angles. The above M represents the dihedral angle dimension of the tar-
get conformation, i.e., the dimension of the decision optimization variable.

(4)minx f (x) = [f1(x), f2(x), . . . , fk(x)],

(5)
s.t. x ∈ �.

(6)�initial
i = (2X − I)dmax, i ∈ {1, 2, . . . ,N },

Fig. 2 Energy landscape for multi-objective sampling, the protein conformation corresponding to the lower 
energy (pareto solutions) is obtained under the guidance of two energies
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Crossover and mutation operators

To update the population, we interact the linker fragments between the conformations 
in the population to construct new conformations to help jump out of the local energy 
basin. Therefore, it is necessary to design crossover and mutation operators for new con-
formation generation, which can expand the conformational space by perturbing the 
dihedral angles of the multi-domain protein linkers. For each individual 
�i =

{

θi,j
}

i=1,...,N ,j=1,...,M
 , it is a vector composed of M dihedral angles of the i-th con-

formation, we use the following equation for mutation and crossover.

where θ targeti,j  represents the j-th dihedral angle of linkers in the i-th conformation, θf1,j 
and θf2,j are the dihedral angles corresponding to two conformations randomly selected 
from the ensembles generated after multi-objective sampling, θ traili,j  is the trial dihedral 
angle corresponding to conformation after mutation, F  is a scaling factor; rand(0, 1) is a 
random number between 0 and 1, pc represents the crossover factor, when rand(0, 1) is 
less than pc , the mutation dihedral angle θ traili,j  is selected as the final dihedral angle ( θi,j ), 
otherwise, the θ targeti,j  is selected.

Population update

The conformations after crossover and mutation are used to generate non-dominated 
solutions through multi-objective conformation sampling. For conformation x∗ , which 
is called a non-dominated solution if there does not exist a conformation x in decision 
space that satisfies x ≺ x∗ . In addition, for the dominated x′ conformation, we receive 
with probability pa . All obtained x∗ and x′ are used to update the population and form 
ensembles. The final ensembles are output when the maximum number of iterations 
Gmax is reached (see Additional file 1: Fig. S1 and Table S1).

Model selection

Finally, we use an in-house developed model quality assessment [32–35] algorithm 
(DeepUMQA-rank) to select the top-ranking (top1) model in the final ensembles gener-
ated by M-DeepAssembly. This algorithm employs a neural network based on an axial 
attention mechanism, which integrates knowledge derived from protein sequence fea-
tures and protein family structural features to assess the quality of the protein struc-
tures. The algorithm will be available in a preprint soon.

Results
Dataset

For a fair comparison, we used the same test set as in DeepAssembly, which consists of 
164 TM-score < 0.8 multi-domain proteins from the H. sapiens proteome in the Alpha-
Fold database [36]. Among these, there are 104 proteins with 2 domains, 30 proteins 
with 3 domains, 30 proteins with more than 3 domains, and a maximum of 7 domains. 

(7)
θ triali,j = θ

target
i,j + F

(

θf1,j − θf2,j
)

, i, f1, f2 ∈ {1, 2, . . . ,N }, i �= f1 �= f2, j ∈ {1, 2, . . . ,M}

(8)θi,j =

{

θ traili,j , if rand(0, 1) ≤ pc

θ
target
i,j , otherwise

, i ∈ {1, 2, . . . ,N }, j ∈ {1, 2, . . . ,M}
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In addition, we collected 13 multi-domain protein targets of CASP15 as a test set for 
objective comparison with AlphaFold2 [9] and AlphaFold3 [37].

Results of the benchmark set

To test the performance of M-DeepAssembly, we compared it with DeepAssembly and 
AlphaFold2 on 164 non-redundant multi-domain proteins where single-domain struc-
tures are predicted by AlphaFold2 [9]. The results are summarized in Fig. 3a. Here, we 
use TM-score (template modeling score) [38] and RMSD (root mean square deviation) 
as the evaluation metrics to measure the topological similarity of protein structures. 
The results show that more than 60% of the proteins obtained better performance than 
AlphaFold2 and AlphaFold3 [37]. Specifically, the average TM-score of the models gen-
erated by M-DeepAssembly (0.704) is 15.4% higher and the RMSD (10.419 Å) is 23.3% 
lower than the models generated by AlphaFold2 (TM-score: 0.610, RMSD: 13.590  Å). 
Similarly, compared to models generated by AlphaFold3 (TM-score: 0.645, RMSD: 
13.444  Å), M-DeepAssembly achieved a 9.15% higher TM-score and a 22.5% lower 
RMSD. Interestingly, there are better models in our ensembles, although they have not 
been selected by DeepUMQA-rank. The average TM-score of the best model is 13.8% 
and 6.4% (Table 1) higher than AlphaFold3 and DeepAssembly, respectively (see Addi-
tional file 1: Table S2 and Table S3), which suggests that MQA is crucial for model selec-
tion and is an important research field in the future. Overall, we think that the reason 
for the improvement of M-DeepAssembly lies in the multi-objective conformation sam-
pling strategy. Moreover, with the breakthroughs in single-domain structure prediction, 

Fig. 3 a Performance comparison of M-DeepAssembly and AlphaFold2, DeepAssembly on the test set, Num 
represents the number of proteins on both sides of the split line, and Num_best is the number of results of 
the best model comparison in the test set; b M-DeepAssembly compares the prediction performance on the 
two cases with AlphaFold2 and DeepAssembly, respectively
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M-DeepAssembly is expected to accelerate the solution of multi-domain protein struc-
tures. All experiments were performed on a machine equipped with an NVIDIA TITAN 
RTX GPU, a 16-core CPU, and 32 GB of RAM.

In particular, it is worth noting that M-DeepAssembly provides a lightweight method 
for predicting longer sequence proteins through a “divide-and-conquer” strategy. For 
example, the crystal structure chain f of complement C3b (Fig. 3b, left side) is composed 
of 5 domains (PDB: 2xwbf [39]). AlphaFold2 and DeepAssembly only obtain the TM-
score accuracies of 0.585 and 0.580 on this multi-domain target, whereas the TM-score 
for each single-domain structure predicted by AlphaFold2 are 0.973, 0.974, 0.975, 0.925 
and 0.977, respectively. Our M-DeepAssembly achieves high-precision (0.974) assem-
bly by combining the advantages of the above two baseline methods. The right side of 
Fig. 3b is a multi-domain structure composed of all alpha helices (PDB: 3ajmA), which 
protein with important roles in cell signaling and blood vessel development. The TM-
score of the two single-domain structures predicted by AlphaFold2 are 0.884 and 0.916, 
respectively, while the full-chain prediction accuracy is only 0.675. However, the model 
predicted by M-DeepAssembly achieved a TM-score of 0.924. These results further 
demonstrate that higher prediction accuracy can be achieved through multi-objec-
tive conformation sampling that integrates inter-domain interactions and full-length 
sequence distance features.

Results of CASP15 multi‑domain targets

For objectively evaluate the performance of M-DeepAssembly, we collected a total of 
13 multi-domain targets based on the “domain definition” from the CASP15 official 
website. Results for AlphaFold2 and our M-DeepAssembly are shown in Table 2, where 

Table 1 Comparison of M-DeepAssembly with other methods on 164 multi-domain proteins.

top1 in the table represents the top‑ranking models, and best represents the best model in the ensembles. The results of 
AlphaFold3 were predicted using the official server.

Method TM‑score RMSD (Å)

top1 best top1 best

AlphaFold2 0.610 – 13.590 Å –

AlphaFold3 0.645 – 13.444 Å –

DeepAssembly 0.690 – 11.019 Å –

M-DeepAssembly 0.704 0.734 10.419 Å 8.774 Å

Table 2 Comparison of M-DeepAssembly with other methods on 13 multi-domain proteins in 
CASP15.

The results of AlphaFold2 come from the official evaluation CASP15 website. M‑DeepAssembly† and M‑DeepAssembly‡ 
represent the assembly using AlphaFold2 and experimental single‑domain structures, respectively. The results of 
AlphaFold3 were predicted using the official server.

Method TM‑score RMSD (Å)

top1 best top1 best

AlphaFold2 0.567 – 20.578 Å –

AlphaFold3 0.544 – 25.439 Å –

M-DeepAssembly† 0.573 0.591 16.795 Å 13.904 Å
M-DeepAssembly‡ 0.741 0.762 8.336 Å 7.414 Å
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the results of AlphaFold2 are from the official evaluation. The average TM-scores of 
the models generated by AlphaFold2 and M-DeepAssembly are 0.567, 0.573, respec-
tively (see Additional file 1: Table S4 and Table S5 for details). The average TM-score of 
the best model in the ensembles is 0.591, which is 4.2%, 8.6% higher than AlphaFold2 
and AlphaFold3, respectively (see Additional file 1: Table S6 for details). Especially on 
target T1121, M-DeepAssembly showed a 24.5% increase in TM-score (0.925) com-
pared to AlphaFold2 (0.743). Additionally, we performed assembly using experimental 
single-domain structures, and the average TM-score generated by M-DeepAssembly 
was increased to 0.741. The results suggest that deviations in the prediction accuracy 
of single-domain structures directly lead to poor prediction results of full-length multi-
domain proteins, which also indicates that single-domain proteins are still not com-
pletely solved.

Ablation study

To evaluate the performance impact of M-DeepAssembly on each component, we 
designed two ablation experiments on 164 benchmark datasets to analyze the impact 
of full-length sequence distance features and inter-domain interactions on model per-
formance. The first experiment (M-DeepAssembly-w/o-inter) only considers full-length 
sequence distance features, while the second experiment (DeepAssembly-w/o-full) only 
uses inter-domain interactions. The test results of different versions of M-DeepAssem-
bly on the benchmark test set are shown in Fig.  4 (see Additional file  1: Table  S7 for 
detailed results).

The average TM-score and RMSD of the best models in the ensembles (M-DeepAs-
sembly best) generated by M-DeepAssembly are 0.734 and 8.774 Å, respectively. While 
the top-ranking (top1) model (M-DeepAssembly) exhibits an average TM-score of 0.704 
and RMSD of 10.419 Å, the average TM-score of M-DeepAssembly (0.704) is 2.0% and 
37.8% higher than M-DeepAssembly-w/o-full (0.690) and M-DeepAssembly-w/o-inter 
(0.511), respectively. The comparative results of the ablation experiments highlight the 
excellent performance of the inter-domain interactions provided by DeepAssembly. 

Fig. 4 M-DeepAssembly ablation experimental results, where M-DeepAssembly best represents the best 
model in the obtained ensembles. M-DeepAssembly-w/o-full represents a version that dose not include the 
full-length sequence distance features predicted by AlphaFold2, and M-DeepAssembly-w/o-inter represents 
a version that does not contain the inter-domain interactions
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Simultaneously, they provide further evidence that the complementation of full-length 
sequence distance features and inter-domain interactions can improve the accuracy of 
the prediction model.

Case study: insights from multiple conformations in ensembles

Interestingly, our testing revealed that our method has the potential to detect dynamic 
changes in protein conformation. For example, two conformations (Fig. 5(a)) comprising 
the Streptococcus pneumoniae response regulator spr1814 [40, 41] were present simul-
taneously in our obtained ensembles. The spr1814 plays an important role in facilitating 
DNA binding and transcriptional activation [42, 43], which consists of two conforma-
tions, each conformation consisting of an N-terminal receiver domain (residues 1–119) 
and the C-terminal effector domain (residues 141–199). The inter-domain interactions 
of spr1814 are predominantly mediated by salt bridges present in two different residues. 
In conformation A, the salt bridge is formed between Glu188 and Lys84, Arg91 and 
Glu195, with interactions between the receiver structural domain and effector structural 
domain. However, when the conformation shifts to conformation B (Fig.  5b), the salt 
bridges disappear, resulting in a 74° rotational change (Fig. 5a) in the effector domain of 
conformation B relative to A [44]. This rotation leads to loosening of the inter-domain 
interactions in conformation B, subsequently causing phosphorylation to mediate 
dimerization of the receiver domain. M-DeepAssembly successfully captured two dis-
tinct conformational states and achieved TM-scores of 0.985 and 0.861. (Fig. 5b).

Discussion
The stability of multi-domain proteins usually depends on interactions with other pro-
tein cofactors, and the high flexibility of the hinge region between domains makes the 
prediction accuracy of multi-domain proteins much lower than that of single-domain 
structures. Therefore, how to make full use of the breakthroughs in single-domain struc-
ture prediction techniques to accurately reveal and predict the relative orientation rela-
tionships among the structural domains of proteins has become the key to research.

Fig. 5 a Two conformations of 4hyeA, which are components of spr1814. b Comparison of the two 
structures predicted by M-DeepAssembly (magenta color) with native conformation A (orange color) and 
native conformation B (blue color), respectively
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For the multi-domain protein structure prediction problem, we developed M-Deep-
Assembly based on existing structure predictors. In M-DeepAssembly, we focus more 
on methodological innovation and practical application. The method extracts the inter-
domain and intra-domain distance information predicted by DeepAssembly [21] and 
AlphaFold2 [9], and combines them with a multi-objective optimization algorithm to 
explore conformational space to generate diverse conformations, thereby improving the 
structure prediction accuracy of multi-domain proteins to some extent. Our method 
was compared to AlphaFold2, AlphaFold3, and DeepAssembly on 164 multi-domain 
proteins from the H. sapiens protein and 13 multi-domain targets from the 15th criti-
cal assessment of structure prediction (CASP15). With single-domain data predicted by 
AlphaFold2, M-DeepAssembly successfully improves the prediction accuracy of more 
than 60% of the proteins in 164 test sets compared to all other methods. Although our 
method performs well on the aforementioned test sets, M-DeepAssembly currently 
struggles with prediction tasks for proteins longer than 1500 amino acids. Further 
works are needed for the problem of structure prediction of proteins in multi-domain 
complexes.

Conclusion
Proteins should not be viewed as just a single static structure, but rather as a confor-
mational ensemble with multiple accessible states [45]. The flexible regions of proteins 
are often the key to protein function, and the study of the motion of multi-domain pro-
tein hinge regions and the multiple conformational states they induce is important for 
revealing biological processes and their regulatory mechanisms.

Our future research will focus on exploring the multiple conformations and confor-
mational ensembles of proteins to further reveal the dynamic properties of proteins and 
their roles in biology.
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