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Abstract 

Background:  FastQTLmapping addresses the need for an ultra-fast and memory-
efficient solver capable of handling exhaustive multiple regression analysis with a vast 
number of dependent and explanatory variables, including covariates. This challenge 
is especially pronounced in methylation quantitative trait loci (mQTL)-like analysis, 
which typically involves high-dimensional genetic and epigenetic data.

Results:  FastQTLmapping is a precompiled C++ software solution accelerated 
by Intel MKL and GSL, freely available at https://​github.​com/​Fun-​Gene/​fastQ​TLmap​
ping. Compared to state-of-the-art methods (MatrixEQTL, FastQTL, and TensorQTL), 
fastQTLmapping demonstrated an order of magnitude speed improvement, coupled 
with a marked reduction in peak memory usage. In a large dataset consisting of 3500 
individuals, 8 million SNPs, 0.8 million CpGs, and 20 covariates, fastQTLmapping 
completed the entire mQTL analysis in 4.5 h with only 13.1 GB peak memory usage.

Conclusions:  FastQTLmapping effectively expedites comprehensive mQTL analyses 
by providing a robust and generic approach that accommodates large-scale genomic 
datasets with covariates. This solution has the potential to streamline mQTL-like studies 
and inform future method development for efficient computational genomics.

Keywords:  FastQTLmapping, MQTL, Multiple regression, Genomic analysis, Memory 
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Introduction
Methylation quantitative trait locus (mQTL) analysis evaluates associations between 
expansive sets of genomic variants and CpG sites across the genome. Ideally, such 
studies are conducted in large population samples to ensure sufficient statistical power, 
incorporate covariates to control confounding, and proceed exhaustively to maximize 
genome-wide resolution. However, the sheer scale of these analyses, often involving 
trillions of regressions, remains a major computational challenge. Existing tools, such 
as MatrixEQTL [1] and FastQTL [2], have substantially increased computational 
throughput on CPU-based systems, yet continue to face constraints related to efficiency, 
I/O speed, and memory management. More recent GPU-based solutions, including 
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TensorQTL [3], require large amounts of VRAM, which can be prohibitive for typical 
individual users.

Here, we present fastQTLmapping, a novel framework designed to perform ultra-fast, 
memory-efficient, and exact exhaustive multiple-regression analyses under standard 
CPU settings. By efficiently handling exceptionally large numbers of dependent and 
explanatory variables (as well as covariates), fastQTLmapping is ideally suited for mQTL 
studies and similarly high-dimensional genomic investigations.

Implementation
FastQTLmapping is deployed on Linux using MKL (https://​softw​are.​intel.​com/​
tools/​onemkl) and GSL (http://​www.​gnu.​org/​softw​are/​gsl/) library and is run from 
the command line. C++ source code, a demo run, and full documentations are freely 
available at https://​github.​com/​Fun-​Gene/​fastQ​TLmap​ping. FastQTLmapping accepts 
input files in text format and in PLINK binary format and outputs in the text format the 
test statistics of all regressions with the ability to control the volume at preset significance 
thresholds. Different thresholds can be specified for cis-, long cis- and trans-analysis. Z- 
and rank-normalizations are optionally available for pre-processing certain or all input 
variables. Prior to the mapping analysis, fastQTLmapping preliminarily assesses the data 
and provides estimates for the computational loads and recommendations for memory 
control.

We use a two-step design to accelerate the computation while ensuring exact results, 
i.e., an initial screening under a relaxed threshold followed by naïve multiple regressions. 
The initial screening is the most computationally burdensome and is accelerated using 
fine- and coarse-grained strategies. The fine-grained acceleration involves imputation of 
missing values by mean, calculation under single floating-point precision, and projecting 
dependent and explanatory variables to the orthonormal basis of covariates. The latter 
algorithm has long existed and is widely used, such as in MatrixEQTL, FastQTL, and 
TensorQTL. In brief, consider multiple regression y = α + βx + γC + ǫ , where C is the 
matrix of k covariates, decompose C using QR factorization C = QR , then centralize Q 
to Q̂ , where Q̂ is the orthonormal basis. Then subtract the projections of x and y on Q̂ to 

get x′ and y′ . Q̂ = [q1q2 . . . qk ] ; x′ = x −
k
∑

i=1

�x, qi�qi ; y′ = y−
k
∑

i=1

〈

y, qi
〉

qi . The 

subsequent analyses only involve univariate regressions y′ = α′ + β ′x′ + ǫ′ to test 
H0 : β

′ = 0 with k less degrees of freedom, which were solved using Pearson product-
moment correlations involving only vectorized operations and were accelerated using 
the Math Kernel Library (MKL). The regressions with β ′ surviving a critical value that 
corresponds to a relaxed p-value threshold are further passed to the 2nd step naïve 
multiple regression analysis, where missing values are handled as is and double floating-
point precision is used.

The coarse-grained acceleration was achieved using OpenMP parallelization 
framework. Via dynamically splitting data into chunks and fast I/O of intermediate 
variables, we achieved excellent memory control in such a way that the peak 
memory is defined only by the number of variables in the largest chunk (Figure  S1). 
FastQTLmapping can estimate the peak memory prior to the initial screening where the 
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max chunk size can be user-defined. We developed a parser for converting strings and 
plink binary files to floating-point numbers for fast I/O. 

The Storey and Tibshirani False Discovery Rate (ST-FDR) [4] approach is utilized 
for multiple testing correction. We introduced a rapid and memory-efficient ST-FDR 
algorithm suitable for large-scale analysis, circumventing the pi0estimate function 
in R qvalue package. This is achieved by employing counters for T-statistics binning 
across predefined intervals while keeping memory clean. Determining which counter 
the current T-statistic belongs to is the speed limit step, since it is the innermost 
loop and the complexity is proportional to the number of counters. The speeding-up 
is achieved by binary search within a preloaded code register delineating counter 
boundaries. The estimation of pi0, the fraction of true null p-values, is refined using a 
C++ reimplementation of Storey and Tibshirani’s bootstrap algorithm [5]. In the second 
step, pi0 is used to adjust the q-values in naïve multiple regression via traditional FDR 
methods. All FDR analyses can be separately carried out for cis-, long-cis-, and trans- 
analyses according to user-defined thresholds of base-pair distances.

To facilitate broader application, we provide a precompiled executable that includes 
statically linked MKL and GSL libraries—compatible with lower versions of gcc/glibc 
and minimizing external dependencies—along with source code for users who prefer to 
perform their own installation.

Performance
We began by evaluating FastQTLmapping against an established QTL analysis software 
on the GSE40364 dataset [6], which comprises genotype and gene expression data from 
88 samples. After preprocessing and quality control, 6,884 genes and 268,653 SNPs 
remained, with a transcriptome missing rate of 0.46%. We included ten genomic PCs 
and ten expression PCs as covariates and applied both methods using a P < 1 × 10−6 
significance threshold. The resulting high correlation (R = 0.996) between the two sets of 
p-values underscores the accuracy and robustness of FastQTLmapping in recapitulating 
findings from established QTL analysis tools when the missing rate is negligible (Fig. S2).

We evaluated the performance of fastQTLmapping, MatrixEQTL, FastQTL, and 
TensorQTL. To ensure comparability, MatrixEQTL was run under R with parallel 
MKL, and FastQTL was tested with manually split input data. The benchmark dataset 
was derived from the GEO database (SNP data from GSE79254 and CpG data from 
GSE79144), as previously described [7]. Starting from 54 individuals, 1.5 million SNPs, 
and 450,000 CpGs, we performed resampling of individuals and SNPs to generate three 
test sets of 1 billion, 10 billion, and 100 billion SNP–CpG pairs for 1,000 individuals.

All mQTL analyses were performed using 1, 4, and 16 threads without covariates, 
on a Xeon E5 2686 V4 CPU (18 cores, 2.3 GHz), equipped with 256 GB ECC DDR4 
RAM, running CentOS Linux 7, g + + 4.8.5, R 4.0.3, and MKL 2021.3.0. In the absence of 
missing data, the four tools produced identical results across all scenarios. However, with 
missing data, fastQTLmapping remained accurate, whereas MatrixEQTL, FastQTL, and 
TensorQTL showed significant deviations at higher significance thresholds (Fig. S3).

In terms of computational speed, fastQTLmapping consistently outperformed 
MatrixEQTL, FastQTL, and TensorQTL under every tested condition. While all 
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four methods exhibited linear runtime scaling with data size in serial execution, 
fastQTLmapping was 1.7–1.9 × faster than MatrixEQTL in single-threaded mode, 
3.6–4.0 × faster at four threads, and 6.7–10.0 × faster at sixteen threads. It also exceeded 
FastQTL by 4.7–6.2 × and TensorQTL by 1.2–4.2 × (Fig. 1A).

For I/O speed, fastQTLmapping was slower than MatrixEQTL and TensorQTL only 
when processing the largest dataset in serial mode (506.0 s vs. 216.3 s), primarily due to 
initial data binarization and variable normalization. In all other cases, fastQTLmapping’s 
I/O throughput surpassed MatrixEQTL by 2.1–28.3×, FastQTL by 1.9–13.0×, and 
TensorQTL by 1.2–13.3 × (Fig.  1B). Peak memory usage in fastQTLmapping scaled 
linearly with the degree of parallelism and the volume of significant results, but remained 
below that of MatrixEQTL, FastQTL, and TensorQTL under every tested condition—
achieving 1.7–29.1 ×, 1.1–14.7 ×, and 3.3–168.1 × reductions, respectively (Fig.  1C). 
Notably, TensorQTL’s memory usage peaks at the output phase and is driven purely by 
dataset size, whereas fastQTLmapping minimizes memory consumption throughout 
input and output via data chunking (Fig. 1C).

The capabilities of fastQTLmapping were further demonstrated in a large-scale mQTL 
investigation [8] involving 6.14 trillion SNP–CpG associations across 7.58 million SNPs 
and 811,876 CpGs from 3523 Han Chinese individuals. Adjusted for age, sex, bisulfite 
slide number, bisulfite array position, estimated blood cell fractions (B cells, CD4+ and 
CD8+ T cells, NK cells, monocytes), and the top ten genomic principal components, 
the analysis—run on 64 threads—completed in 4.5 h (including I/O and ST-FDR 
procedures) and recorded a peak memory usage of 13.1 GB.

Discussion
In this work, we introduced FastQTLmapping to address the substantial computational 
demands of large-scale mQTL analyses. Although mQTL analyses are among the 
most computationally intensive within the broader family of QTL studies (eQTL, 
pQTL, sQTL, caQTL), FastQTLmapping is broadly applicable to any QTL-like dataset 
or pairwise regression scenario, provided the input is in standard text format (with 
decimal values) or PLINK’s binary format for SNP data. By leveraging MKL and GNU 
GSL, the software delivers high-throughput data processing while maintaining a user-
friendly command-line interface, comprehensive documentation, and multiple modes 
for exploratory analysis. A key feature is the user-defined data chunking strategy, which 
allows memory usage to be finely tuned according to hardware constraints. Additionally, 
integration of a fast, memory-efficient ST-FDR algorithm [9] enhances the software’s 
capacity for analyzing large genomic datasets.

We benchmarked FastQTLmapping against the CPU version of TensorQTL under 
identical hardware and parameter configurations. The CPU-based comparison arose 
from limited GPU resources and the inherent difficulties in equitably assessing CPU- 
vs. GPU-oriented performance with respect to efficiency, power consumption, and 
cost. Notably, TensorQTL was challenging to install: initial attempts using Conda and 
YAML configuration files failed, and it was eventually installed through separate pip 
and Bioconductor steps (with rpy2 dependencies remaining unresolved). Under these 
conditions, FastQTLmapping consistently outperformed TensorQTL in terms of 
both speed and memory utilization across varied data scales and CPU thread counts. 
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Fig. 1  Performance of fastQTLmapping and MatrixEQTL under various settings. A Computation time; B I/O 
time; C. Peak memory consumption 
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While TensorQTL may offer advantages for users with access to robust GPU resources, 
FastQTLmapping’s simpler installation process and strong overall performance make it 
a practical choice for most mQTL analyses—particularly those involving up to tens of 
thousands of samples.

Despite these strengths, current development efforts for FastQTLmapping have 
principally centered on computational optimization, assuming well-validated datasets. 
Although two normalization options (Z- and rank-normalization) are provided to 
streamline preprocessing, more advanced data manipulation and quality control (e.g., log 
transformations, combined normalization approaches, outlier handling, missing-value 
imputation, Hardy–Weinberg equilibrium filtering, and minor allele frequency cutoffs) 
are not yet fully automated. Consequently, we recommend that users perform genotype 
imputation, remove low-frequency variants, and exclude molecular phenotypes with 
minimal variance prior to applying FastQTLmapping’s internal normalization features.

Looking ahead, we plan to expand FastQTLmapping to better accommodate 
regional analyses, including the development of a window-based permutation function 
for automated region-specific threshold determination. We also aim to introduce 
customizable functions for data transformation and quality control to allow seamless 
integration of diverse preprocessing workflows. Notably, FastQTLmapping was 
recently benchmarked in a large-scale mQTL study comprising 6.14 trillion SNP–CpG 
associations across 3,523 samples [8], completing the entire analysis in fewer than 5 h on 
standard laboratory hardware. Our chunking approach ensures that both computation 
and I/O time grow linearly with increasing data size, while peak memory usage remains 
stable; for a given dataset, increasing the number of CPU threads confers near-linear 
speed gains with proportional rises in memory. Users can thus adjust the chunk size 
parameter to optimize resource allocation for diverse computational environments.

Conclusions
FastQTLmapping is ultra-fast, memory efficient, easy-to-deploy, capable for conducting 
pair-wise regression analysis at extraordinarily large scales on regular servers, 
particularly helpful for well-sized mQTL-like studies.

Availability and requirements
Project name: fastQTLmapping.

Project home page: https://​github.​com/​Fun-​Gene/​fastQ​TLmap​ping
Operating system(s): Linux.
Programming language: C++
Other requirements: GLIBCXX(> = 3.4.19), CXXABI(> = 1.3.7).
License: GNU GPL-3.0.
Any restrictions to use by non-academics: There are no further restrictions on non-

academic usage beyond those specified in the GNU GPL-3.0 license.

Abbreviations
mQTL	� Methylation quantitative trait loci
eQTL	� Expression quantitative trait loci
pQTL	� Protein quantitative trait loci
sQTL	� Splicing quantitative trait loci
caQTL	� Chromatin accessibility quantitative trait loci
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SNP	� Single nucleotide polymorphism
MKL	� Intel math kernel library
GSL	� GNU scientific library
QR factorization	� An algorithm for decomposing a matrix into an orthogonal (or unitary) matrix Q and an upper 

triangular matrix R
I/O	� Input/output
FDR	� False discovery rate
GEO	� Gene expression omnibus
CPU	� Central processing unit
GPU	� Graphics processing unit
RAM	� Random access memory
VRAM	� Video random access memory
NK	� Natural killer
PC	� Principal component
GB	� Gigabyte
gcc	� GNU compiler collection
glibc	� GNU C library
Yml	� Yet another markup language
Pip	� Pip installs packages
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