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Abstract 

Background: The advent of Single Molecule Real-Time (SMRT) sequencing has over-
come many limitations of second-generation sequencing, such as limited read lengths, 
PCR amplification biases. However, longer reads increase data volume exponentially 
and high error rates make many existing alignment tools inapplicable. Additionally, 
a single CPU’s performance bottleneck restricts the effectiveness of alignment algo-
rithms for SMRT sequencing.

Results: To address these challenges, we introduce ParaHAT, a parallel alignment 
algorithm for noisy long reads. ParaHAT utilizes vector-level, thread-level, process-level, 
and heterogeneous parallelism. We redesign the dynamic programming matrices 
layouts to eliminate data dependency in the base-level alignment, enabling effective 
vectorization. We further enhance computational speed through heterogeneous paral-
lel technology and implement the algorithm for multi-node computing using MPI, 
overcoming the computational limits of a single node.

Conclusions: Performance evaluations show that ParaHAT got a 10.03x speedup 
in base-level alignment, with a parallel acceleration ratio and weak scalability metric 
of 94.61 and 98.98% on 128 nodes, respectively.

Keywords: Sequence alignment, SMRT, Parallel processing, Vector-level parallelization, 
MPI, Heterogeneous parallelization

Background
Sequence alignment is the process of aligning biological sequences in a certain man-
ner to identify the similarities and differences between them [1]. It plays a important 
role in bioinformatics, such as genome assembly, variant detection and genotyping, etc 
[2]. The most time-consuming part of sequence alignment is the base-level alignment, 
which usually employs dynamic programming (DP) to find the optimal match between 
the two sequences [3]. For large-scale data, seed-and-extend algorithm is usually used to 
improve the speed [4]. This algorithm improves the efficiency of alignment by identify-
ing short similar fragments, called seeds, within the sequences and extending these seeds 
to find longer similar regions.

While alignment algorithms have advanced over the past decades, sequence alignment 
remains the most time-consuming part of the entire pipeline [1]. Meanwhile, the rapid 

*Correspondence:   
yingbocui@nudt.edu.cn

1 College of Computer 
Science and Technology, 
National University of Defense 
Technology, 410073 Changsha, 
China
2 National Supercomputer Center 
in Tianjin, 300457 Tianjin, China
3 Haihe Lab of ITAI, 
300457 Tianjin, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-025-06129-w&domain=pdf


Page 2 of 31Xia et al. BMC Bioinformatics          (2025) 26:118 

growth of alignment data has also posed higher demands on the alignment task [5, 6]. 
One feasible solution is to use parallel computing to accelerate alignment [7].

The widespread application of Single Molecule Real-Time (SMRT) also brings 
new challenges to sequence alignment [8, 9]. Compared with short reads produced 
by Next-Generation Sequencing (NGS), SMRT sequencing generates longer reads, 
often up to 10k bp. The increased read length results in a substantial increase in the 
computational workload for alignment [10]. Meanwhile, the high error rate in SMRT 
sequencing, poses further challenges to sequence alignment [11].

Since the alignment tools designed for NGS data are not suitable for noisy long 
reads, researchers have developed alignment tools for SMRT data. Regional Hashing-
based Alignment Tool (rHAT) [12] is specifically designed for noisy long reads from 
SMRT. It demonstrates good robustness against high error rates and can align SMRT 
reads more consecutively, which could potentially facilitate downstream analysis [12].

To efficiently align noisy long reads, we proposed ParaHAT, which utilizes multi-
level parallelism to accelerate alignment. ParaHAT focuses on parallel acceleration of 
rHAT without changing the original results. The design of ParaHAT aims at exploring 
the full use of various parallel technologies to maximize the performance. The contri-
butions of our paper are as follows: 

1. We analyze the computational processes of rHAT and identified the base-level align-
ment step as the hotspot issue. We optimize the DP formula, eliminating intra-loop 
dependency, and further accelerating this process with vector-level parallelism.

2. On the single node, we enhance base-level alignment with heterogeneous computing 
using OpenCL, allowing flexible selection of accelerators’ type and number.

3. We implement the parallel computation of ParaHAT across multiple nodes using 
MPI, thus breaking through the computational bottleneck of a single node. Addition-
ally, we propose a integrated load balancing strategy and achieve effective pipeline 
processing across multiple nodes.

4. ParaHAT proposes a general parallel alignment framework that accelerates the pro-
cess by fully utilizing vector-level, thread-level, and process-level parallelism within 
a single node, and extends the algorithm across multiple computing nodes to further 
improve alignment speed. Its base-level alignment is, on average, 2.13 times faster 
than minimap2. The speedup can reach up to 94.61 when using 128 nodes.

Related work

Sequencing technology generates millions of reads [13]. To reconstruct the original 
genome, these reads need to be aligned to a reference genome to determine their 
positions in the genome [14]. Base-level alignment, based on DP formula [15], is the 
most basic step in sequence alignment algorithms that identifies the optimal align-
ment results [15]. The main drawback of DP alignment algorithms is their high time 
complexity [16]. For an alignment, with the reference sequence length as Lref  , the 
average read length as Lread , and the number of reads as Nread , the time complexity of 
DP alignment algorithms is O(Lref · Lread · Nread) [17].
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To reduce the runtime of base-level alignment, researchers have used various parallel 
approaches to accelerate the DP formula. Based on different levels of parallelism, exist-
ing parallel technologies are mainly classified into the following four categories.

Vector-level parallelism, also known as Single Instruction Multiple Data (SIMD), 
stores multiple data elements in vector registers and performs parallel operations on 
these data with a single instruction [18]. Figure 1a and b show the difference between 
traditional serial computation and SIMD. For a register of the same memory size (128 
bits), serial computation can only perform operations on a single element, while SIMD 
with SSE vector registers can perform operations on 16 elements (each element being 8 
bits) simultaneously. Intel’s SSE and AVX, ARM’s NEON, NVIDIA’s CUDA, and AMD’s 
OpenCL all support a specific form of the SIMD instruction set. Parasail [19] and SeqAn 
[20] implement vectorized parallelism of the DP formula using intra-sequence and inter-
sequence parallelism, respectively, efficiently utilizing the parallel computing capabili-
ties of the CPU. However, their vector-level parallelism is typically optimized for specific 
platforms to leverage SIMD characteristics and register width, leading to significant 
performance degradation on hardware that lacks the same vectorization support. Accel-
Align [21] reduces data dependencies using low-dimensional embedding and accelerates 
pre-screened candidate regions using efficient SSE, achieving higher throughput in high-
throughput alignment tasks. However, the embedding method may introduce errors, 
affecting alignment sensitivity and accuracy. WFA2-lib [22] is a high-performance align-
ment library based on the Wavefront Alignment (WFA) algorithm, which utilizes SIMD 
instructions to parallelize wavefront state updates for higher throughput [23]. How-
ever, WFA is suited for aligning highly similar sequences, and when there is significant 
sequence divergence, the wavefront region expands, causing a sharp increase in compu-
tation and reducing overall performance [24].

Thread-level parallelism employs a shared memory system and is one type of the Mul-
tiple Instruction, Multiple Data (MIMD) architecture. As shown in Fig. 1c, this system 
includes multiple physical cores that share physical memory within the computing node. 
In thread-level parallelism, the program is divided into multiple sub-tasks that can be 
executed independently, with each sub-task assigned to a thread [25]. These threads 
can run in parallel on a single core, multiple cores, or even different processors. Com-
mon multi-threading programming tools include POSIX Threads [25] (Pthreads) and 
OpenMP [26]. BWA [4] and NovoAlign [27] implement multi-threaded alignment using 
Pthreads to maximize the utilization of multi-core CPU. But the thread-level parallelism 
is limited by node performance and may encounter bottlenecks like cache contention 
and memory bandwidth issues as thread count increases.

Heterogeneous parallelism refers to the method of performing parallel computation in 
a computing environment containing different types of computing units, such as CPUs, 
GPUs, FPGAs, etc. It leverages the characteristics of different hardware within the sys-
tem [7]. By assigning computing tasks to the most suitable hardware units to execute 
these tasks, heterogeneous parallelism can improve the overall computational efficiency 
and performance. Common heterogeneous parallel programming environments include 
OpenCL, CUDA, and oneAPI. OpenCL supports various processors including CPUs, 
GPUs, DSPs, and FPGAs. CUDA is specifically designed for NVIDIA’s GPUs. oneAPI 
supports Intel’s CPU, GPU, and FPGA hardware. CUSHAW [28] divides the DP formula 
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tasks into multiple sub-tasks that can be executed in parallel, launching a large number 
of threads on the GPU to simultaneously compute and speed up short-read alignment. 
But the GPU acceleration effect is less significant for long reads or low-similarity data. 
GPU-BLAST [29] moves the computationally intensive local alignment of BLAST to the 
GPU, accelerating the overall short-read alignment process. But the data transfer and 
synchronization overhead between heterogeneous tasks may partially offset the benefits 
of GPU acceleration. Arioc [30] divides the local DP formula into multiple independ-
ent sub-tasks, performing parallel calculations on multiple candidate regions on the 
GPU to speed up alignment. But in some low-similarity scenarios, data dependencies 
and synchronization overhead may affect the acceleration performance. WFA-GPU [31] 
partitions the wavefront computation into parallel sub-tasks, utilizing GPU resources to 
accelerate sequence alignment. But for long reads with low similarity or high error rates, 
its performance may be affected by memory constraints and synchronization overhead, 
along with a decrease in accuracy.

Process-level parallelism employs a distributed memory system and is the other 
MIMD architecture. As shown in Fig. 1d, each computing unit has its own local memory 
in this system, and different units communicate with each other through a network. In 
process-level parallelism, data sharing and task coordination are achieved through the 
Message Passing Interface (MPI) [32]. MPI supports various parallel operations, includ-
ing point-to-point communication and collective communication. It is suitable for 
parallel environments ranging from small multicore systems to large supercomputers. 
MSAProbs-MPI [33] uses MPI to distribute the alignment tasks across multiple comput-
ing nodes, greatly improving the efficiency of the alignment process. MpiBLAST [34] 
has each MPI process run the standard BLAST algorithm on its respective node. After 
all nodes complete local alignments, the master node collects the alignment results and 
merges and sorts them. Process-level parallelism is primarily affected by inter-process 
communication and data transfer overhead, and requires consideration of load balanc-
ing between multiple computing nodes.

rHAT is a seed-and-extend-based alignment tool specifically designed for noisy long 
reads. It indexes the reference genome using a Regional Hash Table (RHT) and uses it to 
find candidate positions. Afterward, it applies a sparse dynamic programming heuristic 
to align the reads to these positions and outputs the alignment file [12]. However, the 
acceleration of rHAT on modern hardware has not been fully explored. ParaHAT fills 
the gap by accelerating it through multi-level parallelism.

Methods
In this section, we introduce the workflow of ParaHAT and the optimization methods 
used in parallel computing.

Overview

The workflow of ParaHAT is shown in Fig.  2. ParaHAT uses multiple computing 
nodes to launch multiple processes for alignment tasks. Within a single node, Par-
aHAT uses multi-threading for parallel acceleration. For the most computation-
ally intensive part of the algorithm, base-level alignment, ParaHAT accelerates the 
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process using heterogeneous parallel computing with CPUs and accelerators, and fur-
ther optimizes it with vectorized parallelism. The detailed workflow is as follows:

First, the ParaHAT master node divides the reference sequence into overlapping 
windows of length Lwin (default 2048 bp), with the distance between each window 
being Lwin

2
 . Within each window, k-mers are extracted with a step size of k (usually 

11∼ 15 bp) to construct the Regional Hash Table (RHT) (Fig. 2a). The RHT consists 
of a PointerList and a WindowList. The PointerList for each k-mer stores the address 
of the first window number in which this k-mer appears in the reference genome. The 
WindowList stores the window numbers corresponding to each k-mer encoding. The 
master node then broadcasts the RHT to all computing nodes. Subsequently, Para-
HAT adopts a dynamic load balancing strategy to evenly distribute the sequences to 
be aligned across the computing nodes. Each node uses multi-threading to perform 
alignment tasks based on the RHT and the distributed sequences in the following 
three steps.

The first step is seed generation (Fig. 2b). ParaHAT extracts a sequence of length Lwin
2

 
from the middle of each read as the seed. For reads shorter than Lwin

2
 , the entire read is 

used as the seed. Then, ParaHAT retrieves the window list of k-mers within the seed 
region using the RHT and calculates the k-mer hit count for different windows.

The second step is candidate sites extension (Fig. 2c). ParaHAT counts the hit win-
dow numbers and selects the Ntop (default 5) windows with the most hits as candidate 
windows. Then, it extends the candidate windows by Lext (default 400 bp) both for-
ward and backward.

The third step is read alignment (Fig. 2d). ParaHAT uses the CPU and accelerators 
to perform base-level alignment at the candidate sites and speeds up the process with 
vectorized parallelism. Subsequently, it traces back through the alignment results, 
building a directed acyclic graph (DAG) to find the optimal path connecting the start 
and end positions, and outputs the alignment results.

Vector‑level parallel alignment

The vector-level parallel optimization primarily focuses on the base-level alignment 
in ParaHAT.

Base‑level alignment with affine‑gap penalties

ParaHAT performs global alignment based on 2-piece affine gap penalties [35], in 
which every residue of the two sequences is compared and aligned to find the best 
match across the entire sequences.

Suppose there are two sequences to be aligned, a target sequence St and a query 
sequence Sq . The lengths of St and Sq are Lt and Lq , with corresponding residue indices 
i and j, respectively. po and p′o are 2 affine gap open penalty, and pe and p′e are 2 affine 
gap extension penalty. A gap of length k costs min{po + |k| · pe, p

′
o + |k| · p′e} [35]. Func-

tion mat(i,  j) gives the score between the two residues on St and Sq . Hij is the score of 
the alignment ending at positions i and j of St and Sq prefixes. Eij(E′

ij ) and Fij(F ′
ij ) are the 

scores with gaps ending in St and Sq , respectively. The DP formula is shown in Eq. (1) [3].
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Computing the DP formula is a very time-consuming process. The computational com-
plexity of the traditional serial computation method is O(Lt · Lq).

SSE vectorization

The main issue faced during the vectorized parallel computation of the DP formula is 
data dependency. From Formula 1 and Fig. 3a, it can be seen that the calculation of Hij 
(yellow in Fig. 3a) values depends on the values to the left cells ( Ei−1,j and Hi−1,j ), above 
cells ( Fi,j−1 and Hi,j−1 ), and the upper left cell ( Hi−1,j−1 ) [36]. To address this, Wozniak 
[37] proposed an anti-diagonal layout, which indicates that cells along the anti-diagonal 
direction (dashed lines in Fig.  3a) are independent of each other, allowing for parallel 
computation.

The anti-diagonal layout theoretically demonstrates the feasibility of parallelizing the 
DP formula. However, in SSE programming, it is necessary to address the irregular data 
access patterns along the anti-diagonal in the DP formula. In brief, SSE vectorization 
requires data to be contiguous and aligned so that a block of data can be loaded into the 
register at once for processing [38]. But the anti-diagonal layout results in data being 
stored non-sequentially in memory, instead spanning multiple memory locations. Load-
ing these scattered data elements into SSE registers from memory becomes very com-
plex and inefficient [39]. To overcome this, ParaHAT defines r = i + j and t = i , thereby 
transforming the row-column coordinate of the original DP formula into diagonal-anti-
diagonal coordinate. Figure 3b and c illustrate the process of coordinate transformation. 
Cells with the same color depth in the figure are calculated simultaneously. For cells on 
the same anti-diagonal (dashed lines in Fig. 3b), their original coordinates are positioned 
under the same vertical coordinate (dashed lines in Fig. 3c) after the coordinate trans-
formation. This coordinate transformation ensures that data along the same diagonal is 
stored contiguously in memory, meeting the requirements of SSE vectorization, allowing 
multiple data points to be loaded simultaneously for parallel computation.

Heterogeneous parallel alignment

Heterogeneous computing refers to the use of different types of computing units to 
perform computing [7]. It typically combines different hardware architectures, such as 
CPUs and GPUs, or specialized accelerators like FPGAs and TPUs, to maximize compu-
tational performance [40].

CPU + accelerators framework

Due to the variety of accelerators and the fact that different accelerators usually use dif-
ferent programming models. We utilize OpenCL to ensure ParaHAT’s compatibility 
across various accelerators.

(1)
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The design of our CPU + Accelerators framework is shown in Fig. 2d. CPU, with its 
robust logical control and sequential processing capabilities, manages each thread 
responsible for the stages of window indexing, seed generation, and candidate sites 
extension. For the computationally intensive base-level alignment step, we adopt a col-
laborative processing approach between the CPU and accelerators to accelerate it. To 
ensure coordinated operation between computing units in the heterogeneous system, 
we optimize the communication and workload between the CPU and accelerators. Addi-
tionally, we optimize the OpenCL kernel function calculating the DP formula, ensuring 
accelerators can utilize vectorized hardware units for acceleration.

Non‑equal sequence distribution

To implement collaborative processing between CPU and accelerators, we launch sep-
arate threads for CPU and accelerators during base-level alignment. In heterogeneous 
systems, the host side (CPU) and the device side (accelerators) usually do not share 
memory [41]. So it is necessary to transfer data from the host to the device side and 
retrieve results from the device side. Since there is communication overhead in data 
transmission, optimizing communication within the heterogeneous system is essential. 
Moreover, due to varying computing performance between the host and devices, achiev-
ing load balancing between them is another issue that requires optimization.

To better explain our heterogeneous parallel alignment optimization strategy, we sup-
pose the runtime of base-level alignment on the host and device sides is Tcpu and Tdev , 
and the time for sending and receiving data between the host and device sides is Tsend 
and Trecv . The communication startup overhead is Oc , the data volume for sending and 
receiving are Dsend and Drecv , and the system’s data transfer bandwidth is G.

In heterogeneous parallelism, the transmission of data between the host and device 
can be divided into blocking and non-blocking communications [42]. Figure 4a shows 
the process of blocking communication. In blocking communication, the caller is sus-
pended (i.e., blocked) until the communication operation completes. In this case, the 
program total runtime is

In non-blocking communication, as shown in Fig. 4b, the caller can continue executing 
subsequent tasks without waiting for the operation to complete. In this case, the the pro-
gram total runtime is

It can be observed from Fig.  4b that since the computation on the device side is not 
shortened, the host must wait for the computational results from the device to con-
tinue the following calculation steps. This leads to no change in the total runtime of the 
program.

Ttotal = Oc + Tsend + Tcpu + Oc + Trecv

= 2 ·Oc +
Dsend + Drecv

G
+ Tcpu

Ttotal = Oc + Tsend + Tdev + Oc + Trecv

= 2 ·Oc +
Dsend + Drecv

G
+ Tdev
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To address this, we propose a non-equal sequence distribution (NESD) strategy, allow-
ing the workload distributed between the host and the devices unequally. This strategy 
fully utilizes waiting times in the program to hide more communication overhead, as 
shown in Fig. 4c. In this case, the total runtime is

In the optimization process, we propose two sequence distribution strategies based on 
read lengths, evaluated through algorithm validation and experimental demonstration. 
The NESD-s strategy assigns shorter sequences to the accelerators and longer ones to 
CPU, while the NESD-l strategy does the opposite. During algorithm validation, Tcpu , 
Tdev , Tsend , and Trecv represent the times for each part in NESD-s strategy, and T ′

cpu , T ′
acc , 

T ′
send , and T ′

recv represent the times for each part in NESD-l strategy.
Suppose there are two sequences Slr and Ssr with lengths Llr and Lsr , respectively, 

where the lengths satisfy Llr = n · Lsr . The transmission times of Slr and Ssr between the 
host and device sides are Tlr and Tsr , respectively. Then, for these two sequences, their 
sending (receiving) DP formula sizes are L2lr and L2sr , respectively, leading to:

With transmitting sequences Slr and n · Ssr of the equivalent length between the host and 
device sides, their transmission times Tlr and n · Tsr are:

Hence Tlr = n · n · Tsr . This implies that, even if the total data volume for base-level 
alignment remains constant, the communication time for longer sequences significantly 
exceeds that for shorter sequences. Thus T ′

send > Tsend , and T ′
recv > Trecv.

Meanwhile, since accelerators usually do not match the computing performance of 
the CPU, the processing time on the accelerators for the same data volume in NESD-l 
strategy will be longer, i.e., T ′

acc > Tdev . Therefore, NESD-l strategy needs to reduce the 
data volume on the device side to ensure T ′

cpu = T ′
acc + T ′

send + T ′
recv , which may lead to 

an increase in the computation time on the host side, i.e., T ′
cpu > Tcpu . Hence, adopting 

NESD-l strategy, as shown in Fig. 4d, increases both computation and communication 
time, thereby increasing the program’s overall runtime.

Overall, processing longer sequences with the CPU and shorter sequences with accel-
erators can achieve better parallel performance. The comparative experimental results of 
the two strategies are discussed in Sect. 3.3.

Kernel vectorization

Different computing units, such as CPUs, GPUs, and FPGAs, typically utilize specialized 
vectorization capabilities. OpenCL offers a range of built-in vector data types, allowing 
developers to perform vectorized operations directly while writing kernel functions.

Ttotal = Oc + Tcpu = Oc + Tsend + Tdev + Oc + Trecv

= 2 · Oc +
Dsend + Drecv

G
+ Tdev

L2lr = (n · Lsr)
2 = n2 · L2sr

Tlr =
S2lr
G

= n2 ·
S2sr
G

n · Tsr = n ·
S2sr
G



Page 13 of 31Xia et al. BMC Bioinformatics          (2025) 26:118  

The main task of the kernel function is to implement the calculation process of base-
level alignment with affine-gap penalties [35]. To achieve vectorized operations in kernel 
functions, we adopted the anti-diagonal layout consistent with Sect. 2.2 to eliminate the 
data dependency. In the SSE vectorization process, logical shift operations are used to 
enhance computational efficiency. For instance, we use _mm_slli_si128(xt1,1) to 
perform a logical left shift within a 128-bit register. Nevertheless, OpenCL does not offer 
a direct equivalent single function to perform this specific shift operation.

One solution is to simulate this shift operation with manual operations, as shown in 
Figrue 5a. Here, xt1.s0 to xt1.sf represent the elements of the char16 type vector 
xt1, covering all 16 elements (from 0 to 15). We manually specify the element for each 
position, and set the leftmost position to 0. This method is inefficient because it involves 
numerous manual operations and data copying.

To improve the efficiency of the shift operation, we utilize the shuffle2 function, as 
shown in Figrue 5b. It selects elements from the source vector xt1 based on the pro-
vided index vector (mask). By configuring mask with indices for a left-shifted operation 
and setting the first element xt1.s0 to 0, we can replicate the same shift operations as 
with SSE vectorization. This approach reduces the number of instructions and enhances 
execution efficiency compared to manual operations.

Process‑Level parallel alignment

The process-level parallelism enables the use of multiple computing nodes, significantly 
enhancing computational performance. The main optimization goal is to distribute the 
load across the nodes evenly, ensuring consistent computation times.

Static sequence distribution across nodes

Due to limitations in hardware performance, a single computing node may encounter 
performance bottlenecks. Process-level parallelism can utilize computational resources 

(a) OpenCL manual operation

xt1

xt1

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se sf

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se

(b) OpenCL shuffle2 operation

mask

xt1

xt1 0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se sf

ih.1txol.1tx

Fig. 5 OpenCL kernel vectorization shift operation optimization. a OpenCL manual operation. Extract each 
element from the vector and assign them one by one. b OpenCL shuffle2 operation. Shift multiple elements 
simultaneously based on vector index (mask)
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across multiple nodes, thus overcoming this limitation. Theoretically, the performance 
of process-level parallelism is proportional to the number of computing nodes. How-
ever, due to limitations such as inter-node communication, load imbalance, etc., the per-
formance of process-level parallelism decreases as the number of nodes increases. To 
fully utilize hardware resources and enhance the overall computational performance of 
the system, ParaHAT optimizes the workload on each node.

ParaHAT first implements a static sequence distribution (SSD) strategy based on data 
volume. By pre-distributing the FASTQ files [43], the SSD strategy ensures a balanced 
workload on each node, thereby promoting uniform runtime across the nodes. This 
strategy involves two main steps: initial distribution and precise distribution. During 
the initial distribution, the master process calculates the data volume of the FASTQ files 
( Vfastq ) and broadcasts it to all computing nodes via MPI_Bcast. Subsequently, each 
computing node calculates its own start and end positions ( Pis and Pie ) based on For-
mula 2.

Where p is the total number of computing nodes and i is the index of each node. The 
data volume becomes equal across all nodes after the initial distribution. But the file 
pointers on each node might not point to the head of each sequence in the FASTQ file, 
potentially leading to incorrect results or even program failure. Therefore, in the pre-
cise distribution step, we relocate each pointer to the head of its respective sequence. At 
this point, each node obtains the correct starting position, Pis . Subsequently, adjacent 
nodes communicate to obtain the starting position, Pis , of the next node, thereby updat-
ing their own end position, Pie , to Pis − 1.

Considering the communication overhead in multi-node computing [44], we adopt the 
non-equal sequence distribution strategy, as proposed in Sect. . In this method, the mas-
ter process processes more data compared to the other computing nodes.

Integrated load balancing strategy

The SSD strategy ensures relatively equal data volume processed by each node. But 
the differences in performance across computing nodes and the varying complexity of 
sequence computations result in significant variations in actual runtime across nodes. 
The node with the longest runtime becomes the primary bottleneck in algorithm 
performance.

So we further propose a dynamic sequence distribution (DSD) strategy to address this 
issue. The idea of the DSD strategy is to divide the data to be processed into smaller 
batches, which are then processed alternately by multiple nodes, thereby achieving bet-
ter resource utilization and improving processing efficiency. An important aspect of the 
strategy is the selection of an appropriate batch size. A large batch size may result in 
significant differences in computing times between nodes, while a small batch size may 
require more frequent communication between nodes, increasing communication costs 

(2)
Pis =

Vfastq

p
· i

Pie =
Vfastq

p
· (i + 1)
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and thereby reducing overall execution efficiency. To address this, we integrate the DSD 
strategy with the SSD strategy and propose the integrated load balancing (ILB) strategy.

Figure 6 shows the process of the ILB strategy. The ILB strategy initially distributes the 
first α % (default 0.8) of the data evenly among the computing nodes. Then, it divides the 
remaining 1− α % of the data into batches, each consisting of bs (default 128) sequences. 
Each node alternately processes the batches in sequence after completing its computa-
tional tasks. The advantage of the ILB strategy is that, during the early stages of compu-
tation, each node does not need to spend much overhead on frequent communication, 
because there will not be any instances of nodes waiting for tasks. In the later stages of 
computation, as the amount of task data decreases, each node processes a smaller por-
tion of data each time, thereby ensuring consistent computing time across nodes. In this 
strategy, the percentages ( α ) of static and dynamic distribution, as well as the number 
of sequences (bs) contained in each batch, can be manually adjusted according to actual 
situation.

Results
In this section, we evaluate the performance of ParaHAT. First, we analyze acceleration 
achieved by using the revised DP formula for SSE vectorization. Second, we discuss the 
acceleration effects of the CPU + Accelerators framework. Third, we measure the per-
formance of each node on simulated and real datasets before and after implementing the 
dynamic load balancing strategy. Fourth, we analyze the parallel performance of Para-
HAT, including the speedup, parallel efficiency, and scalability. We also compare the dis-
tribution of runtime across multiple nodes.

Experimental setup

Hardware configurations

We conduct our experiments on a local server and a cluster server. Their hardware con-
figurations are shown in Table 1. The local server is responsible for measuring the vec-
tor-level parallelism and heterogeneous parallel acceleration of one single node, while 
the cluster server is used to evaluate the performance of multi-node parallelism.

Datasets

We conduct benchmark tests using the same 7 real and simulated SMRT datasets as 
in the original rHAT paper, along with HG002 PacBio CLR, PacBio HiFi, and ONT 
(Oxford Nanopore Technologies) datasets. Their details are shown in Table 2. The H. 
Sapiens-real data contains raw sequence data resulting from PacBio SMRT Sequenc-
ing for CHM1TERT. The D. melanogaster-real data comes from a subline of the ISO1 
(y; cn, bw, sp) strain of D. melanogaster, in collaboration with Dr. Casey Bergman 
at the University of Manchester and Drs. Susan Celniker and Roger Hoskins of the 
Berkeley Drosophila Genome Project (BDGP) at Lawrence Berkeley National Labora-
tory [45]. The simulated data is generated using the PBSim [46] tool. HG002 comes 
from the NIST’s Genome in a Bottle (GIAB) project [47]. All parameter configura-
tions in the experiments use the default values. We randomly sample 10 million 
(10 M) alignment bases from each dataset to evaluate the performance of ParaHAT 
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and other state-of-the-art (SOTA) alignment tools and libraries in the DP formula. 
For datasets with fewer than 10 M alignments bases, we select all available bases for 
evaluation. The purpose of selecting 10 M alignments is to enable both horizontal and 
vertical comparisons: comparing different alignment tools/libraries under the same 
dataset and alignment count, and evaluating the same tool/library across different 
datasets. Additionally, it effectively limits single-node computation time. The details 
of these datasets are provided in the Supplementary material Section DATA AVAIL-
ABILITY and Table S1.

Base‑level alignment wall time performance evaluation

We evaluate the performance of ParaHAT with and without SSE acceleration in base-
level alignment using both real and simulated data. We measure the runtime of a sin-
gle thread on the DP formula for 10 M alignments across different datasets, as shown 
in Table 3.

As shown in the table, ParaHAT with SSE acceleration is 3.9x to 4.2x faster than 
without SSE acceleration. Theoretically, a 16-way SSE vectorization can achieve up to 
a 16x speedup. Since the base-level alignment also includes a traceback process, and 
the utilization rate of vector units during computation usually cannot reach 100%, 
such acceleration performance is expected.

Table 1 Hardware configurations

Items Local server Cluster server

CPU Intel i7-12900k Intel Xeon Gold 6348

Frequency 3.9 GHz 2.6 GHz

Cores 16 28

Memory 128GB 256GB

GPU NVIDIA RTX 3090 Ti NVIDIA RTX A6000

MPI openmpi-2.1.6 openmpi-2.1.6

OpenCL 3.0 3.0

OS Ubuntu-18.04 CentOS-7.6.1810 (Core)

Table 2 The real and simulated datasets information

# Datasets Original bases 10M alignments bases Reference

1 H. sapiens-real 1810943188 46338579 hg19

2 D. melanogaster-real 1244028123 75042194 DM5

3 E. coli-sim 4938920 4938920 E.coli Strain 536

4 S. cerevisiae-sim 12153653 12153653 sacCer3

5 D. melanogaster-sim 129738789 75121302 DM3

6 A. thaliana-sim 118558112 79274551 TAIR10

7 H. sapiens-sim 2856372869 77637855 hg19

8 PacBio CLR 248667117073 60177420 GRCh37

9 PacBio HiFi 170093604207 117212657 GRCh37

10 ONT 194160447936 115609458 GRCh37
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Heterogeneous Parallel Performance

We first compare the two non-equal sequence distribution strategies in heteroge-
neous systems proposed in Sect.  . For this purpose, we analyze the runtime of each 
stage in the base-level alignment, distributing sequences shorter than 1024 (NESD-s 
strategy) and longer than 1024 (NESD-l strategy) to the GPU on both simulated and 
real datasets. Then, we assess the performance of the base-level alignment before and 
after adopting the CPU + Accelerators framework.

Non‑equal Sequence Distribution Strategies Comparison

Table 3 Comparison of timing for original DP formula, SSE acceleration, and CPU + Accelerators 
framework acceleration. 1

1 All CPU executions use 1 thread

# Datasets Alignment Origin SSE CPU+GPU
Size (min) (min) (min)

1 E. coli-sim 628 40.12 10.03 7.88

2 S. cerevisiae-sim 1569 138.32 34.09 26.30

3 D. melanogaster-sim 10M 640.21 163.17 125.38

4 A. thaliana-sim 10M 688.26 171.56 132.55

5 H. sapiens-sim 10M 681.53 174.07 129.78

6 H. sapiens-real 10M 503.05 118.59 93.30

7 D. melanogaster-real 10M 659.97 166.57 125.02

8 PacBio CLR 10M 839.13 202.20 126.54

9 PacBio HiFi 10M 2029.06 509.82 202.20

10 ONT 10M 2207.17 550.42 283.76

Table 4 Comparison of time distribution for different strategies in the CPU + Accelerators 
framework

Strategy Datasets Host Device Comm.
(min) (min) (min)

NESD-s E. coli-sim 0.18 0.03 0.16

S. cerevisiae-sim 0.46 0.07 0.38

D. melanogaster-sim 4.85 0.75 4.28

A. thaliana-sim 4.58 0.71 3.71

H. sapiens-sim 19.77 4.26 15.50

H. sapiens-real 5.77 1.07 5.49

D. melanogaster-real 22.39 4.09 18.20

NESD-l E. coli-sim 0.32 0.22 0.34

S. cerevisiae-sim 0.80 0.54 0.88

D. melanogaster-sim 8.51 5.76 9.54

A. thaliana-sim 7.88 5.32 8.72

H. sapiens-sim 34.95 23.82 61.10

H. sapiens-real 10.04 6.37 12.26

D. melanogaster-real 50.77 34.50 56.09
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Table  4 displays the runtime of each stage under the two strategies. The runt-
ime on the host side, device side, and communication time in NESD-l strategy 
increased by 1.72x to 2.27x, 5.59x to 8.44x, and 1.95x to 3.08x, respectively, com-
pared to NESD-s strategy. Additionally, the runtime on the host side is relatively 
equal to the sum of the device side and communication time in NESD-s strategy, i.e., 
Tcpu ≈ Tdev + Tsend + Trecv . While the sum of device side and communication time 
is significantly greater than the host side runtime in NESD-l strategy, as shown in 
Fig.  4d. These results indicate that the strategy of using the CPU to process longer 
sequences and the GPU to process shorter sequences can better balance the workload 
between the host and device sides, thereby achieving a better acceleration effect.

CPU + accelerators framework acceleration

Subsequently, we assess the acceleration effect in base-level alignment under this 
sequence distribution strategy, as shown in Table 3. Compared to using only the CPU 
for computation, ParaHAT achieve a 1.27x to 1.34x performance improvement on the 
original rHAT datasets and a 1.60x to 2.52x performance improvement on the HG002 
datasets. This indicates that adopting heterogeneous parallel acceleration can effectively 
reduce the workload on the host side, improving the overall program execution speed.

Single node benchmark

Vector-level and heterogeneous parallelism enhance the computational performance 
of ParaHAT on a single node. To more accurately evaluate ParaHAT’s single-node per-
formance, we compare it with other SOTA libraries and tools on the 10 M alignments 
datasets.

The alignment tools selected for the experiments include the widely used minimap2, 
which employs the KSW2 library for vector-level acceleration. The libraries, Parasail, 
WFA, and WFA-GPU, accelerate the DP formula through vector-level parallelism, WFA 
algorithms, and GPU-based acceleration of WFA algorithms [31], respectively. Due to 
differences in the alignment workflows of these tools and libraries, we focus only on 
comparing their runtimes during the base-level alignment. Additionally, we employ a 
basic Smith-Waterman-Gotoh (SWG) implementation to validate the results and calcu-
late the recall of each method [22]. The data used in the experiments includes the origi-
nal rHAT data, as well as HG002 PacBio CLR, PacBio HiFi, and ONT data. Detailed 
information about the data is provided in the supplementary materials.

Table  5 shows the results of ParaHAT and other SOTA alignment tools and librar-
ies across different datasets. All experiments run on a single node and 16 threads, with 
tests exceeding 2  h marked as n/a. The results clearly indicate that ParaHAT outper-
forms minimap2 and Parasail in DP formula for both human and other ethnic genomes. 
This highlights ParaHAT’s adaptability, enabling fast alignment across diverse genomic 
datasets. Notably, ParaHAT achieves a 1.96x speedup over minimap2 for noisy PacBio 
CLR data, mainly due to specialized optimizations for noisy long reads and effective uti-
lization of GPU acceleration. For high-accuracy PacBio HiFi data, ParaHAT is 1.57 times 
faster than minimap2, primarily due to its effective GPU acceleration strategy.

The results also show that WFA is faster than classical DP algorithms. WFA acceler-
ates exact DP algorithms by leveraging sequence similarity, achieving a time complexity 
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of O(ns), where n is the sequence length and s is the optimal alignment score [22]. In 
contrast, traditional sequence alignment algorithms typically have a complexity of O(n2) . 
In practice, since the sequences to be aligned are often highly similar, the s is much 
smaller than n, making WFA significantly faster. WFA-GPU further speeds up WFA 
using GPUs. Its speedup on PacBio CLR, PacBio HiFi, and ONT data is similar to Para-
HAT’s performance gains over minimap2, indicating that ParaHAT’s GPU acceleration 
performs as expected. However, WFA-GPU has a recall loss of about 2.44%, showing 
that WFA prioritizes speed, while classical DP algorithms focus more on accuracy and 
reliability.

Effect of integrated load balancing strategy

We evaluate the impact of the ILB strategy proposed in Sect. . In this strategy, the first 
α % of the data adopts the SSD strategy, while the remaining (1− α) % of the data is pro-
cessed in batches. First, we fix the batch size bs to discuss the impact of α values on the 
program runtime. Second, we fix the optimal α value to compare the impact of different 
bs values on the program runtime. Third, we evaluate the runtime distribution of each 
node after using the dynamic load balancing strategy.

The experiment collects the runtime of 4 nodes, each with 2 threads, and uses bar 
charts with error bars to represent the runtime distribution of each node. When discuss-
ing the impact of α and bs values, we use both simulated and real datasets of D. mela-
nogaster, with more experimental results available in the supplementary files.

Table 5 Time (T, in seconds) and recall (R, as a percentage of exact alignments) for aligners across 
different datasets on a single node

1 All CPU executions use 16 threads. Executions taking more than 2 h are marked as n/a

Dataset Size Metric Minimap2 Parasail ParaHAT WFA WFA‑GPU
(SSE) (SSE) (SSE+GPU) (CPU) (GPU)

E. coli 628 T (s) 69.37 110.43 46.70 3.10 2.45

R (%) 100 100 100 99.99 99.68

S. cer. 1569 T (s) 153.17 269.51 105.71 6.44 5.37

R (%) 100 99.93 100 100 99.29

D. mel. (sim) 10M T (s) 795.21 1401.00 609.03 40.03 35.18

R (%) 100 99.99 100 99.89 97.97

A. tha. 10M T (s) 823.94 1453.55 541.95 45.62 39.27

R (%) 100 99.99 100 100 99.07

H. sap. (sim) 10M T (s) 795.17 1170.88 530.22 41.90 37.60

R (%) 100 99.99 100 99.97 98.60

H. sap. (real) 10M T (s) 647.86 1158.48 477.44 23.13 20.87

R (%) 100 99.99 100 99.89 98.49

D. mel. (real) 10M T (s) 767.07 1201.44 496.32 40.71 35.86

R (%) 100 99.99 100 99.99 97.99

PacBio CLR 10M T (s) 1604.32 3031.9 820.56 29.98 25.25

R (%) 100 99.99 100 99.82 96.51

PacBio HiFi 10M T (s) 2027.06 3822.86 1287.12 54.39 47.27

R (%) 100 99.99 100 99.98 98.53

ONT 10M T (s) 3323.89 n/a 2108.81 66.69 45.64

R (%) 100 n/a 100 99.99 97.63
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Impact of α value

Figure 7a and b show how different α values affect program runtime when bs = 128 . 
As the α value gradually increases, the average runtime decreases and the runtime dis-
tribution across nodes becomes more balanced, achieving an optimal state at α = 0.8 . 
The reduction in average time mainly results from a decrease in the total number of 
processed batches as α increases, which reduces communication time across nodes. 
Meanwhile, frequent requests from nodes increase the workload on the master pro-
cess when the α value is low, causing an imbalance in runtime across nodes.

As the α value further increases, the average runtime does not improve, and the 
runtime across nodes becomes imbalanced. This imbalance becomes more obvious 
when the dataset is small. This is because the performance of each node and the com-
plexity of each batch computation vary, leading to different runtime for each node. 
And the differences become more evident with fewer batches.

Impact of bs value

Figure 7c and d show how bs value affects the program runtime at α = 0.8 . As the bs 
value gradually increases, the program’s average runtime and the runtime difference 
across nodes first decrease then increase, achieving optimal balance at bs = 128 . This 
phenomenon occurs because a smaller bs value leads to more batches, making inter-
node communication become the main hindrance to program performance. Con-
versely, a larger bs value results in fewer batches, making the differences in runtime 
across nodes become the main bottleneck.

Multi‑node workload comparison

Figure 8 shows the differences in runtime across nodes with and without the dynamic 
load balancing strategy at α = 0.8 and bs = 128 . Compared to the SSD strategy, the 
ILB strategy significantly improves runtime differences across nodes. Since the per-
formance of multiple nodes often depends on the runtime of the slowest node, the 
program’s performance significantly benefits from the ILB strategy. In our experi-
ments, we note that SSD perform better with some smaller datasets due to the fact 
that frequent inter-node communication in the ILB strategy may reduce overall pro-
gram performance. However, the data volume for actual sequence alignment is usu-
ally very large, leading us to focus more on the program’s performance with larger 
data volumes. The details of the other datasets influenced by the α and bs values are 
provided in the supplementary material Figure S1 and S2.

Multi‑node parallel performance

We evaluate the performance of ParaHAT on multiple nodes. The metrics we used are 
speedup, parallel efficiency, and scalability. We conduct our experiments on 1 to 128 
nodes, with each node using 4 threads (maximum physical cores equal 512).
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Speedup and efficiency

Speedup ( Sp ) is a metric for measuring the acceleration performance of parallel algo-
rithms, defined as the ratio of the optimal execution time on a single processor ( Ts ) to 
the execution time on p processors in parallel ( Tp ), as shown in Formula 3. Ideally, the 
speedup is linearly related to the number of processors, i.e., Sp = p

Parallel efficiency ( Ep ) is a metric for measuring the extent to which parallel resources 
are effectively utilized, defined as the ratio of speedup ( Sp ) to the number of processors 
(p), as shown in Formula 4. Ideally, parallel efficiency is 1 (or 100%), indicating that each 
processor is fully and effectively utilized.

Figure 9a shows the speedup of ParaHAT using both simulated and real datasets. Given 
that the E. coli-sim and S. cerevisiae-sim datasets are relatively small, with single-node 
runtimes of less than one minute, our analysis primarily focuses on the other five larger 
datasets. These results show that ParaHAT’s speedup exhibits a linear relationship with 
the number of nodes. The speedup reaches 94.61x on 128 nodes. The observed decrease 
in speedup is primarily due to the inter-node communication overhead. Additionally, we 
find that larger datasets tend to achieve higher speedup with the same number of nodes, 
indicating that smaller datasets have a larger proportion of time spent on communica-
tion overhead, which has a greater impact on total runtime.

To better demonstrate the parallel performance of ParaHAT, we calculate the parallel 
efficiency during multi-node computations, as shown in Fig. 9b. The results show that 
the parallel efficiency remains above 45%, peaking at 73.91% when the number of nodes 
reaches 128. Meanwhile, ParaHAT exhibits higher parallel efficiency at the same number 
of nodes with larger datasets.

Scalability

In the field of parallel computing, strong scalability and weak scalability are two impor-
tant metrics for assessing the scalability of parallel programs.

Strong scalability refers to the reduction in program runtime as the number of proces-
sors increases while keeping the total workload constant. Figure  10a and S3 show the 
strong scalability of ParaHAT on real and simulated H. sapiens and the other 5 datasets. 
In the experiment, we keep the dataset size constant and exponentially increased the 
number of nodes from 1 to 128. The results show that the program’s runtime decreases 
proportionally with the number of computing nodes. When using 128 nodes, the runt-
ime decreased by 98.92% and 98.90%, respectively, such results are expected.

Weak scalability refers to how the system’s processing capability changes when 
the size of the problem increases linearly with the number of processors [48]. Fig-
ure 10b shows the weak scalability of ParaHAT using different datasets. In the experi-
ments, we increase the size of the alignment files and the number of nodes in the 

(3)Sp =
Ts

Tp

(4)Ep =
Sp

p
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same proportion. The results show that program runtime remains almost unchanged. 
When using 128 nodes, the weak scalability metric reaches 98.98%.

The above experiments indicate that ParaHAT has excellent multi-node parallel 
performance and is capable of efficiently handling larger-scale problems.

Multi‑node runtime distribution

Finally, we evaluate the time distribution across different nodes by adopting a 
dynamic load balancing strategy. To illustrate the result more intuitively, we use vio-
lin plots to depict the time distribution of each node. The central marker, width, and 
length of each violin plot display the median position, frequency of occurrence, and 
range of distribution of the runtime, respectively.

Figure  11a and b show the time distribution of 128 nodes for the real and simu-
lated data of H. sapiens under dynamic and static load balancing strategies. From 
the results, it is evident that the coordinates at the top of the violin plots are smaller 
when using the dynamic load balancing strategy. This value represents the runtime of 
the slowest node, i.e., the actual runtime of the program. The smaller this value, the 
faster the multi-node program runs. Additionally, the dynamic load balancing strat-
egy is associated with a smaller vertical span and a larger horizontal span in the plot. 
This indicates that the range of runtime across the nodes is more concentrated when 
adopting the dynamic load balancing strategy. The results of the other 5 datasets are 
provided in supplementary material Figure S4.

The above results show that our proposed dynamic load balancing strategy can sig-
nificantly balance the workload across nodes, thereby enhancing the overall perfor-
mance of the program.

Discussion
SMRT technology has generated an unprecedented scale of biological data, thus cre-
ating an increasingly urgent demand for high-performance alignment algorithms. 
This paper accelerates the alignment of noisy long read sequences using parallel tech-
nologies. Specifically, we redesign the DP formula to eliminate data dependency in 
the base-level alignment. Subsequently, we utilize vector-level and heterogeneous 
parallelism to accelerate the alignment. Finally, we employ process-level parallelism 
to speed up the alignment on multiple nodes and propose a dynamic load balanc-
ing strategy to effectively balance the workload across nodes. Experimental results 
indicate that our ParaHAT exhibits excellent parallel performance, and can effectively 
handle large-scale alignment data.

Our experimental research shows that communication overhead in parallel comput-
ing has a significant impact on program performance. We find that high-end server 
CPUs remain the most effective platform for alignment tasks. Although accelerators 
in heterogeneous parallelism can achieve multi-way parallelism in base-level align-
ment, the performance of individual computing units and the communication over-
head between host and devices limit the overall performance.
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Conclusions
We summarize the following recommendations for using parallel computing in sequence 
alignment. First, the algorithm should be highly parallelizable. Second, communication 
between multiple nodes, as well as between host and devices in heterogeneous parallel-
ism, should overlap with the computing process to ensure minimal performance loss. 
Third, workloads should be distributed according to the computational performance 
of each node to prevent overall performance degradation due to differences in node 
runtime.
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