
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Xia et al. BMC Bioinformatics (2025) 26:118
https://doi.org/10.1186/s12859-025-06129-w

BMC Bioinformatics

Fast noisy long read alignment
with multi-level parallelism
Zeyu Xia1, Canqun Yang1,2,3, Chenchen Peng1, Yifei Guo1, Yufei Guo1, Tao Tang1 and Yingbo Cui1*

Abstract

Background: The advent of Single Molecule Real-Time (SMRT) sequencing has over-
come many limitations of second-generation sequencing, such as limited read lengths,
PCR amplification biases. However, longer reads increase data volume exponentially
and high error rates make many existing alignment tools inapplicable. Additionally,
a single CPU’s performance bottleneck restricts the effectiveness of alignment algo-
rithms for SMRT sequencing.

Results: To address these challenges, we introduce ParaHAT, a parallel alignment
algorithm for noisy long reads. ParaHAT utilizes vector-level, thread-level, process-level,
and heterogeneous parallelism. We redesign the dynamic programming matrices
layouts to eliminate data dependency in the base-level alignment, enabling effective
vectorization. We further enhance computational speed through heterogeneous paral-
lel technology and implement the algorithm for multi-node computing using MPI,
overcoming the computational limits of a single node.

Conclusions: Performance evaluations show that ParaHAT got a 10.03x speedup
in base-level alignment, with a parallel acceleration ratio and weak scalability metric
of 94.61 and 98.98% on 128 nodes, respectively.

Keywords: Sequence alignment, SMRT, Parallel processing, Vector-level parallelization,
MPI, Heterogeneous parallelization

Background
Sequence alignment is the process of aligning biological sequences in a certain man-
ner to identify the similarities and differences between them [1]. It plays a important
role in bioinformatics, such as genome assembly, variant detection and genotyping, etc
[2]. The most time-consuming part of sequence alignment is the base-level alignment,
which usually employs dynamic programming (DP) to find the optimal match between
the two sequences [3]. For large-scale data, seed-and-extend algorithm is usually used to
improve the speed [4]. This algorithm improves the efficiency of alignment by identify-
ing short similar fragments, called seeds, within the sequences and extending these seeds
to find longer similar regions.

While alignment algorithms have advanced over the past decades, sequence alignment
remains the most time-consuming part of the entire pipeline [1]. Meanwhile, the rapid

*Correspondence:
yingbocui@nudt.edu.cn

1 College of Computer
Science and Technology,
National University of Defense
Technology, 410073 Changsha,
China
2 National Supercomputer Center
in Tianjin, 300457 Tianjin, China
3 Haihe Lab of ITAI,
300457 Tianjin, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-025-06129-w&domain=pdf

Page 2 of 31Xia et al. BMC Bioinformatics (2025) 26:118

growth of alignment data has also posed higher demands on the alignment task [5, 6].
One feasible solution is to use parallel computing to accelerate alignment [7].

The widespread application of Single Molecule Real-Time (SMRT) also brings
new challenges to sequence alignment [8, 9]. Compared with short reads produced
by Next-Generation Sequencing (NGS), SMRT sequencing generates longer reads,
often up to 10k bp. The increased read length results in a substantial increase in the
computational workload for alignment [10]. Meanwhile, the high error rate in SMRT
sequencing, poses further challenges to sequence alignment [11].

Since the alignment tools designed for NGS data are not suitable for noisy long
reads, researchers have developed alignment tools for SMRT data. Regional Hashing-
based Alignment Tool (rHAT) [12] is specifically designed for noisy long reads from
SMRT. It demonstrates good robustness against high error rates and can align SMRT
reads more consecutively, which could potentially facilitate downstream analysis [12].

To efficiently align noisy long reads, we proposed ParaHAT, which utilizes multi-
level parallelism to accelerate alignment. ParaHAT focuses on parallel acceleration of
rHAT without changing the original results. The design of ParaHAT aims at exploring
the full use of various parallel technologies to maximize the performance. The contri-
butions of our paper are as follows:

1. We analyze the computational processes of rHAT and identified the base-level align-
ment step as the hotspot issue. We optimize the DP formula, eliminating intra-loop
dependency, and further accelerating this process with vector-level parallelism.

2. On the single node, we enhance base-level alignment with heterogeneous computing
using OpenCL, allowing flexible selection of accelerators’ type and number.

3. We implement the parallel computation of ParaHAT across multiple nodes using
MPI, thus breaking through the computational bottleneck of a single node. Addition-
ally, we propose a integrated load balancing strategy and achieve effective pipeline
processing across multiple nodes.

4. ParaHAT proposes a general parallel alignment framework that accelerates the pro-
cess by fully utilizing vector-level, thread-level, and process-level parallelism within
a single node, and extends the algorithm across multiple computing nodes to further
improve alignment speed. Its base-level alignment is, on average, 2.13 times faster
than minimap2. The speedup can reach up to 94.61 when using 128 nodes.

Related work

Sequencing technology generates millions of reads [13]. To reconstruct the original
genome, these reads need to be aligned to a reference genome to determine their
positions in the genome [14]. Base-level alignment, based on DP formula [15], is the
most basic step in sequence alignment algorithms that identifies the optimal align-
ment results [15]. The main drawback of DP alignment algorithms is their high time
complexity [16]. For an alignment, with the reference sequence length as Lref , the
average read length as Lread , and the number of reads as Nread , the time complexity of
DP alignment algorithms is O(Lref · Lread · Nread) [17].

Page 3 of 31Xia et al. BMC Bioinformatics (2025) 26:118

To reduce the runtime of base-level alignment, researchers have used various parallel
approaches to accelerate the DP formula. Based on different levels of parallelism, exist-
ing parallel technologies are mainly classified into the following four categories.

Vector-level parallelism, also known as Single Instruction Multiple Data (SIMD),
stores multiple data elements in vector registers and performs parallel operations on
these data with a single instruction [18]. Figure 1a and b show the difference between
traditional serial computation and SIMD. For a register of the same memory size (128
bits), serial computation can only perform operations on a single element, while SIMD
with SSE vector registers can perform operations on 16 elements (each element being 8
bits) simultaneously. Intel’s SSE and AVX, ARM’s NEON, NVIDIA’s CUDA, and AMD’s
OpenCL all support a specific form of the SIMD instruction set. Parasail [19] and SeqAn
[20] implement vectorized parallelism of the DP formula using intra-sequence and inter-
sequence parallelism, respectively, efficiently utilizing the parallel computing capabili-
ties of the CPU. However, their vector-level parallelism is typically optimized for specific
platforms to leverage SIMD characteristics and register width, leading to significant
performance degradation on hardware that lacks the same vectorization support. Accel-
Align [21] reduces data dependencies using low-dimensional embedding and accelerates
pre-screened candidate regions using efficient SSE, achieving higher throughput in high-
throughput alignment tasks. However, the embedding method may introduce errors,
affecting alignment sensitivity and accuracy. WFA2-lib [22] is a high-performance align-
ment library based on the Wavefront Alignment (WFA) algorithm, which utilizes SIMD
instructions to parallelize wavefront state updates for higher throughput [23]. How-
ever, WFA is suited for aligning highly similar sequences, and when there is significant
sequence divergence, the wavefront region expands, causing a sharp increase in compu-
tation and reducing overall performance [24].

Thread-level parallelism employs a shared memory system and is one type of the Mul-
tiple Instruction, Multiple Data (MIMD) architecture. As shown in Fig. 1c, this system
includes multiple physical cores that share physical memory within the computing node.
In thread-level parallelism, the program is divided into multiple sub-tasks that can be
executed independently, with each sub-task assigned to a thread [25]. These threads
can run in parallel on a single core, multiple cores, or even different processors. Com-
mon multi-threading programming tools include POSIX Threads [25] (Pthreads) and
OpenMP [26]. BWA [4] and NovoAlign [27] implement multi-threaded alignment using
Pthreads to maximize the utilization of multi-core CPU. But the thread-level parallelism
is limited by node performance and may encounter bottlenecks like cache contention
and memory bandwidth issues as thread count increases.

Heterogeneous parallelism refers to the method of performing parallel computation in
a computing environment containing different types of computing units, such as CPUs,
GPUs, FPGAs, etc. It leverages the characteristics of different hardware within the sys-
tem [7]. By assigning computing tasks to the most suitable hardware units to execute
these tasks, heterogeneous parallelism can improve the overall computational efficiency
and performance. Common heterogeneous parallel programming environments include
OpenCL, CUDA, and oneAPI. OpenCL supports various processors including CPUs,
GPUs, DSPs, and FPGAs. CUDA is specifically designed for NVIDIA’s GPUs. oneAPI
supports Intel’s CPU, GPU, and FPGA hardware. CUSHAW [28] divides the DP formula

Page 4 of 31Xia et al. BMC Bioinformatics (2025) 26:118

R
A

M

In
te

rc
o
n
n
ec

ti
o
n

A
0

1
5

3
1

4
7

6
3

7
9

9
5

1
1
1

1
2
7

B
0

1
5

3
1

4
7

6
3

7
9

9
5

1
1
1

1
2
7

C
0

1
5

3
1

4
7

6
3

7
9

9
5

1
1
1

1
2
7

(a
)

S
ca

la
r

o
p
er

at
io

n

A
0

A
1

A
2

A
3

0
1

5
3

1
4

7
6

3

A
4

A
5

A
6

A
7

7
9

9
5

1
1
1

1
2
7

B0
B1

B2
B3

0
1

5
3

1
4

7
6

3

B4
B5

B6
B7

7
9

9
5

1
1
1

1
2
7

C
0

C
1

C
2

C
3

0
1

5
3

1
4

7
6

3

C
4

C
5

C
6

C
7

7
9

9
5

1
1
1

1
2
7

(b
)

V
ec

to
r

o
p
er

at
io

n

In
te

rc
o
n
n
ec

ti
o
n

N
o
d
e

0
N

o
d

e
1

N
o

d
e

2
N

o
d

e
3

N
o

d
e

N

(c
)

A
 s

h
ar

ed
 m

em
o
ry

 s
y
st

em
 m

o
d
el

(d
)

A
 d

is
tr

ib
u
te

d
 m

em
o
ry

 s
y
st

em
 m

o
d
el

Fi
g.

 1
 P

ar
al

le
l t

ec
hn

ol
og

ie
s.

a
Tr

ad
iti

on
al

 s
er

ia
l c

om
pu

tin
g

us
in

g
sc

al
ar

 o
pe

ra
tio

ns
, p

ro
ce

ss
in

g
on

e
el

em
en

t a
t a

 ti
m

e.
 b

 V
ec

to
r-

le
ve

l p
ar

al
le

l c
om

pu
tin

g
us

in
g

SI
M

D
 in

st
ru

ct
io

ns
, p

ro
ce

ss
in

g
8

el
em

en
ts

 a
t a

 ti
m

e.
 c

 S
ch

em
at

ic
 d

ia
gr

am
 o

f a
 s

ha
re

d
m

em
or

y
sy

st
em

, w
he

re
 m

ul
tip

le
 p

hy
si

ca
l c

or
es

 s
ha

re
 p

hy
si

ca
l m

em
or

y.
 d

 S
ch

em
at

ic
 d

ia
gr

am
 o

f a
 d

is
tr

ib
ut

ed
 m

em
or

y
sy

st
em

, w
he

re

co
m

pu
tin

g
no

de
s

ar
e

in
te

rc
on

ne
ct

ed
 th

ro
ug

h
a

ne
tw

or
k

Page 5 of 31Xia et al. BMC Bioinformatics (2025) 26:118

tasks into multiple sub-tasks that can be executed in parallel, launching a large number
of threads on the GPU to simultaneously compute and speed up short-read alignment.
But the GPU acceleration effect is less significant for long reads or low-similarity data.
GPU-BLAST [29] moves the computationally intensive local alignment of BLAST to the
GPU, accelerating the overall short-read alignment process. But the data transfer and
synchronization overhead between heterogeneous tasks may partially offset the benefits
of GPU acceleration. Arioc [30] divides the local DP formula into multiple independ-
ent sub-tasks, performing parallel calculations on multiple candidate regions on the
GPU to speed up alignment. But in some low-similarity scenarios, data dependencies
and synchronization overhead may affect the acceleration performance. WFA-GPU [31]
partitions the wavefront computation into parallel sub-tasks, utilizing GPU resources to
accelerate sequence alignment. But for long reads with low similarity or high error rates,
its performance may be affected by memory constraints and synchronization overhead,
along with a decrease in accuracy.

Process-level parallelism employs a distributed memory system and is the other
MIMD architecture. As shown in Fig. 1d, each computing unit has its own local memory
in this system, and different units communicate with each other through a network. In
process-level parallelism, data sharing and task coordination are achieved through the
Message Passing Interface (MPI) [32]. MPI supports various parallel operations, includ-
ing point-to-point communication and collective communication. It is suitable for
parallel environments ranging from small multicore systems to large supercomputers.
MSAProbs-MPI [33] uses MPI to distribute the alignment tasks across multiple comput-
ing nodes, greatly improving the efficiency of the alignment process. MpiBLAST [34]
has each MPI process run the standard BLAST algorithm on its respective node. After
all nodes complete local alignments, the master node collects the alignment results and
merges and sorts them. Process-level parallelism is primarily affected by inter-process
communication and data transfer overhead, and requires consideration of load balanc-
ing between multiple computing nodes.

rHAT is a seed-and-extend-based alignment tool specifically designed for noisy long
reads. It indexes the reference genome using a Regional Hash Table (RHT) and uses it to
find candidate positions. Afterward, it applies a sparse dynamic programming heuristic
to align the reads to these positions and outputs the alignment file [12]. However, the
acceleration of rHAT on modern hardware has not been fully explored. ParaHAT fills
the gap by accelerating it through multi-level parallelism.

Methods
In this section, we introduce the workflow of ParaHAT and the optimization methods
used in parallel computing.

Overview

The workflow of ParaHAT is shown in Fig. 2. ParaHAT uses multiple computing
nodes to launch multiple processes for alignment tasks. Within a single node, Par-
aHAT uses multi-threading for parallel acceleration. For the most computation-
ally intensive part of the algorithm, base-level alignment, ParaHAT accelerates the

Page 6 of 31Xia et al. BMC Bioinformatics (2025) 26:118

B
at

ch
es

S
eq

u
en

ce
 d

is
tr

ib
u

ti
o
n

1-
N

#
3

#
2

#
1

#
0

#

F
as

tq

C
lu

st
er

 s
er

v
er

#
4

#
5

#
6

#
i

R
H

T

B
ro

ad
ca

st

(c
)

C
an

d
id

at
e

si
te

s
ex

te
n

si
o
n

C
an

d
id

at
e

w
in

d
o

w

E
x

te
n

si
o
n

 =
 L

ex
t

N
to

p

1
2

8
5

9

8
7

3
9

7

w
in

d
o

w
s

2
3

8

7
5

3

8
7

6

1
2

2
1

h
it

 t
im

es

2
4

9
5

2
6

R
ea

d

T
C

C
G

A
T

A
G

C
T

T
A

G
C

T
A

G
G

C
T

A
T

C
A

T
T

G
C

G
A

k-
m

er
 i

n
 s

ee
d

1
2

,
2

1
,

8
5

9
,

2
,

5
5

,
8

7
,

2
5

,
7

9
,

3
9

7
,

h
it

 w
in

d
o

w
s

2w
in

L
S

ee
d

 =

(b
)

S
ee

d
 g

en
er

at
io

n

(d
)

R
ea

d
 a

li
g
n
m

en
t

C
P

U

O
p

en
C

L

B
A

M
 f

il
e

D
A

G

(a
)

W
in

d
o
w

 i
n
d
ex

in
g

R
ef

w
in

 #
N

w
in

 #
4

w
in

 #
2

w
in

 #
0

w
in

 #
3

w
in

 #
N

-1
w

in
 #

1

L w
in

2w
in

L

w
in

 #
i

A
T
T
G
G
C
T
A
G
A
T
A
G
C
C
A
A
T
G
A

w
in

 #
i

k-
m

er
k-

m
er

R
ea

d
s

C
an

d
id

at
e

w
in

d
o

w
s

B
as

e-
le

v
el

 a
li

g
n

m
en

t

B
ac
k
tr
ac
k

T
T
T
T
T
T
T
T
T
T

C
C

T
A

T
A

C
G

A
G

A
A

A
A

A
A

A
A

A
C

A
A

A
A

A
A

A
A

A
A

k -
m

er

P
4

k
-1

P
i

P
1

P
0

p
o
in

te
rl

is
t

4
k
-1i10

2
5
6
7
3

1
7
8
2
3

1
3
6
5
0

w
in

d
o
w

li
st

P
i+

1
-1

P
i+

1

P
i

N
u
m

b
er

 =
 P

i+
1
-P

i

In
 a

sc
en

d
 o

rd
e
r

Fi
g.

 2
 P

ar
aH

AT
 w

or
kfl

ow
. P

ar
aH

AT
 u

se
s

a
dy

na
m

ic
 lo

ad
 b

al
an

ci
ng

 s
tr

at
eg

y
to

 d
is

tr
ib

ut
e

th
e

se
qu

en
ce

s
to

 b
e

al
ig

ne
d

ac
ro

ss
 m

ul
tip

le
 n

od
es

, w
hi

ch
 th

en
 p

er
fo

rm
 th

e
al

ig
nm

en
t a

nd
 o

ut
pu

t
al

ig
nm

en
t fi

le
s.

a
Th

e
Pa

ra
H

AT
 m

as
te

r p
ro

ce
ss

 c
on

st
ru

ct
s

th
e

Re
gi

on
al

 H
as

h
Ta

bl
e

(R
H

T)
 o

f t
he

 re
fe

re
nc

e
se

qu
en

ce
 a

nd
 b

ro
ad

ca
st

s
th

e
RH

T
to

 a
ll

co
m

pu
tin

g
no

de
s.

Ea
ch

 n
od

e
us

es
 m

ul
ti-

th
re

ad
in

g
to

 g
en

er
at

e
al

ig
nm

en
t fi

le
s

ba
se

d
on

 th
e

RH
T

an
d

th
e

di
st

rib
ut

ed
 s

eq
ue

nc
es

. b
 P

ar
aH

AT
 p

er
fo

rm
s

se
ed

 g
en

er
at

io
n,

 c
ou

nt
in

g
th

e
w

in
do

w
 n

um
be

rs
 in

 th
e

re
fe

re
nc

e
ge

no
m

e’
s

RH
T

th
at

 c
on

ta
in

 th
e

k-
m

er
s

fro
m

 th
e

se
ed

s.
c

Pa
ra

H
AT

 p
er

fo
rm

s
ca

nd
id

at
e

si
te

 e
xp

an
si

on
, m

er
gi

ng
 a

nd
 c

ou
nt

in
g

th
e

hi
t w

in
do

w
 n

um
be

rs
 a

nd
 s

el
ec

tin
g

th
e
N
to
p
 w

in
do

w
s

w
ith

 th
e

m
os

t h
its

 a
s

ca
nd

id
at

e
w

in
do

w
s.

d
Pa

ra
H

AT
 p

er
fo

rm
s

re
ad

 a
lig

nm
en

t u
si

ng
 h

et
er

og
en

eo
us

 p
ar

al
le

lis
m

 fo
r b

as
e-

le
ve

l a
lig

nm
en

t a
t c

an
di

da
te

 s
ite

s
an

d
ac

ce
le

ra
te

s
th

e
pr

oc
es

s
w

ith
 v

ec
to

riz
ed

 p
ar

al
le

lis
m

. S
ub

se
qu

en
tly

, i
t t

ra
ce

s
ba

ck

th
ro

ug
h

th
e

al
ig

nm
en

t r
es

ul
ts

, b
ui

ld
s

a
di

re
ct

ed
 a

cy
cl

ic
 g

ra
ph

 (D
A

G
),

an
d

ou
tp

ut
s

th
e

al
ig

nm
en

t fi
le

Page 7 of 31Xia et al. BMC Bioinformatics (2025) 26:118

process using heterogeneous parallel computing with CPUs and accelerators, and fur-
ther optimizes it with vectorized parallelism. The detailed workflow is as follows:

First, the ParaHAT master node divides the reference sequence into overlapping
windows of length Lwin (default 2048 bp), with the distance between each window
being Lwin

2
 . Within each window, k-mers are extracted with a step size of k (usually

11∼ 15 bp) to construct the Regional Hash Table (RHT) (Fig. 2a). The RHT consists
of a PointerList and a WindowList. The PointerList for each k-mer stores the address
of the first window number in which this k-mer appears in the reference genome. The
WindowList stores the window numbers corresponding to each k-mer encoding. The
master node then broadcasts the RHT to all computing nodes. Subsequently, Para-
HAT adopts a dynamic load balancing strategy to evenly distribute the sequences to
be aligned across the computing nodes. Each node uses multi-threading to perform
alignment tasks based on the RHT and the distributed sequences in the following
three steps.

The first step is seed generation (Fig. 2b). ParaHAT extracts a sequence of length Lwin
2

from the middle of each read as the seed. For reads shorter than Lwin

2
 , the entire read is

used as the seed. Then, ParaHAT retrieves the window list of k-mers within the seed
region using the RHT and calculates the k-mer hit count for different windows.

The second step is candidate sites extension (Fig. 2c). ParaHAT counts the hit win-
dow numbers and selects the Ntop (default 5) windows with the most hits as candidate
windows. Then, it extends the candidate windows by Lext (default 400 bp) both for-
ward and backward.

The third step is read alignment (Fig. 2d). ParaHAT uses the CPU and accelerators
to perform base-level alignment at the candidate sites and speeds up the process with
vectorized parallelism. Subsequently, it traces back through the alignment results,
building a directed acyclic graph (DAG) to find the optimal path connecting the start
and end positions, and outputs the alignment results.

Vector‑level parallel alignment

The vector-level parallel optimization primarily focuses on the base-level alignment
in ParaHAT.

Base‑level alignment with affine‑gap penalties

ParaHAT performs global alignment based on 2-piece affine gap penalties [35], in
which every residue of the two sequences is compared and aligned to find the best
match across the entire sequences.

Suppose there are two sequences to be aligned, a target sequence St and a query
sequence Sq . The lengths of St and Sq are Lt and Lq , with corresponding residue indices
i and j, respectively. po and p′o are 2 affine gap open penalty, and pe and p′e are 2 affine
gap extension penalty. A gap of length k costs min{po + |k| · pe, p

′
o + |k| · p′e} [35]. Func-

tion mat(i, j) gives the score between the two residues on St and Sq . Hij is the score of
the alignment ending at positions i and j of St and Sq prefixes. Eij(E′

ij) and Fij(F ′
ij) are the

scores with gaps ending in St and Sq , respectively. The DP formula is shown in Eq. (1) [3].

Page 8 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Computing the DP formula is a very time-consuming process. The computational com-
plexity of the traditional serial computation method is O(Lt · Lq).

SSE vectorization

The main issue faced during the vectorized parallel computation of the DP formula is
data dependency. From Formula 1 and Fig. 3a, it can be seen that the calculation of Hij
(yellow in Fig. 3a) values depends on the values to the left cells (Ei−1,j and Hi−1,j), above
cells (Fi,j−1 and Hi,j−1), and the upper left cell (Hi−1,j−1) [36]. To address this, Wozniak
[37] proposed an anti-diagonal layout, which indicates that cells along the anti-diagonal
direction (dashed lines in Fig. 3a) are independent of each other, allowing for parallel
computation.

The anti-diagonal layout theoretically demonstrates the feasibility of parallelizing the
DP formula. However, in SSE programming, it is necessary to address the irregular data
access patterns along the anti-diagonal in the DP formula. In brief, SSE vectorization
requires data to be contiguous and aligned so that a block of data can be loaded into the
register at once for processing [38]. But the anti-diagonal layout results in data being
stored non-sequentially in memory, instead spanning multiple memory locations. Load-
ing these scattered data elements into SSE registers from memory becomes very com-
plex and inefficient [39]. To overcome this, ParaHAT defines r = i + j and t = i , thereby
transforming the row-column coordinate of the original DP formula into diagonal-anti-
diagonal coordinate. Figure 3b and c illustrate the process of coordinate transformation.
Cells with the same color depth in the figure are calculated simultaneously. For cells on
the same anti-diagonal (dashed lines in Fig. 3b), their original coordinates are positioned
under the same vertical coordinate (dashed lines in Fig. 3c) after the coordinate trans-
formation. This coordinate transformation ensures that data along the same diagonal is
stored contiguously in memory, meeting the requirements of SSE vectorization, allowing
multiple data points to be loaded simultaneously for parallel computation.

Heterogeneous parallel alignment

Heterogeneous computing refers to the use of different types of computing units to
perform computing [7]. It typically combines different hardware architectures, such as
CPUs and GPUs, or specialized accelerators like FPGAs and TPUs, to maximize compu-
tational performance [40].

CPU + accelerators framework

Due to the variety of accelerators and the fact that different accelerators usually use dif-
ferent programming models. We utilize OpenCL to ensure ParaHAT’s compatibility
across various accelerators.

(1)

Hij = max
�

Hi−1,j−1 +mat(i, j),Eij , Fij
�

Eij = max
�

Hi−1,j − po,Ei−1,j

�

− pe

Fij = max
�

Hi,j−1 − po, Fi,j−1

�

− pe

E′
ij = max

�

Hi−1,j − p′o,E
′
i−1,j

�

− p′e

F ′
ij = max

�

Hi,j−1 − p′o, F
′
i,j−1

�

− p′e

Page 9 of 31Xia et al. BMC Bioinformatics (2025) 26:118

(c
)

P
ar

aH
A

T

d
ia

g
o
n
al

-a
n
ti

d
ia

g
o
n
al

 c
o
o
rd

in
at

e

(b
)

P
ar

aH
A

T

ro
w

-c
o
lu

m
n
 c

o
o
rd

in
at

e

(a
)

D
P

 f
o
rm

u
la

 d
at

a
d
ep

en
d
en

cy

mj210

0
1

2
i

n

j-1 j+
1

i-1
i+

1

mj210

0
1

2
i

n

j-1 j+
1

i-1
i+

1
r

tle
nt210

0
1

2
5

3

t-1 t+
1

4
r-

1
r+

1
r-

2
r+

2
ql
en

+
tle
n-

2

H
i,j

H
i-1

,j-
1

E i
-1
,j

F i
,j-
1

Fi
g.

 3
 D

P
fo

rm
ul

a
of

 P
ar

aH
AT

. a
 D

at
a

de
pe

nd
en

cy
 in

 th
e

or
ig

in
al

 D
P

fo
rm

ul
a.

 b
 T

he
 p

ro
ce

ss
 o

f p
ar

al
le

l c
om

pu
tin

g
in

 th
e

Pa
ra

H
AT

 a
lg

or
ith

m
’s

D
P

fo
rm

ul
a

us
in

g
ro

w
 a

nd
 c

ol
um

n
co

or
di

na
te

s,
w

he
re

ce

lls
 o

f t
he

 s
am

e
co

lo
r d

ep
th

 a
re

 c
om

pu
te

d
in

 p
ar

al
le

l.
c

Th
e

pr
oc

es
s

of
 p

ar
al

le
l c

om
pu

tin
g

an
d

in
de

xi
ng

 in
 th

e
Pa

ra
H

AT
 a

lg
or

ith
m

’s
D

P
fo

rm
ul

a
us

in
g

di
ag

on
al

-a
nt

id
ia

go
na

l c
oo

rd
in

at
es

Page 10 of 31Xia et al. BMC Bioinformatics (2025) 26:118

The design of our CPU + Accelerators framework is shown in Fig. 2d. CPU, with its
robust logical control and sequential processing capabilities, manages each thread
responsible for the stages of window indexing, seed generation, and candidate sites
extension. For the computationally intensive base-level alignment step, we adopt a col-
laborative processing approach between the CPU and accelerators to accelerate it. To
ensure coordinated operation between computing units in the heterogeneous system,
we optimize the communication and workload between the CPU and accelerators. Addi-
tionally, we optimize the OpenCL kernel function calculating the DP formula, ensuring
accelerators can utilize vectorized hardware units for acceleration.

Non‑equal sequence distribution

To implement collaborative processing between CPU and accelerators, we launch sep-
arate threads for CPU and accelerators during base-level alignment. In heterogeneous
systems, the host side (CPU) and the device side (accelerators) usually do not share
memory [41]. So it is necessary to transfer data from the host to the device side and
retrieve results from the device side. Since there is communication overhead in data
transmission, optimizing communication within the heterogeneous system is essential.
Moreover, due to varying computing performance between the host and devices, achiev-
ing load balancing between them is another issue that requires optimization.

To better explain our heterogeneous parallel alignment optimization strategy, we sup-
pose the runtime of base-level alignment on the host and device sides is Tcpu and Tdev ,
and the time for sending and receiving data between the host and device sides is Tsend
and Trecv . The communication startup overhead is Oc , the data volume for sending and
receiving are Dsend and Drecv , and the system’s data transfer bandwidth is G.

In heterogeneous parallelism, the transmission of data between the host and device
can be divided into blocking and non-blocking communications [42]. Figure 4a shows
the process of blocking communication. In blocking communication, the caller is sus-
pended (i.e., blocked) until the communication operation completes. In this case, the
program total runtime is

In non-blocking communication, as shown in Fig. 4b, the caller can continue executing
subsequent tasks without waiting for the operation to complete. In this case, the the pro-
gram total runtime is

It can be observed from Fig. 4b that since the computation on the device side is not
shortened, the host must wait for the computational results from the device to con-
tinue the following calculation steps. This leads to no change in the total runtime of the
program.

Ttotal = Oc + Tsend + Tcpu + Oc + Trecv

= 2 ·Oc +
Dsend + Drecv

G
+ Tcpu

Ttotal = Oc + Tsend + Tdev + Oc + Trecv

= 2 ·Oc +
Dsend + Drecv

G
+ Tdev

Page 11 of 31Xia et al. BMC Bioinformatics (2025) 26:118

th
re

ad

th
re

ad

(d
)

n
o

n
-b

lo
ck

in
g

 c
o

m
m

u
n

ic
at

io
n

(N
E

S
D

-l
 s

tr
at

eg
y

)

c
O

c
O

c
O

c
O

cp
u

T de
v

T

se
nd

T

se
nd

Tre
cv

T

re
cv

T

th
re

ad

th
re

ad

(a
)

b
lo

ck
in

g
 c

o
m

m
u

n
ic

at
io

n

c
O

c
O

se
nd

T

se
nd

Tre
cv

T

re
cv

T

cp
u

T de
v

T

th
re

ad

th
re

ad

(c
)

n
o

n
-b

lo
ck

in
g

 c
o

m
m

u
n

ic
at

io
n

(N
E

S
D

-s
 s

tr
at

eg
y
)

c
O

c
O

se
nd

T
re
cv

T
cp
u

T

se
nd

T
re
cv

T

c
O

c
O

th
re

ad

th
re

ad

(b
)

n
o

n
-b

lo
ck

in
g

 c
o

m
m

u
n

ic
at

io
n

(e
q

u
al

 w
o

rk
lo

ad
)

c
O

c
O

cp
u

T

de
v

T
se
nd

T

se
nd

T re
cv

T

re
cv

T
c

O

c
O

de
v

T

Fi
g.

 4
 N

on
-e

qu
al

 s
eq

ue
nc

e
di

st
rib

ut
io

n
op

tim
iz

at
io

n.
 a

 B
lo

ck
in

g
co

m
m

un
ic

at
io

n.
 T

he
 C

PU
 p

ro
ce

ss
in

g
tim

e
(T
cp
u
) a

nd
 a

cc
el

er
at

or
s

pr
oc

es
si

ng
 ti

m
e

(T
d
ev

) a
re

 e
qu

al
, a

nd
 th

e
pr

og
ra

m
’s

co
m

m
un

ic
at

io
n

an
d

co
m

pu
ta

tio
n

pr
oc

es
se

s
ca

nn
ot

 o
ve

rla
p.

 T
he

 to
ta

l r
un

tim
e

is
 th

e
su

m
 o

f t
he

 c
om

m
un

ic
at

io
n

ov
er

he
ad

 (O
c)

, c
om

m
un

ic
at

io
n

tim
e(
T s
en
d
&
T r
ec
v)

, a
nd

 C
PU

 p
ro

ce
ss

in
g

tim
e,

 i.
e.

,
O
c
+

T s
en
d
+

T c
p
u
+

O
c
+

T r
ec
v .

b
N

on
-b

lo
ck

in
g

co
m

m
un

ic
at

io
n.

 T
he

 C
PU

 a
nd

 a
cc

el
er

at
or

s
pr

oc
es

si
ng

 ti
m

e
ar

e
eq

ua
l,

an
d

th
e

pr
og

ra
m

’s
co

m
m

un
ic

at
io

n
an

d
co

m
pu

ta
tio

n
pr

oc
es

se
s

ca
n

ov
er

la
p.

Th

e
C

PU
 n

ee
d

to
 w

ai
t f

or
 th

e
ac

ce
le

ra
to

rs
 to

 fi
ni

sh
 a

ft
er

 it
s

pr
oc

es
si

ng
. T

he
 to

ta
l r

un
tim

e
is

 th
e

su
m

 o
f t

he
 c

om
m

un
ic

at
io

n
ov

er
he

ad
, c

om
m

un
ic

at
io

n
tim

e,
 a

nd
 a

cc
el

er
at

or
s

pr
oc

es
si

ng
 ti

m
e,

 i.
e.

,
O
c
+

T s
en
d
+

T d
ev
+

O
c
+

T r
ec
v .

c
N

on
-b

lo
ck

in
g

co
m

m
un

ic
at

io
n

w
ith

 n
on

-e
qu

al
 s

eq
ue

nc
e

di
st

rib
ut

io
n

st
ra

te
gy

 (N
ES

D
-s

).
Th

e
ac

ce
le

ra
to

rs
 p

ro
ce

ss
 s

ho
rt

er
 s

eq
ue

nc
es

, w
hi

le
 th

e
C

PU
 p

ro
ce

ss
es

lo

ng
er

 s
eq

ue
nc

es
. T

he
 C

PU
 p

ro
ce

ss
in

g
tim

e
is

 e
qu

al
 to

 th
e

su
m

 o
f t

he
 c

om
m

un
ic

at
io

n
ov

er
he

ad
, c

om
m

un
ic

at
io

n
tim

e,
 a

nd
 a

cc
el

er
at

or
s

pr
oc

es
si

ng
 ti

m
e,

 i.
e.

, T
cp
u
=

T s
en
d
+

T d
ev
+

O
c
+

T r
ec
v .

d
N

on
-b

lo
ck

in
g

co
m

m
un

ic
at

io
n

w
ith

 n
on

-e
qu

al
 s

eq
ue

nc
e

di
st

rib
ut

io
n

st
ra

te
gy

 (N
ES

D
-l)

. T
he

 a
cc

el
er

at
or

s
pr

oc
es

s
lo

ng
er

 s
eq

ue
nc

es
, w

hi
le

 th
e

C
PU

 p
ro

ce
ss

es
 s

ho
rt

er
 s

eq
ue

nc
es

. B
ot

h
co

m
m

un
ic

at
io

n
an

d
co

m
pu

ta
tio

n
tim

es
 in

cr
ea

se
, r

es
ul

tin
g

in
 a

 lo
ng

er
 to

ta
l r

un
tim

e
fo

r t
he

 p
ro

gr
am

Page 12 of 31Xia et al. BMC Bioinformatics (2025) 26:118

To address this, we propose a non-equal sequence distribution (NESD) strategy, allow-
ing the workload distributed between the host and the devices unequally. This strategy
fully utilizes waiting times in the program to hide more communication overhead, as
shown in Fig. 4c. In this case, the total runtime is

In the optimization process, we propose two sequence distribution strategies based on
read lengths, evaluated through algorithm validation and experimental demonstration.
The NESD-s strategy assigns shorter sequences to the accelerators and longer ones to
CPU, while the NESD-l strategy does the opposite. During algorithm validation, Tcpu ,
Tdev , Tsend , and Trecv represent the times for each part in NESD-s strategy, and T ′

cpu , T ′
acc ,

T ′
send , and T ′

recv represent the times for each part in NESD-l strategy.
Suppose there are two sequences Slr and Ssr with lengths Llr and Lsr , respectively,

where the lengths satisfy Llr = n · Lsr . The transmission times of Slr and Ssr between the
host and device sides are Tlr and Tsr , respectively. Then, for these two sequences, their
sending (receiving) DP formula sizes are L2lr and L2sr , respectively, leading to:

With transmitting sequences Slr and n · Ssr of the equivalent length between the host and
device sides, their transmission times Tlr and n · Tsr are:

Hence Tlr = n · n · Tsr . This implies that, even if the total data volume for base-level
alignment remains constant, the communication time for longer sequences significantly
exceeds that for shorter sequences. Thus T ′

send > Tsend , and T ′
recv > Trecv.

Meanwhile, since accelerators usually do not match the computing performance of
the CPU, the processing time on the accelerators for the same data volume in NESD-l
strategy will be longer, i.e., T ′

acc > Tdev . Therefore, NESD-l strategy needs to reduce the
data volume on the device side to ensure T ′

cpu = T ′
acc + T ′

send + T ′
recv , which may lead to

an increase in the computation time on the host side, i.e., T ′
cpu > Tcpu . Hence, adopting

NESD-l strategy, as shown in Fig. 4d, increases both computation and communication
time, thereby increasing the program’s overall runtime.

Overall, processing longer sequences with the CPU and shorter sequences with accel-
erators can achieve better parallel performance. The comparative experimental results of
the two strategies are discussed in Sect. 3.3.

Kernel vectorization

Different computing units, such as CPUs, GPUs, and FPGAs, typically utilize specialized
vectorization capabilities. OpenCL offers a range of built-in vector data types, allowing
developers to perform vectorized operations directly while writing kernel functions.

Ttotal = Oc + Tcpu = Oc + Tsend + Tdev + Oc + Trecv

= 2 · Oc +
Dsend + Drecv

G
+ Tdev

L2lr = (n · Lsr)
2 = n2 · L2sr

Tlr =
S2lr
G

= n2 ·
S2sr
G

n · Tsr = n ·
S2sr
G

Page 13 of 31Xia et al. BMC Bioinformatics (2025) 26:118

The main task of the kernel function is to implement the calculation process of base-
level alignment with affine-gap penalties [35]. To achieve vectorized operations in kernel
functions, we adopted the anti-diagonal layout consistent with Sect. 2.2 to eliminate the
data dependency. In the SSE vectorization process, logical shift operations are used to
enhance computational efficiency. For instance, we use _mm_slli_si128(xt1,1) to
perform a logical left shift within a 128-bit register. Nevertheless, OpenCL does not offer
a direct equivalent single function to perform this specific shift operation.

One solution is to simulate this shift operation with manual operations, as shown in
Figrue 5a. Here, xt1.s0 to xt1.sf represent the elements of the char16 type vector
xt1, covering all 16 elements (from 0 to 15). We manually specify the element for each
position, and set the leftmost position to 0. This method is inefficient because it involves
numerous manual operations and data copying.

To improve the efficiency of the shift operation, we utilize the shuffle2 function, as
shown in Figrue 5b. It selects elements from the source vector xt1 based on the pro-
vided index vector (mask). By configuring mask with indices for a left-shifted operation
and setting the first element xt1.s0 to 0, we can replicate the same shift operations as
with SSE vectorization. This approach reduces the number of instructions and enhances
execution efficiency compared to manual operations.

Process‑Level parallel alignment

The process-level parallelism enables the use of multiple computing nodes, significantly
enhancing computational performance. The main optimization goal is to distribute the
load across the nodes evenly, ensuring consistent computation times.

Static sequence distribution across nodes

Due to limitations in hardware performance, a single computing node may encounter
performance bottlenecks. Process-level parallelism can utilize computational resources

(a) OpenCL manual operation

xt1

xt1

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se sf

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se

(b) OpenCL shuffle2 operation

mask

xt1

xt1 0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 sa sb sc sd se sf

ih.1txol.1tx

Fig. 5 OpenCL kernel vectorization shift operation optimization. a OpenCL manual operation. Extract each
element from the vector and assign them one by one. b OpenCL shuffle2 operation. Shift multiple elements
simultaneously based on vector index (mask)

Page 14 of 31Xia et al. BMC Bioinformatics (2025) 26:118

across multiple nodes, thus overcoming this limitation. Theoretically, the performance
of process-level parallelism is proportional to the number of computing nodes. How-
ever, due to limitations such as inter-node communication, load imbalance, etc., the per-
formance of process-level parallelism decreases as the number of nodes increases. To
fully utilize hardware resources and enhance the overall computational performance of
the system, ParaHAT optimizes the workload on each node.

ParaHAT first implements a static sequence distribution (SSD) strategy based on data
volume. By pre-distributing the FASTQ files [43], the SSD strategy ensures a balanced
workload on each node, thereby promoting uniform runtime across the nodes. This
strategy involves two main steps: initial distribution and precise distribution. During
the initial distribution, the master process calculates the data volume of the FASTQ files
(Vfastq) and broadcasts it to all computing nodes via MPI_Bcast. Subsequently, each
computing node calculates its own start and end positions (Pis and Pie) based on For-
mula 2.

Where p is the total number of computing nodes and i is the index of each node. The
data volume becomes equal across all nodes after the initial distribution. But the file
pointers on each node might not point to the head of each sequence in the FASTQ file,
potentially leading to incorrect results or even program failure. Therefore, in the pre-
cise distribution step, we relocate each pointer to the head of its respective sequence. At
this point, each node obtains the correct starting position, Pis . Subsequently, adjacent
nodes communicate to obtain the starting position, Pis , of the next node, thereby updat-
ing their own end position, Pie , to Pis − 1.

Considering the communication overhead in multi-node computing [44], we adopt the
non-equal sequence distribution strategy, as proposed in Sect. . In this method, the mas-
ter process processes more data compared to the other computing nodes.

Integrated load balancing strategy

The SSD strategy ensures relatively equal data volume processed by each node. But
the differences in performance across computing nodes and the varying complexity of
sequence computations result in significant variations in actual runtime across nodes.
The node with the longest runtime becomes the primary bottleneck in algorithm
performance.

So we further propose a dynamic sequence distribution (DSD) strategy to address this
issue. The idea of the DSD strategy is to divide the data to be processed into smaller
batches, which are then processed alternately by multiple nodes, thereby achieving bet-
ter resource utilization and improving processing efficiency. An important aspect of the
strategy is the selection of an appropriate batch size. A large batch size may result in
significant differences in computing times between nodes, while a small batch size may
require more frequent communication between nodes, increasing communication costs

(2)
Pis =

Vfastq

p
· i

Pie =
Vfastq

p
· (i + 1)

Page 15 of 31Xia et al. BMC Bioinformatics (2025) 26:118

and thereby reducing overall execution efficiency. To address this, we integrate the DSD
strategy with the SSD strategy and propose the integrated load balancing (ILB) strategy.

Figure 6 shows the process of the ILB strategy. The ILB strategy initially distributes the
first α % (default 0.8) of the data evenly among the computing nodes. Then, it divides the
remaining 1− α % of the data into batches, each consisting of bs (default 128) sequences.
Each node alternately processes the batches in sequence after completing its computa-
tional tasks. The advantage of the ILB strategy is that, during the early stages of compu-
tation, each node does not need to spend much overhead on frequent communication,
because there will not be any instances of nodes waiting for tasks. In the later stages of
computation, as the amount of task data decreases, each node processes a smaller por-
tion of data each time, thereby ensuring consistent computing time across nodes. In this
strategy, the percentages (α) of static and dynamic distribution, as well as the number
of sequences (bs) contained in each batch, can be manually adjusted according to actual
situation.

Results
In this section, we evaluate the performance of ParaHAT. First, we analyze acceleration
achieved by using the revised DP formula for SSE vectorization. Second, we discuss the
acceleration effects of the CPU + Accelerators framework. Third, we measure the per-
formance of each node on simulated and real datasets before and after implementing the
dynamic load balancing strategy. Fourth, we analyze the parallel performance of Para-
HAT, including the speedup, parallel efficiency, and scalability. We also compare the dis-
tribution of runtime across multiple nodes.

Experimental setup

Hardware configurations

We conduct our experiments on a local server and a cluster server. Their hardware con-
figurations are shown in Table 1. The local server is responsible for measuring the vec-
tor-level parallelism and heterogeneous parallel acceleration of one single node, while
the cluster server is used to evaluate the performance of multi-node parallelism.

Datasets

We conduct benchmark tests using the same 7 real and simulated SMRT datasets as
in the original rHAT paper, along with HG002 PacBio CLR, PacBio HiFi, and ONT
(Oxford Nanopore Technologies) datasets. Their details are shown in Table 2. The H.
Sapiens-real data contains raw sequence data resulting from PacBio SMRT Sequenc-
ing for CHM1TERT. The D. melanogaster-real data comes from a subline of the ISO1
(y; cn, bw, sp) strain of D. melanogaster, in collaboration with Dr. Casey Bergman
at the University of Manchester and Drs. Susan Celniker and Roger Hoskins of the
Berkeley Drosophila Genome Project (BDGP) at Lawrence Berkeley National Labora-
tory [45]. The simulated data is generated using the PBSim [46] tool. HG002 comes
from the NIST’s Genome in a Bottle (GIAB) project [47]. All parameter configura-
tions in the experiments use the default values. We randomly sample 10 million
(10 M) alignment bases from each dataset to evaluate the performance of ParaHAT

Page 16 of 31Xia et al. BMC Bioinformatics (2025) 26:118

#
0

#
1

#
2

#
N

-1

S
eq

u
en

ce
 d

is
tr

ib
u

ti
o

n
 (

 %
)

B
at

ch
es

 (
1

-
 %

)

N
o

d
e

#
1

N
o

d
e

#
2

N
o

d
e

#
N

-1

#
1

#
2

#
N

-1

F
A

S
T

Q

fi
le

N
o

d
e

#
0

#
0

C
o

m
m

.

Fi
g.

 6
 T

he
 in

te
gr

at
ed

 lo
ad

 b
al

an
ci

ng
 (I

LB
) s

tr
at

eg
y.

 T
he

 fi
rs

t α
%

 o
f t

he
 F

A
ST

Q
 fi

le
 is

 m
an

ag
ed

 w
ith

 a
 s

ta
tic

 s
eq

ue
nc

e
di

st
rib

ut
io

n
(S

SD
) s

tr
at

eg
y,

 u
ni

fo
rm

ly
 d

is
tr

ib
ut

in
g

se
qu

en
ce

s
ac

ro
ss

 n
od

es

an
d

op
tim

iz
in

g
us

in
g

a
no

n-
eq

ua
l s

eq
ue

nc
e

di
st

rib
ut

io
n

st
ra

te
gy

. T
he

 g
re

en
 s

ec
tio

n
in

 N
od

e
#0

 in
di

ca
te

s
se

qu
en

ce
s

pr
oc

es
se

d
ad

di
tio

na
lly

 a
ft

er
 o

pt
im

iz
at

io
n.

 T
he

 re
m

ai
ni

ng
 1
−

α
%

 u
se

s
a

ba
tc

h-
ba

se
d

dy
na

m
ic

 s
eq

ue
nc

e
di

st
rib

ut
io

n
(D

SD
) s

tr
at

eg
y,

 d
iv

id
in

g
ev

er
y

bs
 s

eq
ue

nc
es

 in
to

 a
 b

at
ch

, w
ith

 n
od

es
 p

ro
ce

ss
in

g
ea

ch
 b

at
ch

 a
lte

rn
at

el
y

Page 17 of 31Xia et al. BMC Bioinformatics (2025) 26:118

and other state-of-the-art (SOTA) alignment tools and libraries in the DP formula.
For datasets with fewer than 10 M alignments bases, we select all available bases for
evaluation. The purpose of selecting 10 M alignments is to enable both horizontal and
vertical comparisons: comparing different alignment tools/libraries under the same
dataset and alignment count, and evaluating the same tool/library across different
datasets. Additionally, it effectively limits single-node computation time. The details
of these datasets are provided in the Supplementary material Section DATA AVAIL-
ABILITY and Table S1.

Base‑level alignment wall time performance evaluation

We evaluate the performance of ParaHAT with and without SSE acceleration in base-
level alignment using both real and simulated data. We measure the runtime of a sin-
gle thread on the DP formula for 10 M alignments across different datasets, as shown
in Table 3.

As shown in the table, ParaHAT with SSE acceleration is 3.9x to 4.2x faster than
without SSE acceleration. Theoretically, a 16-way SSE vectorization can achieve up to
a 16x speedup. Since the base-level alignment also includes a traceback process, and
the utilization rate of vector units during computation usually cannot reach 100%,
such acceleration performance is expected.

Table 1 Hardware configurations

Items Local server Cluster server

CPU Intel i7-12900k Intel Xeon Gold 6348

Frequency 3.9 GHz 2.6 GHz

Cores 16 28

Memory 128GB 256GB

GPU NVIDIA RTX 3090 Ti NVIDIA RTX A6000

MPI openmpi-2.1.6 openmpi-2.1.6

OpenCL 3.0 3.0

OS Ubuntu-18.04 CentOS-7.6.1810 (Core)

Table 2 The real and simulated datasets information

Datasets Original bases 10M alignments bases Reference

1 H. sapiens-real 1810943188 46338579 hg19

2 D. melanogaster-real 1244028123 75042194 DM5

3 E. coli-sim 4938920 4938920 E.coli Strain 536

4 S. cerevisiae-sim 12153653 12153653 sacCer3

5 D. melanogaster-sim 129738789 75121302 DM3

6 A. thaliana-sim 118558112 79274551 TAIR10

7 H. sapiens-sim 2856372869 77637855 hg19

8 PacBio CLR 248667117073 60177420 GRCh37

9 PacBio HiFi 170093604207 117212657 GRCh37

10 ONT 194160447936 115609458 GRCh37

Page 18 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Heterogeneous Parallel Performance

We first compare the two non-equal sequence distribution strategies in heteroge-
neous systems proposed in Sect. . For this purpose, we analyze the runtime of each
stage in the base-level alignment, distributing sequences shorter than 1024 (NESD-s
strategy) and longer than 1024 (NESD-l strategy) to the GPU on both simulated and
real datasets. Then, we assess the performance of the base-level alignment before and
after adopting the CPU + Accelerators framework.

Non‑equal Sequence Distribution Strategies Comparison

Table 3 Comparison of timing for original DP formula, SSE acceleration, and CPU + Accelerators
framework acceleration. 1

1 All CPU executions use 1 thread

Datasets Alignment Origin SSE CPU+GPU
Size (min) (min) (min)

1 E. coli-sim 628 40.12 10.03 7.88

2 S. cerevisiae-sim 1569 138.32 34.09 26.30

3 D. melanogaster-sim 10M 640.21 163.17 125.38

4 A. thaliana-sim 10M 688.26 171.56 132.55

5 H. sapiens-sim 10M 681.53 174.07 129.78

6 H. sapiens-real 10M 503.05 118.59 93.30

7 D. melanogaster-real 10M 659.97 166.57 125.02

8 PacBio CLR 10M 839.13 202.20 126.54

9 PacBio HiFi 10M 2029.06 509.82 202.20

10 ONT 10M 2207.17 550.42 283.76

Table 4 Comparison of time distribution for different strategies in the CPU + Accelerators
framework

Strategy Datasets Host Device Comm.
(min) (min) (min)

NESD-s E. coli-sim 0.18 0.03 0.16

S. cerevisiae-sim 0.46 0.07 0.38

D. melanogaster-sim 4.85 0.75 4.28

A. thaliana-sim 4.58 0.71 3.71

H. sapiens-sim 19.77 4.26 15.50

H. sapiens-real 5.77 1.07 5.49

D. melanogaster-real 22.39 4.09 18.20

NESD-l E. coli-sim 0.32 0.22 0.34

S. cerevisiae-sim 0.80 0.54 0.88

D. melanogaster-sim 8.51 5.76 9.54

A. thaliana-sim 7.88 5.32 8.72

H. sapiens-sim 34.95 23.82 61.10

H. sapiens-real 10.04 6.37 12.26

D. melanogaster-real 50.77 34.50 56.09

Page 19 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Table 4 displays the runtime of each stage under the two strategies. The runt-
ime on the host side, device side, and communication time in NESD-l strategy
increased by 1.72x to 2.27x, 5.59x to 8.44x, and 1.95x to 3.08x, respectively, com-
pared to NESD-s strategy. Additionally, the runtime on the host side is relatively
equal to the sum of the device side and communication time in NESD-s strategy, i.e.,
Tcpu ≈ Tdev + Tsend + Trecv . While the sum of device side and communication time
is significantly greater than the host side runtime in NESD-l strategy, as shown in
Fig. 4d. These results indicate that the strategy of using the CPU to process longer
sequences and the GPU to process shorter sequences can better balance the workload
between the host and device sides, thereby achieving a better acceleration effect.

CPU + accelerators framework acceleration

Subsequently, we assess the acceleration effect in base-level alignment under this
sequence distribution strategy, as shown in Table 3. Compared to using only the CPU
for computation, ParaHAT achieve a 1.27x to 1.34x performance improvement on the
original rHAT datasets and a 1.60x to 2.52x performance improvement on the HG002
datasets. This indicates that adopting heterogeneous parallel acceleration can effectively
reduce the workload on the host side, improving the overall program execution speed.

Single node benchmark

Vector-level and heterogeneous parallelism enhance the computational performance
of ParaHAT on a single node. To more accurately evaluate ParaHAT’s single-node per-
formance, we compare it with other SOTA libraries and tools on the 10 M alignments
datasets.

The alignment tools selected for the experiments include the widely used minimap2,
which employs the KSW2 library for vector-level acceleration. The libraries, Parasail,
WFA, and WFA-GPU, accelerate the DP formula through vector-level parallelism, WFA
algorithms, and GPU-based acceleration of WFA algorithms [31], respectively. Due to
differences in the alignment workflows of these tools and libraries, we focus only on
comparing their runtimes during the base-level alignment. Additionally, we employ a
basic Smith-Waterman-Gotoh (SWG) implementation to validate the results and calcu-
late the recall of each method [22]. The data used in the experiments includes the origi-
nal rHAT data, as well as HG002 PacBio CLR, PacBio HiFi, and ONT data. Detailed
information about the data is provided in the supplementary materials.

Table 5 shows the results of ParaHAT and other SOTA alignment tools and librar-
ies across different datasets. All experiments run on a single node and 16 threads, with
tests exceeding 2 h marked as n/a. The results clearly indicate that ParaHAT outper-
forms minimap2 and Parasail in DP formula for both human and other ethnic genomes.
This highlights ParaHAT’s adaptability, enabling fast alignment across diverse genomic
datasets. Notably, ParaHAT achieves a 1.96x speedup over minimap2 for noisy PacBio
CLR data, mainly due to specialized optimizations for noisy long reads and effective uti-
lization of GPU acceleration. For high-accuracy PacBio HiFi data, ParaHAT is 1.57 times
faster than minimap2, primarily due to its effective GPU acceleration strategy.

The results also show that WFA is faster than classical DP algorithms. WFA acceler-
ates exact DP algorithms by leveraging sequence similarity, achieving a time complexity

Page 20 of 31Xia et al. BMC Bioinformatics (2025) 26:118

of O(ns), where n is the sequence length and s is the optimal alignment score [22]. In
contrast, traditional sequence alignment algorithms typically have a complexity of O(n2) .
In practice, since the sequences to be aligned are often highly similar, the s is much
smaller than n, making WFA significantly faster. WFA-GPU further speeds up WFA
using GPUs. Its speedup on PacBio CLR, PacBio HiFi, and ONT data is similar to Para-
HAT’s performance gains over minimap2, indicating that ParaHAT’s GPU acceleration
performs as expected. However, WFA-GPU has a recall loss of about 2.44%, showing
that WFA prioritizes speed, while classical DP algorithms focus more on accuracy and
reliability.

Effect of integrated load balancing strategy

We evaluate the impact of the ILB strategy proposed in Sect. . In this strategy, the first
α % of the data adopts the SSD strategy, while the remaining (1− α) % of the data is pro-
cessed in batches. First, we fix the batch size bs to discuss the impact of α values on the
program runtime. Second, we fix the optimal α value to compare the impact of different
bs values on the program runtime. Third, we evaluate the runtime distribution of each
node after using the dynamic load balancing strategy.

The experiment collects the runtime of 4 nodes, each with 2 threads, and uses bar
charts with error bars to represent the runtime distribution of each node. When discuss-
ing the impact of α and bs values, we use both simulated and real datasets of D. mela-
nogaster, with more experimental results available in the supplementary files.

Table 5 Time (T, in seconds) and recall (R, as a percentage of exact alignments) for aligners across
different datasets on a single node

1 All CPU executions use 16 threads. Executions taking more than 2 h are marked as n/a

Dataset Size Metric Minimap2 Parasail ParaHAT WFA WFA‑GPU
(SSE) (SSE) (SSE+GPU) (CPU) (GPU)

E. coli 628 T (s) 69.37 110.43 46.70 3.10 2.45

R (%) 100 100 100 99.99 99.68

S. cer. 1569 T (s) 153.17 269.51 105.71 6.44 5.37

R (%) 100 99.93 100 100 99.29

D. mel. (sim) 10M T (s) 795.21 1401.00 609.03 40.03 35.18

R (%) 100 99.99 100 99.89 97.97

A. tha. 10M T (s) 823.94 1453.55 541.95 45.62 39.27

R (%) 100 99.99 100 100 99.07

H. sap. (sim) 10M T (s) 795.17 1170.88 530.22 41.90 37.60

R (%) 100 99.99 100 99.97 98.60

H. sap. (real) 10M T (s) 647.86 1158.48 477.44 23.13 20.87

R (%) 100 99.99 100 99.89 98.49

D. mel. (real) 10M T (s) 767.07 1201.44 496.32 40.71 35.86

R (%) 100 99.99 100 99.99 97.99

PacBio CLR 10M T (s) 1604.32 3031.9 820.56 29.98 25.25

R (%) 100 99.99 100 99.82 96.51

PacBio HiFi 10M T (s) 2027.06 3822.86 1287.12 54.39 47.27

R (%) 100 99.99 100 99.98 98.53

ONT 10M T (s) 3323.89 n/a 2108.81 66.69 45.64

R (%) 100 n/a 100 99.99 97.63

Page 21 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Impact of α value

Figure 7a and b show how different α values affect program runtime when bs = 128 .
As the α value gradually increases, the average runtime decreases and the runtime dis-
tribution across nodes becomes more balanced, achieving an optimal state at α = 0.8 .
The reduction in average time mainly results from a decrease in the total number of
processed batches as α increases, which reduces communication time across nodes.
Meanwhile, frequent requests from nodes increase the workload on the master pro-
cess when the α value is low, causing an imbalance in runtime across nodes.

As the α value further increases, the average runtime does not improve, and the
runtime across nodes becomes imbalanced. This imbalance becomes more obvious
when the dataset is small. This is because the performance of each node and the com-
plexity of each batch computation vary, leading to different runtime for each node.
And the differences become more evident with fewer batches.

Impact of bs value

Figure 7c and d show how bs value affects the program runtime at α = 0.8 . As the bs
value gradually increases, the program’s average runtime and the runtime difference
across nodes first decrease then increase, achieving optimal balance at bs = 128 . This
phenomenon occurs because a smaller bs value leads to more batches, making inter-
node communication become the main hindrance to program performance. Con-
versely, a larger bs value results in fewer batches, making the differences in runtime
across nodes become the main bottleneck.

Multi‑node workload comparison

Figure 8 shows the differences in runtime across nodes with and without the dynamic
load balancing strategy at α = 0.8 and bs = 128 . Compared to the SSD strategy, the
ILB strategy significantly improves runtime differences across nodes. Since the per-
formance of multiple nodes often depends on the runtime of the slowest node, the
program’s performance significantly benefits from the ILB strategy. In our experi-
ments, we note that SSD perform better with some smaller datasets due to the fact
that frequent inter-node communication in the ILB strategy may reduce overall pro-
gram performance. However, the data volume for actual sequence alignment is usu-
ally very large, leading us to focus more on the program’s performance with larger
data volumes. The details of the other datasets influenced by the α and bs values are
provided in the supplementary material Figure S1 and S2.

Multi‑node parallel performance

We evaluate the performance of ParaHAT on multiple nodes. The metrics we used are
speedup, parallel efficiency, and scalability. We conduct our experiments on 1 to 128
nodes, with each node using 4 threads (maximum physical cores equal 512).

Page 22 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Fi
g.

 7
 I

nfl
ue

nc
e

of
 α

 a
nd

 b
s v

al
ue

s.
a

an
d

b
ar

e
th

e
im

pa
ct

 o
f α

 o
n

th
e

pr
og

ra
m

 ru
nt

im
e

on
 s

im
ul

at
ed

 a
nd

 re
al

 D
. m

el
an

og
as

te
r d

at
as

et
s,

re
sp

ec
tiv

el
y.

 c
 a

nd
 d

 a
re

 th
e

im
pa

ct
 o

f t
he

 b
s v

al
ue

 o
n

th
e

pr
og

ra
m

 ru
nt

im
e.

 T
he

 h
ei

gh
t o

f t
he

 b
ar

s
re

pr
es

en
ts

 th
e

av
er

ag
e

ru
nt

im
e

of
 fo

ur
 n

od
es

 (e
ac

h
w

ith
 tw

o
th

re
ad

s)
, w

hi
le

 th
e

lo
w

er
 a

nd
 u

pp
er

 e
nd

s
of

 th
e

er
ro

r b
ar

s
re

pr
es

en
t t

he
 ru

nt
im

e
of

 th
e

fa
st

es
t

an
d

sl
ow

es
t n

od
es

, r
es

pe
ct

iv
el

y

Page 23 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Fi
g.

 8
 M

ul
ti-

no
de

 w
or

kl
oa

d
co

m
pa

ris
on

 w
ith

 a
nd

 w
ith

ou
t t

he
 IL

B
st

ra
te

gy
 o

n
re

al
 a

nd
 s

im
ul

at
ed

 d
at

as
et

s

Page 24 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Speedup and efficiency

Speedup (Sp) is a metric for measuring the acceleration performance of parallel algo-
rithms, defined as the ratio of the optimal execution time on a single processor (Ts) to
the execution time on p processors in parallel (Tp), as shown in Formula 3. Ideally, the
speedup is linearly related to the number of processors, i.e., Sp = p

Parallel efficiency (Ep) is a metric for measuring the extent to which parallel resources
are effectively utilized, defined as the ratio of speedup (Sp) to the number of processors
(p), as shown in Formula 4. Ideally, parallel efficiency is 1 (or 100%), indicating that each
processor is fully and effectively utilized.

Figure 9a shows the speedup of ParaHAT using both simulated and real datasets. Given
that the E. coli-sim and S. cerevisiae-sim datasets are relatively small, with single-node
runtimes of less than one minute, our analysis primarily focuses on the other five larger
datasets. These results show that ParaHAT’s speedup exhibits a linear relationship with
the number of nodes. The speedup reaches 94.61x on 128 nodes. The observed decrease
in speedup is primarily due to the inter-node communication overhead. Additionally, we
find that larger datasets tend to achieve higher speedup with the same number of nodes,
indicating that smaller datasets have a larger proportion of time spent on communica-
tion overhead, which has a greater impact on total runtime.

To better demonstrate the parallel performance of ParaHAT, we calculate the parallel
efficiency during multi-node computations, as shown in Fig. 9b. The results show that
the parallel efficiency remains above 45%, peaking at 73.91% when the number of nodes
reaches 128. Meanwhile, ParaHAT exhibits higher parallel efficiency at the same number
of nodes with larger datasets.

Scalability

In the field of parallel computing, strong scalability and weak scalability are two impor-
tant metrics for assessing the scalability of parallel programs.

Strong scalability refers to the reduction in program runtime as the number of proces-
sors increases while keeping the total workload constant. Figure 10a and S3 show the
strong scalability of ParaHAT on real and simulated H. sapiens and the other 5 datasets.
In the experiment, we keep the dataset size constant and exponentially increased the
number of nodes from 1 to 128. The results show that the program’s runtime decreases
proportionally with the number of computing nodes. When using 128 nodes, the runt-
ime decreased by 98.92% and 98.90%, respectively, such results are expected.

Weak scalability refers to how the system’s processing capability changes when
the size of the problem increases linearly with the number of processors [48]. Fig-
ure 10b shows the weak scalability of ParaHAT using different datasets. In the experi-
ments, we increase the size of the alignment files and the number of nodes in the

(3)Sp =
Ts

Tp

(4)Ep =
Sp

p

Page 25 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Fi
g.

 9
 T

he
 s

pe
ed

up
 a

nd
 p

ar
al

le
l e

ffi
ci

en
cy

 o
f P

ar
aH

AT
. a

 S
pe

ed
up

 ra
tio

s
of

 P
ar

aH
AT

 o
n

re
al

 a
nd

 s
im

ul
at

ed
 d

at
as

et
s.

Th
e

la
rg

er
 th

e
da

ta
se

t,
th

e
m

or
e

lin
ea

r t
he

 g
ro

w
th

 in
 s

pe
ed

up
, p

ea
ki

ng
 a

t 9
4.

61
x

on
 1

28
 n

od
es

. b
 P

ar
al

le
l e

ffi
ci

en
cy

 o
f P

ar
aH

AT
. T

he
 la

rg
er

 th
e

da
ta

se
t,

th
e

sl
ow

er
 th

e
re

du
ct

io
n

in
 p

ar
al

le
l e

ffi
ci

en
cy

Page 26 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Fi
g.

 1
0

Th
e

st
ro

ng
 a

nd
 w

ea
k

sc
al

ab
ili

ty
 o

f P
ar

aH
AT

. a
 S

tr
on

g
sc

al
ab

ili
ty

 o
f P

ar
aH

AT
 o

n
re

al
 a

nd
 s

im
ul

at
ed

 H
. s

ap
ie

ns
 d

at
as

et
s.

Th
e

ru
nt

im
e

of
 th

e
pr

og
ra

m
 d

ec
re

as
es

 p
ro

po
rt

io
na

lly
 w

ith
 th

e
nu

m
be

r
of

 c
om

pu
tin

g
no

de
s.

b
W

ea
k

sc
al

ab
ili

ty
 o

f P
ar

aH
AT

 o
n

re
al

 a
nd

 s
im

ul
at

ed
 d

at
as

et
s.

A
t 1

28
 c

om
pu

tin
g

no
de

s,
on

ly
 th

e
sm

al
le

r d
at

as
et

s
E.

 c
ol

i-s
im

 a
nd

 S
. c

er
ev

isi
ae

-s
im

 s
ho

w
 a

 d
ec

lin
e,

 w
ith

 th
e

pe
ak

w

ea
k

sc
al

ab
ili

ty
 m

et
ric

 re
ac

hi
ng

 u
p

to
 0

.9
9

Page 27 of 31Xia et al. BMC Bioinformatics (2025) 26:118

same proportion. The results show that program runtime remains almost unchanged.
When using 128 nodes, the weak scalability metric reaches 98.98%.

The above experiments indicate that ParaHAT has excellent multi-node parallel
performance and is capable of efficiently handling larger-scale problems.

Multi‑node runtime distribution

Finally, we evaluate the time distribution across different nodes by adopting a
dynamic load balancing strategy. To illustrate the result more intuitively, we use vio-
lin plots to depict the time distribution of each node. The central marker, width, and
length of each violin plot display the median position, frequency of occurrence, and
range of distribution of the runtime, respectively.

Figure 11a and b show the time distribution of 128 nodes for the real and simu-
lated data of H. sapiens under dynamic and static load balancing strategies. From
the results, it is evident that the coordinates at the top of the violin plots are smaller
when using the dynamic load balancing strategy. This value represents the runtime of
the slowest node, i.e., the actual runtime of the program. The smaller this value, the
faster the multi-node program runs. Additionally, the dynamic load balancing strat-
egy is associated with a smaller vertical span and a larger horizontal span in the plot.
This indicates that the range of runtime across the nodes is more concentrated when
adopting the dynamic load balancing strategy. The results of the other 5 datasets are
provided in supplementary material Figure S4.

The above results show that our proposed dynamic load balancing strategy can sig-
nificantly balance the workload across nodes, thereby enhancing the overall perfor-
mance of the program.

Discussion
SMRT technology has generated an unprecedented scale of biological data, thus cre-
ating an increasingly urgent demand for high-performance alignment algorithms.
This paper accelerates the alignment of noisy long read sequences using parallel tech-
nologies. Specifically, we redesign the DP formula to eliminate data dependency in
the base-level alignment. Subsequently, we utilize vector-level and heterogeneous
parallelism to accelerate the alignment. Finally, we employ process-level parallelism
to speed up the alignment on multiple nodes and propose a dynamic load balanc-
ing strategy to effectively balance the workload across nodes. Experimental results
indicate that our ParaHAT exhibits excellent parallel performance, and can effectively
handle large-scale alignment data.

Our experimental research shows that communication overhead in parallel comput-
ing has a significant impact on program performance. We find that high-end server
CPUs remain the most effective platform for alignment tasks. Although accelerators
in heterogeneous parallelism can achieve multi-way parallelism in base-level align-
ment, the performance of individual computing units and the communication over-
head between host and devices limit the overall performance.

Page 28 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Fi
g.

 1
1

Th
e

ru
nt

im
e

di
st

rib
ut

io
n

of
 d

yn
am

ic
 a

nd
 s

ta
tic

 lo
ad

 b
al

an
ci

ng
 s

eq
ue

nc
e

di
st

rib
ut

io
n

st
ra

te
gi

es
. a

 a
nd

 b
 il

lu
st

ra
te

 th
e

di
st

rib
ut

io
n

of
 ru

nt
im

e
ac

ro
ss

 n
od

es
 u

si
ng

 d
yn

am
ic

 a
nd

 s
ta

tic
 lo

ad

ba
la

nc
in

g
st

ra
te

gi
es

 o
n

re
al

 a
nd

 s
im

ul
at

ed
 H

. s
ap

ie
ns

 d
at

as
et

s,
re

sp
ec

tiv
el

y.
 T

he
 g

ra
ph

 fo
r t

he
 d

yn
am

ic
 lo

ad
 b

al
an

ci
ng

 s
tr

at
eg

y
ap

pe
ar

s
sm

al
le

r a
nd

 fl
at

te
r,

in
di

ca
tin

g
sh

or
te

r r
un

tim
es

 a
nd

 s
m

al
le

r
va

ria
tio

ns
 in

 ru
nt

im
es

 a
cr

os
s

no
de

s
un

de
r t

hi
s

st
ra

te
gy

Page 29 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Conclusions
We summarize the following recommendations for using parallel computing in sequence
alignment. First, the algorithm should be highly parallelizable. Second, communication
between multiple nodes, as well as between host and devices in heterogeneous parallel-
ism, should overlap with the computing process to ensure minimal performance loss.
Third, workloads should be distributed according to the computational performance
of each node to prevent overall performance degradation due to differences in node
runtime.

Abbreviations
SMRT Single molecule real-time
DP Dynamic programming
NGS Next-generation sequencing
rHAT Regional hashing-based alignment tool
bp Base pair
SIMD Single instruction multiple data
WFA Wavefront alignment
MIMD Multiple instruction, multiple data
Pthreads POSIX threads
MPI Message passing interface
RHT Regional hash table
DAG Directed acyclic graph
SSD Static sequence distribution
DSD Dynamic sequence distribution
ILB Integrated load balancing
ONT Oxford nanopore technologies
BDGP Berkeley drosophila genome project
GIAB Genome in a bottle
SOTA State-of-the-art
NESD Non-equal sequence distribution strategy

SWG Smith-Waterman-GotohSupplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 025- 06129-w.

Supplementary file 1

Acknowledgements
We would like to thank the National Supercomputer Center in Tianjin for providing computational resources.

Author contributions
Z. X. wrote the code, designed the experiments, and wrote the main manuscript text. Y. C. provided the innovative
concepts and wrote the main manuscript text. C. Y. provided technical guidance and computing resources. T. T. provided
technical guidance. C. P. assisted with the vector-level optimization and tested the corresponding experimental results. Y.
G. assisted with the heterogeneous computing and tested the corresponding experimental results. Y. G. assisted with the
multi-node computing and tested the corresponding experimental results. All authors reviewed the manuscript.

Funding
This work was supported by National Natural Science Foundation of China No. 62102427, the Science and Technology
Innovation Program of Hunan Province No. 2024RC3115 and Innovative Talent Program of National University of Defense
Technology.

Availability of data and materials
ParaHAT is available at https:// github. com/ nudt- bioin fo/ ParaH AT. All datasets used in this paper are publicly available.
The H. Sapiens-real data contains raw sequence data resulting from PacBio SMRT Sequencing for CHM1TERT. The D.
melanogaster-real data comes from a subline of the ISO1 (y; cn, bw, sp) strain of D. melanogaster, in collaboration with
Dr. Casey Bergman at the University of Manchester and Drs. Susan Celniker and Roger Hoskins of the Berkeley Drosophila
Genome Project (BDGP) at Lawrence Berkeley National Laboratory [45]. HG002 comes from the NIST’s Genome in a Bot-
tle (GIAB) project [47]. PacBio CLR dataset is available at https:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ data/
Ashke nazim Trio/ HG002_ NA243 85_ son/ PacBio_ MtSin ai_ NIST/ PacBio_ fasta/. PacBio HiFi dataset is available at https:// ftp-
trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ data/ Ashke nazim Trio/ HG002_ NA243 85_ son/ PacBio_ CCS_ 15kb_ 20kb_
chemi stry2/ reads/. ONT dataset is available at ftp:// ftp- trace. ncbi. nlm. nih. gov/ Refer enceS amples/ giab/ data/ Ashke nazim
Trio/ HG002_ NA243 85_ son/ Ultra long_ Oxfor dNano pore/ guppy- V3.2. 4_ 2020- 01- 22/ HG002_ ONT- UL_ GIAB_ 20200 122.
fastq. gz. Detailed information of the datasets can be found in our supplementary material section DATA AVAILABILITY.

https://doi.org/10.1186/s12859-025-06129-w
https://github.com/nudt-bioinfo/ParaHAT
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_fasta/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_MtSinai_NIST/PacBio_fasta/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/reads/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/reads/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb_20kb_chemistry2/reads/
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/guppy-V3.2.4_2020-01-22/HG002_ONT-UL_GIAB_20200122.fastq.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/guppy-V3.2.4_2020-01-22/HG002_ONT-UL_GIAB_20200122.fastq.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG002_NA24385_son/Ultralong_OxfordNanopore/guppy-V3.2.4_2020-01-22/HG002_ONT-UL_GIAB_20200122.fastq.gz

Page 30 of 31Xia et al. BMC Bioinformatics (2025) 26:118

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no Conflict of interest.

Received: 30 October 2024 Accepted: 1 April 2025

References
 1. Feng Z, Qiu S, Wang L, Luo Q. Accelerating long read alignment on three processors. In: Proceedings of the 48th

International Conference on Parallel Processing, (2019) pp. 1–10.
 2. Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, Rusch DB, Delcher AL, Pop M, Wang W, Fraser CM, et al. The

dog genome: survey sequencing and comparative analysis. Science. 2003;301(5641):1898–903.
 3. Altschul SF, Erickson BW. Optimal sequence alignment using affine gap costs. Bull Math Biol. 1986;48:603–16.
 4. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics.

2009;25(14):1754–60.
 5. McPherson JD. Next-generation gap. Nat Methods. 2009;6(Suppl 11):2–5.
 6. Xia Z, Cui Y, Zhang A, Zhang P, Long S, Tang T, Peng L, Huang C, Yang C, Liao X. Large-scale parallel alignment

algorithm for SMRT reads. In: International conference on algorithms and architectures for parallel processing, pp.
213–229. Springer (2021)

 7. Xia Z, Cui Y, Zhang A, Tang T, Peng L, Huang C, Yang C, Liao X. A review of parallel implementations for the Smith–
Waterman algorithm. Interdisciplinary Sciences: Computational Life Sciences, pp. 1–14 (2021).

 8. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. Real-time DNA sequenc-
ing from single polymerase molecules. Science. 2009;323(5910):133–8.

 9. Lloyd S, Snell QO. Accelerated large-scale multiple sequence alignment. BMC Bioinf. 2011;12:1–10.
 10. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA. Pacific biosciences sequencing technology for

genotyping and variation discovery in human data. BMC Genom. 2012;13:1–7.
 11. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, et al. Nanopore

sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.
 12. Liu B, Guan D, Teng M, Wang Y. RHAT: fast alignment of noisy long reads with regional hashing. Bioinformatics.

2016;32(11):1625–31.
 13. Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol. 2013;14:1–4.
 14. Feng Z, Luo Q. Accelerating sequence-to-graph alignment on heterogeneous processors. In: Proceedings of the

50th international conference on parallel processing, pp. 1–10 (2021).
 15. Smith TF, Waterman MS, et al. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
 16. Kucherov G. Evolution of biosequence search algorithms: a brief survey. Bioinformatics. 2019;35(19):3547–52.
 17. Pham M, Tu Y, Lv X. Accelerating bwa-mem read mapping on GPUS. In: Proceedings of the 37th international confer-

ence on supercomputing, pp. 155–166 (2023).
 18. Intel R. C++ Compiler 18.0 developer guide and reference (2019).
 19. Daily J. Parasail: Simd c library for global, semi-global, and local pairwise sequence alignments. BMC Bioinf.

2016;17:1–11.
 20. Rahn R, Budach S, Costanza P, Ehrhardt M, Hancox J, Reinert K. Generic accelerated sequence alignment in Seqan

using vectorization and multi-threading. Bioinformatics. 2018;34(20):3437–45.
 21. Yan Y, Chaturvedi N, Appuswamy R. Accel-align: a fast sequence mapper and aligner based on the seed-embed-

extend method. BMC Bioinf. 2021;22(1):257.
 22. Marco-Sola S, Moure JC, Moreto M, Espinosa A. Fast gap-affine pairwise alignment using the wavefront algorithm.

Bioinformatics. 2021;37(4):456–63.
 23. Marco-Sola S, Eizenga JM, Guarracino A, Paten B, Garrison E, Moreto M. Optimal gap-affine alignment in o (s) space.

Bioinformatics. 2023;39(2):074.
 24. Guo Y, Tang T, Wang Q, Yang C, Xia Z, Peng C, Guo Y, Cui Y. WFA-vect: a simd wavefront algorithm for gap-affine

pairwise alignment. In: 2024 IEEE International conference on bioinformatics and biomedicine (BIBM), pp. 528–533.
IEEE (2024).

 25. Barney B Posix threads programming. National laboratory. Disponível em:¡ https://computing llnl. gov/tutorials/
pthreads/¿ Acesso em 5, pp. 46 (2009).

 26. Dagum L, Menon R. Openmp: an industry standard API for shared-memory programming. IEEE Comput Sci Eng.
1998;5(1):46–55.

 27. Estrada ZJ, Stephens Z, Pham C, Kalbarczyk Z, Iyer RK. A performance evaluation of sequence alignment software in
virtualized environments. In: 2014 14th IEEE/ACM International symposium on cluster, cloud and grid computing,
pp. 730–737. IEEE (2014).

 28. Liu Y, Schmidt B, Maskell DL. Cushaw: a Cuda compatible short read aligner to large genomes based on the
burrows-wheeler transform. Bioinformatics. 2012;28(14):1830–7.

 29. Vouzis PD, Sahinidis NV. GPU-blast: using graphics processors to accelerate protein sequence alignment. Bioinfor-
matics. 2011;27(2):182–8.

Page 31 of 31Xia et al. BMC Bioinformatics (2025) 26:118

 30. Wilton R, Budavari T, Langmead B, Wheelan SJ, Salzberg SL, Szalay AS. Arioc: high-throughput read alignment with
GPU-accelerated exploration of the seed-and-extend search space. PeerJ. 2015;3:808.

 31. Aguado-Puig Q, Doblas M, Matzoros C, Espinosa A, Moure JC, Marco-Sola S, Moreto M. WFA-GPU: gap-affine pair-
wise read-alignment using GPUS. Bioinformatics. 2023;39(12):701.

 32. Walker DW, Dongarra JJ. MPI: a standard message passing interface. Supercomputer. 1996;12:56–68.
 33. González-Domínguez J, Liu Y, Touriño J, Schmidt B. Msaprobs-MPI: parallel multiple sequence aligner for distributed-

memory systems. Bioinformatics. 2016;32(24):3826–8.
 34. Darling A, Carey L, Feng W-c. The design, implementation, and evaluation of mpiblast. In: Proceedings of Cluster-

World 2003. pp. 13–15 (2003).
 35. Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982;162(3):705–8.
 36. Rognes T, Seeberg E. Six-fold speed-up of smith-waterman sequence database searches using parallel processing

on common microprocessors. Bioinformatics. 2000;16(8):699–706.
 37. Wozniak A. Using video-oriented instructions to speed up sequence comparison. Bioinformatics. 1997;13(2):145–50.
 38. Alachiotis N, Berger SA, Stamatakis A. Coupling SIMD and SIMT architectures to boost performance of a phylogeny-

aware alignment kernel. BMC Bioinf. 2012;13:1–12.
 39. Rognes T. Faster smith-waterman database searches with inter-sequence simd parallelisation. BMC Bioinf.

2011;12:1–11.
 40. Stone JE, Gohara D, Shi G. Opencl: a parallel programming standard for heterogeneous computing systems. Com-

put Sci Eng. 2010;12(3):66.
 41. Mittal S, Vetter JS. A survey of CPU-GPU heterogeneous computing techniques. ACM Comput Surv (CSUR).

2015;47(4):1–35.
 42. Khokhar AA, Prasanna VK, Shaaban ME, Wang C-L. Heterogeneous computing: challenges and opportunities. Com-

puter. 1993;26(6):18–27.
 43. Peters D, Luo X, Qiu K, Liang P. Speeding up large-scale next generation sequencing data analysis with PBWA. J Appl

Bioinf Computat Biol. 2012;1(1):1–6.
 44. Hoefler T, Lumsdaine A, Rehm W. Implementation and performance analysis of non-blocking collective operations

for MPI. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing. pp. 1–10 (2007).
 45. Kim KE, Peluso P, Babayan P, Yeadon PJ, Yu C, Fisher WW, Chin C-S, Rapicavoli NA, Rank DR, Li J. Long-read, whole-

genome shotgun sequence data for five model organisms. Sci Data. 2014;1(1):1–10.
 46. Ono Y, Asai K, Hamada M. PBSIM: Pacbio reads simulator-toward accurate genome assembly. Bioinformatics.

2013;29(1):119–21.
 47. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M. Integrating human sequence data sets

provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32(3):246–51.
 48. Bondi AB Characteristics of scalability and their impact on performance. In: Proceedings of the 2nd international

workshop on software and performance. pp. 195–203 (2000).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Fast noisy long read alignment with multi-level parallelism
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Related work

	Methods
	Overview
	Vector-level parallel alignment
	Base-level alignment with affine-gap penalties
	SSE vectorization

	Heterogeneous parallel alignment
	CPU + accelerators framework
	Non-equal sequence distribution
	Kernel vectorization

	Process-Level parallel alignment
	Static sequence distribution across nodes
	Integrated load balancing strategy

	Results
	Experimental setup
	Hardware configurations
	Datasets

	Base-level alignment wall time performance evaluation
	Heterogeneous Parallel Performance
	Non-equal Sequence Distribution Strategies Comparison
	CPU + accelerators framework acceleration

	Single node benchmark
	Effect of integrated load balancing strategy
	Impact of value
	Impact of bs value
	Multi-node workload comparison

	Multi-node parallel performance
	Speedup and efficiency
	Scalability
	Multi-node runtime distribution

	Discussion
	Conclusions
	Acknowledgements
	References

