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Abstract 

Protein-protein interactions (PPIs) refer to the phenomenon of protein binding 
through various types of bonds to execute biological functions. These interactions are 
critical for understanding biological mechanisms and drug research. Among these, 
the protein binding interface is a critical region involved in protein-protein interac-
tions, particularly the hotspot residues on it that play a key role in protein interac-
tions. Current deep learning methods trained on large-scale data can characterize 
proteins to a certain extent, but they often struggle to adequately capture informa-
tion about protein binding interfaces. To address this limitation, we propose the PPI-
Graphomer module, which integrates pretrained features from large-scale language 
models and inverse folding models. This approach enhances the characterization 
of protein binding interfaces by defining edge relationships and interface masks 
on the basis of molecular interaction information. Our model outperforms existing 
methods across multiple benchmark datasets and demonstrates strong generalization 
capabilities.
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Introduction
Proteins are the primary executors of biological activities, and their functions are often 
exerted through interactions [1, 2]. Therefore, elucidating the mechanisms of protein-
protein interactions is pivotal to protein studies. Binding affinity serves as a critical 
indicator of these interactions [3], as its magnitude signifies the potential for proteins 
to cooperate effectively. Understanding binding affinity also facilitates the identifica-
tion of promising candidates in drug and inhibitor design [4–6], thereby enabling high-
throughput screening and design processes.

The quantification of protein affinity is typically expressed via the equilibrium dissoci-
ation constant (Kd), which represents the ratio of the concentrations of dissociated and 
bound molecular states at equilibrium. A lower Kd value indicates tighter binding and 
stronger affinity. Due to the time-consuming nature and high material cost associated 
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with experimental determination of affinity [7], the accurate prediction of protein-pro-
tein affinity through computational methods is highly important. Among these meth-
ods, molecular dynamics simulations require substantial computational resources [8, 9] 
and are often too time-intensive for large-scale screening. Alternatively, empirical func-
tions offer faster evaluations of affinity [10–12], as seen with knowledge-based statisti-
cal potential tools like DFIRE [13] and physics-based energy functions such as FoldX 
[14], or their combinations like RosettaDock [15]. However, these empirical functions 
are often constrained by the limitations of specific scenarios and are unable to update 
their discriminative capabilities based on data amplification. In contrast, machine learn-
ing and deep learning methods automatically extract more complex latent features 
through learning processes. Their performance can gradually improve as the scale of 
data expands, enabling more accurate predictions. Consequently, these approaches are 
receiving increasing attention. The application of machine learning and deep learning 
methodologies in the biological sciences has increasingly gained traction and achieved 
significant breakthroughs. Notable examples include the use of AlphaFold2 for precise 
protein structure prediction [16] and the application of RFdiffusion for de novo pro-
tein structure design [17]. These advances suggest that leveraging deep learning for the 
representation of proteins or protein interactions is feasible, thus heralding potential 
advancements for various downstream tasks in the protein research. Currently, several 
algorithms based on machine learning and deep learning have emerged in the domain 
of protein affinity prediction. The prediction of protein affinity via machine learning and 
deep learning methods can be categorized based on data sources into sequence-based 
and structure-based approaches [18]. Sequence-based methods often derive features 
from statistical analyses of amino acid frequency, conservation, and physicochemical 
properties within the sequence [19]. For instance, ISLAND [20] employs BLOSUM-
based feature extraction kernels to capture sequence information such as optimal 
alignments, local alignments, and mismatches. Inspired by the remarkable capabilities 
of AlphaFold, some studies have harnessed structure predictions with AlphaFold2 to 
derive indicators such as interface predicted aligned error (iPAE) to represent affinity. 
Sequence-based methods generally provide more abundant data and are less constrained 
in application scenarios. However, they yield less detailed information compared to 
structure-based approaches and do not capture binding sites within complexes, thus 
rendering structure-based approaches as the prevailing methodology [21, 22].

For example, PRODIGY [23] extracts structural information through buried surface 
area and non-interacting surface (NIS) features, while CP-PIE [24] calculates overlap 
and solvent-accessible surface area as structural features. On the other hand, PPI-Affin-
ity [25] synthesizes a structural feature set exceeding 20000 dimensions using a variety 
of feature extraction tools. These tasks frequently employ Support Vector Machines 
(SVM) as the regression model, as simpler models often perform better given the limited 
data volume. Consequently, advancements in these approach have primarily focused on 
innovations in feature extraction methods.

The efficacy of feature extraction is a pivotal determinant of the ultimate perfor-
mance of predictive models. Due to the limited availability of protein-protein affinity 
data, it is generally challenging to derive features with high generalization capability. 
Pretrained models serve as powerful instruments for feature extraction [26]. Through 
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self-supervised training on large-scale datasets, these models can learn generalized pat-
terns or regularities of proteins, thereby effectively mitigating the risk of overfitting in 
downstream tasks. In the field of protein research, several pretrained models, such as 
ESM2, ProtBert, and ESM-IF1, are available for this purpose. ESM2, developed by Meta, 
leverages a transformer architecture [27] and is pretrained on over 600 million protein 
sequences. This model effectively captures protein sequence information by construct-
ing a protein language model [28] through a BERT-like [29] training approach, and it 
has demonstrated exceptional performance across various downstream tasks [30–32]. 
Additionally, ESM-IF1 use a GVP-GNN architecture and is pretrained on over 12 mil-
lion AlphaFold2-predicted structural datasets, along with 16000 real data entries. This 
integration allows ESM-IF1 to achieve a sequence recovery rate of up to 51%, indicating 
a notably competitive outcome.

However, existing pre-trained models are inadequate for effectively capturing interac-
tion information between complexes. Protein-protein interactions are often influenced 
by a few critical hotspot residues [33, 34], whereas current pre-trained models are pre-
dominantly trained on monomers, lacking insights into interaction interface informa-
tion. Consequently, in this study, we introduce a protein-protein affinity prediction tool 
based on the PPI-Graphormer module. This approach employs ESM2 and ESM-IF1 to 
extract more generalizable sequence and structural features. Building upon these pre-
trained features, we examine intermolecular interaction forces to introduce edge rela-
tionships between interface amino acids and construct the Graphomer module, a graph 
transformer, to concurrently process sequence and graph information. This methodol-
ogy enables the capture of potential interactions between complexes, facilitating precise 
affinity prediction.

Method
The primary network architecture utilized in this study is depicted in Fig. 1A, with the 
input and output for predictions defined in Eq. (1). This approach involves leveraging 
sequence and structural information extracted from pretrained models, combined with 
specific interface information, to predict affinity through deep learning algorithms. 
Sequence and structural features are extracted using ESM2 and ESM-IF1, respectively. 
For multi-chain complexes, a linker consisting of 25 glycine residues is employed to con-
catenate them into a single chain. The resulting feature representations are fed into the 
PPI-Graphomer layer, which is a biased transformer self-attention layer. The bias terms 
in this layer are derived from three types of encodings based on the protein interaction 
interface: amino acid pair type encoding, interaction force encoding, and interface mask-
ing. The method of introducing interaction information through bias terms is inspired 
by the Graphomer model [35], thus the PPI-Graphomer architecture can be viewed as a 
graph transformer network that integrates sequence and structural information.

Within the PPI-Graphomer, the interaction information of critical residues at the 
interface is effectively captured, leading to the derivation of interface representations. 
The original sequence and structural representations are then concatenated with the 
interface representation using a method analogous to skip connections [36], resulting in 
the final integrated feature (Eq. 1). A Multilayer Perceptron (MLP) is subsequently used 
to perform regression prediction of the affinity value. The loss is computed against the 
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affinity labels (Eq. 2), and gradient backpropagation is executed. A detailed description 
of each component of the network will follow.

Sequence and structure representation

Protein features can generally be extracted from either sequence information or struc-
tural data. The amino acid sequence, as the primary structure of proteins, contains all 
the information necessary to form complex three-dimensional structures, which in turn 
dictate protein interactions and functions. Amino acid sequences are often described 
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Fig. 1 The framework for protein-protein affinity prediction using pre-trained models and the 
PPI-Graphomer module. A The workflow of this study involves: utilizing ESM2 to extract sequence 
representations of protein complexes and ESM-IF1 to extract structural representations, which are 
subsequently concatenated. The concatenated representations are then processed through the 
PPI-Graphomer module to obtain interface representations. These interface representations are further 
concatenated with the original features. Ultimately, a MLP is employed to predict affinity values quantitatively. 
B The architecture of PPI-Graphomer incorporates bias terms based on three different encodings into the 
attention matrix, which are then multiplied by distance-based weight coefficients. C Three encodings based 
on amino acid structural information are utilized: encoding of amino acid pair types, encoding based on 
intermolecular interaction forces, and a masking matrix based on interface information
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as the language of proteins, because they share many characteristics with human lan-
guages. For instance, both have hierarchical structures [37], and protein folding rules 
bear some resemblance to grammatical syntax [38]. Consequently, applying natural lan-
guage processing (NLP) techniques to protein sequences is a promising endeavor.

In this study, we utilize the ESM2 model to process protein sequences. By employ-
ing masked language modeling from NLP, ESM2 can capture evolutionary information 
and semantic features within protein sequences. We use only the output from the final 
encoder layer as the sequence represetation, without further training the network layers. 
Given the potential presence of chain breaks in the dataset due to missing amino acids, 
which can affect contextual understanding, we employ glycine residues to link broken 
chains and subsequently remove features at these positions. To ensure the correctness of 
multi-chain semantic information, we adopt a method similar to the ESMFold complex 
prediction approach, using 25 glycine residues as a linker to connect all chains into a 
single sequence. This method ensures consistency in the model and simplifies the pro-
cessing flow. Post-feature extraction with ESM2, features at these linker positions are 
removed.

As complex macromolecular structures, proteins encode rich interaction informa-
tion in the spatial arrangement of their amino acids. Graph neural networks (GNNs) are 
capable of capturing such structural information, yet they must address issues of rota-
tional and translational invariance. GVP-GNN achieves precise capture of geometric 
information through geometric vector perceptrons. Based on GVP-GNN, ESM-IF1 con-
structs a structure-to-sequence predictor and pre-trained using span masking to extract 
structural information. We utilize the output from its encoder as the structural repre-
sentation for downstream tasks.

To ensure alignment of features extracted by different tools, we exclude non-standard 
amino acids and those lacking C, N, and Ca backbone atoms, since ESM2 struggles with 
non-standard residues and ESM-IF1 requires these three backbone atoms for feature 
extraction. Ultimately, the sequence and structural representations are concatenated as 
input for subsequent processes.

PPI‑Graphomer architecture

In protein-protein interactions, certain hotspot residues at the interface play a pivotal 
role in maintaining the tight binding between two proteins. Therefore, in the context of 
affinity prediction, it is crucial to focus on the amino acid characteristics at these inter-
faces. Existing pretrained models typically treat multi-chain outputs as single-chain 
inputs, encoding only general interaction information and lack the ability to adequately 
capture inter-chain interface details. Thus, we introduce the PPI-Graphormer architec-
ture to specifically learn the interactions between different chains. The network archi-
tecture is based on Graphormer, a model developed by Microsoft that integrates graph 
structures into the transformer model. It primarily employs three types of encodings to 
incorporate edge information of the graph network.

We conceptualize amino acid interactions as edge information within a graph net-
work. Based on this conceptualization, we design two encoding schemes derived from 
structure information: the b

(

vi, vj
)

 based on amino acid types and the c
(

vi, vj
)

 on inter-
molecular interaction forces. Additionally, the distance between amino acid pairs is used 
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as a weighting factor(Dij ). The product of these factors is incorporated as a bias term in 
the attention matrix of the self-attention layer, thereby enhancing the model’s focus on 
interface information (Eq. 3).

Considering that specific amino acids engage in characteristic interactions-such as 
hydrophobic amino acids aggregating to form a hydrophobic core, or cysteines form-
ing disulfide bonds-we encode all types of amino acid pairs using one-hot or embedding 
representations to capture these interactions. The encoding of amino acid pair types 
is inspired by the spatial encoding used in Graphormer, originally mapping an integer, 
which indicates the shortest path length, to a high-dimensional embedding. While this 
integer type might reflect interaction strength, the embedding approach treats it pre-
dominantly as a categorical variable. Therefore, we employ amino acid pair types directly 
as a measure of this categorical variable. Different amino acid pairs may imply vary-
ing interaction intensities, which also serves as an approximate estimate of interaction 
strength.

We constructed a matrix with dimensions corresponding to the amino acid length 
squared, where each element represents a type of amino acid pair. Without consider-
ing the directionality of amino acid pairs, there are a total of 210 types of amino acid 
pairs AAtype

(

vi, vj
)

 . A learnable embedding method is then used to map this matrix into 
the dimensional space corresponding to the number of attention heads, facilitating the 
learning of high-dimensional features of different amino acid pairs and enabling direct 
addition to the attention matrix (Eq. 4).

The interaction force encoding is derived from edge encoding, where it learns weights 
for edge features along the shortest connecting path to determine the interaction 
strength between nodes. This process involves a detailed consideration of all informa-
tion along the shortest path to further quantify interactions. Similarly, we meticulously 
evaluate potential interactions within amino acid pairs, sourced from various intermo-
lecular interaction forces. Beyond amino acid types, the positional relationships between 
amino acids also influence potential intermolecular interactions. Therefore, we incor-
porate amino acid distances to tally the number of different intermolecular interaction 
forces, abstracting these as edge information for the amino acids. To simplify the data 
processing, we focus only on possible hydrogen bonds, halogen bonds, disulfide bonds, 
salt bridges, and π-π stacking.

By considering different intermolecular interaction forces, we construct a matrix with 
dimensions corresponding to amino acid length by amino acid length by the number 
of interaction force types xnij . Each element in this matrix signifies the number of cor-
responding atomic interaction force types between that amino acid pair. Parameterizing 
intermolecular interactions solely through numerical quantities is relatively simplistic. 
In the future, we plan to integrate more bioinformatics tools to explore and assign dis-
tinct weights to different intermolecular interaction forces, which is an area we aim to 
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further investigate. Subsequently, a linear layer is employed to learn weights we for dif-
ferent atomic interaction force types, mapping them into the dimensional space corre-
sponding to the number of attention heads, facilitating addition to the attention matrix 
(Eq. 5).

The resulting two encoding matrices serve as bias terms in the attention matrix, rep-
resenting enhanced focus on specific amino acids. To ensure that this additional focus 
has a realistic significance, we multiply the bias term by a distance coefficient. This dis-
tance coefficient is based on a threshold of 7 Å, where the weight decreases as the dis-
tance approaches 7 Å and increases as the distance approaches 0, suggesting a stronger 
potential interaction. Interactions beyond 7 Å are directly excluded by setting the atten-
tion to zero through a mask matrix. Additionally, to consider only interface interactions 
between different chains, all amino acids within the same chain are masked. Thus, only 
attention between amino acids from different chains within the 7 Å range is ultimately 
considered (Eq. 6).

By integrating the aforementioned two encoding and employing masking on non-
interface amino acids, we embed structural information into the sequence representa-
tion. This approach underscores the critical role of hot spot residues at the interface in 
protein-protein interactions, resulting in an interface representation that is utilized for 
downstream tasks.

Representation concat and affinity predict

The sequence and structural representations extracted via ESM2 and ESM-IF1 are pro-
cessed through the PPI-Graphomer to be transformed into interface representations. 
However, this representation alone cannot serve as the sole source of information for 
affinity prediction, as the computation of interface information results in the loss of the 
majority of the original sequence or structural data. Since the dimension of the interface 
representation matches that of the original input, we employ an approach akin to skip 
connections by directly concatenating the input and output of the PPI-Graphomer mod-
ule. This enables the simultaneous consideration of both the complete and interfaced 
information. Subsequently, a MLP is applied for affinity prediction.

The average feature across all amino acids is considered as the protein feature. Subse-
quently, a MLP is employed to learn from this feature, mapping it to a one-dimensional 
representation. The loss is computed relative to the affinity label, followed by gradient 
backpropagation.
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Experiment
Dataset

The dataset utilized in this study primarily originates from PDBbind [39], a compre-
hensive database of protein complexes that includes PPI structures and experimentally 
determined affinities. The most recent version released in 2020 contains 2,852 samples, 
each consisting of structural coordinate information recorded in PDB files and experi-
mentally measured affinity values, expressed as Kd, Ki, or IC50. For ease of comparison, 
these affinity labels have been uniformly converted to Gibbs free energy. To facilitate 
comparative analysis, the test set adopted in this study aligns with that used in reference 
[25], derived from both the “structure-based benchmark database for protein-protein 
binding affinity” [40](Test set 1) and a benchmark set extracted from PDBbind(Test set 
2). To further evaluate the performance, we also conducted tests on the new version of 
the test set 1, namely “Affinity Benchmark Version 2” [41]. The test set 1 comprises 79 
samples, and the test set 2 includes 90 samples; after removing samples with residues 
sequence exceeding a length of 2000, 75 and 87 samples remain respectively. Since the 
reduction in the number of samples is minimal, we believe that removing these sam-
ples will not significantly affect the final results. Additionally, Complexes with residues 
sequence exceeding a length of 2000 often contain multiple subunits that may not play a 
critical role in interface binding in all analyses. To facilitate a unified comparison of the 
distribution characteristics across different datasets, we constructed density plots Fig. 2. 
It can be observed that they exhibit similar peak values and some overlapping regions, 
indicating that their distributions may be similar. The frequency histograms for each 
dataset can be found in the supplementary materials.

The utilization of sequence models necessitates the removal of excessively long 
sequences from the dataset to prevent a significant increase in model complexity; thus, 

Fig. 2 The density plots of the � G for the training set and two test sets. The x-axis represents the label 
values, while the y-axis denotes the probability distribution of the labels. The choice of a density plot over a 
histogram is attributed to the former’s ability to provide a smoother distribution estimation and facilitate the 
observation of distributions from datasets of varying sizes within the same figure
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residues sequence exceeding a length of 2000 were excluded. Additionally, to mitigate 
the risk of data leakage, deduplication of the existing data was conducted. This dedupli-
cation process was implemented in two parts: first, targeting the aforementioned test set, 
and second, the dataset intended for cross-validation. To prevent overlap between the 
training and test sets, BLAST [42] was employed to remove samples from the training 
set that exhibited high similarity to those in the test set. The criteria for deduplication 
required the similarity to exceed 0.65 and the overlapping sequence length to consti-
tute more than 80% of the total sequence length. Given that complexes may exhibit high 
similarity on one side and not on the other, leading to small length ratios but high simi-
larity in repeated sequences, we considered such complexes to be valid distinct samples. 
Therefore, by setting a length ratio threshold, these samples were retained in the training 
set, resulting in a final training set comprising 2376 samples. Furthermore, to accurately 
evaluate model performance, a dataset for 5-fold cross-validation was constructed, 
derived from the collective pool of all samples. Utilizing CD-HIT [43] for deduplication, 
with a similarity threshold set at 0.75, the 5-fold cross-validation dataset achieved a size 
of 2085 samples.

Pre‑train model

In this study, the ESM2 model [44] was employed to extract sequence features, while 
ESM-IF1 [45] was used to extract structural features. Biopython was utilized to analyze 
intermolecular interaction forces. ESM2 comprises multiple pretrained weights of vary-
ing scales, with encoder layer counts from 6 to 48, covering parameter sizes from 8 M to 
15B, and producing embeddings with dimensions from 320 to 5120. To balance training 
efficiency and performance, we selected the model with 650 M parameters, using the 
output from the 33rd encoder layer as the final feature representation, yielding a fea-
ture dimension of 1280. To reduce the parameter count of model and prevent overfit-
ting, a linear layer was employed to map the 1280-dimensional features to 64 dimensions 
before concatenating them with other features.

In ESM-IF1, the encoder output is utilized as the feature representation with a dimen-
sion of 512. Similar to ESM2, a linear layer mapped this to a lower dimension. Given the 
lower output dimensionality of ESM-IF1, it was mapped to 32 dimensions. Then, the 
outputs from these two pretrained models were standardized to ensure comparability, 
enhancing model stability and training speed.

Model details

Based on the outputs of the pretrained models and the PPI-Graphormer architecture, 
we constructed a two-layer PPI-Graphormer module that incorporates attention biases. 
This module features an embedding dimension of 96, with 8 attention heads and Q, K, V 
(query, key, value) dimension of 32. The Adam optimizer was employed, with the learn-
ing rate initialized at 8e-4 and scheduled to decay by a factor of 0.95 each epoch. The 
model was trained for a total of 20 epochs on a single A40 GPU, and any GPU with 4GB 
of memory can be used for inference.
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Evaluation metric

To evaluate the model’s performance, we employed Mean Absolute Error (MAE) and the 
Pearson Correlation Coefficient (PCC) as primary metrics. These metrics are defined as 
follows: MAE quantifies the average magnitude of errors between predicted values and 
actual binding affinities across N samples, as calculated by the following formula:

The PCC measures the linear correlation between predicted values and actual binding 
affinities, providing insight into the accuracy and directionality of predictions. The cal-
culation method is given by the following formula:

To facilitate comparison with previous studies and because the Kd values provided in 
the dataset exhibit an exponential relationship that complicates loss calculation, we con-
vert the equilibrium dissociation constants into Gibbs free energy using the formula. In 
this conversion, R denotes the universal gas constant (R = 8.314 J ·mol−1 · K−1 ), and T is 
set to room temperature at 298 K ( 25 ◦C).

Result
5‑fold evaluation

To comprehensively evaluate the model’s performance, we conducted cross-validation 
on the previously mentioned dataset, which consists of 2085 samples and was divided 
using a 5-fold partitioning scheme. This approach segments the dataset into five equal 
parts, consecutively using one part as the validation set while the remaining portions 
are utilized for training. The process is repeated five times, ensuring each subset is used 
once for validation. During each training iteration, the PCC and MAE on the validation 
set were recorded. The average of these five iterations was calculated to yield the final 
result. Our results from the 5-fold cross-validation were a PCC of 0.581 and a MAE of 
1.63.

Comparison with other methods on the benchmark set

To rigorously evaluate the performance of our model, we conducted comparative vali-
dation against other methods on the two aforementioned test sets. The results of this 
comparison are presented in Table 1 and Fig. 3. In the comparative analysis, the highest-
performing metrics are highlighted in bold. The first test set comprises 75 samples with 
binding energy values ranging from 4.3 to 18.6. On this dataset, our model achieved a 
performance of PCC = 0.641 and MAE = 1.64, ranking second only to PRODIGY. Mean-
while, in [46], additional methods’ performances on this dataset have been summarized. 

(7)MAE =

∑n
i=1

∣

∣yi − xi
∣

∣

n

(8)PCC =

∑n
i=1

(

xi − X̄
)(

yi − Ȳ
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We calculated the PCC between the predicted results of these methods and the labels. 
Since different methods discard a small number of samples during data processing, we 
constructed their subsets for comparison. The results of this comparison are presented 
in Supplementary Table S1. We further validated our approach on the updated version 
of this dataset, which contains 188 samples after deduplication. The test results on these 
samples yielded a PCC of 0.626 and a MAE of 1.60. These results indicate that the per-
formance did not exhibit a significant decline on a larger sample size. 

We further validated our model on a larger test set, consisting of 87 samples intro-
duced by the PPI-Affinity, with binding energy ranging from [4.03, 18.0]. Compared to 
the first dataset, this set exhibits a broader distribution of binding energies, which poses 

Fig. 3 The Scatter plot of predicted vs experimental binding affinities. The model performance was validated 
on two separate test datasets. The first test set comprised 75 samples, yielding a PCC of 0.641 and a MAE of 
1.64. The second test set included 87 samples, achieving a PCC of 0.625 and an MAE of 1.51

Table 1 Comparison of model performances on the 2 test set and their combination

 1The dataset derived from both the “structure-based benchmark database for protein-protein binding affinity” [11], 
comprises 75 samples 

 2The dataset extracted from PDBbind, comprises 87 samples 

 3The combined dataset from the aforementioned two datasets contains 162 samples 

 Method Test set 11 Test set 22 Combined set3 

PCC↑ MAE↓ PCC↑ MAE↓ PCC↑ MAE↓ 

PRODIGY 0.735 1.43 0.306 2.51 0.446 2.00

DFIRE 0.602 4.64 0.095 25.37 0.032 15.48

CP_PIE  − 0.517 0.80 0.095 7.59 0.180 8.18

ISLAND 0.378 2.10 0.276 2.18 0.338 2.13

PPI-Affinity 0.616 1.82 0.495 1.80 0.559 1.80

ours 0.641 1.64 0.625 1.51 0.633 1.57
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challenges for accurate prediction by many methods. Our model, however, attained a 
PCC of 0.625 and a MAE of 1.51 on this test set, achieving the best performance. When 
evaluated on the combined dataset of both test sets, our model achieved a PCC of 0.633 
and a MAE of 1.57, also securing the top ranking.

To further verify the superiority of our model over traditional methods, we compared 
it against several empirical function-based methods on the test sets. The results are pre-
sented in Table 2. Bold values denote the best performance across methods. Since the 
outputs of these functions may not strictly conform to the definition of free energy, only 
the PCC was calculated, and MAE was omitted. We utilized Rosetta and FoldX for pre-
dictions. Due to their InterfaceAnalyzer and AnalyseComplex capabilities being limited 
to binary complexes, we selected subsets containing only binary complexes from the test 
sets for evaluation. The sizes of the two subsets were 23 and 78, respectively. 

On the binary complex subsets, the PCC achieved by our model on the two test sets 
were 0.708 and 0.633, respectively. In contrast, the results from Rosetta’s InterfaceAna-
lyzer were 0.482 and 0.054, while FoldX yielded scores of − 0.076 and − 0.159. Addition-
ally, we employed a lightweight AlphaFold variant, ColabFold, to assess the two subsets. 
By extracting sequences from the PDB files, predicting structures, and using the iPAE as 
an affinity estimate, the obtained results were 0.588 and 0.156, respectively.

Ablation experiment

To validate the effectiveness of the model framework, we conducted ablation studies. 
The primary aim of this investigation was to analyze the significance of various features 
within the model and assess the impact of the PPI-Graphormer module on overall model 
performance, thereby elucidating their contributions to predicting protein-protein bind-
ing affinity. Our ablation experiments included the following components: removal of 

Table 2 Performance comparison with other methods on binary complex dataset

 1The dG_separated score generated by RosettaFold’s InterfaceAnalyzer to indicate binding affinity. Prior to this, the PDB 
files were processed using relax and jd_score2 

 2The Interaction Energy score generated by FoldX’s AnalyseComplex module to indicate binding affinity 

 3The iPAE yielded by ColabFold to indicate binding affinity 

Method Test set 1 Test set 2
PCC↑ PCC↑ 

 Rosetta-InterfaceAnalyze1 0.482 0.054

 Foldx-AnalyseComplex2 0.076  − 0.159 

 ColabFold-iPAE3 0.588 0.156

ours 0.708 0.633

Table 3 The ablation study results obtained by attempting the removal of various components

 Method Test set 1 Test set 2 Combined set

PCC↑ MAE↓ PCC↑ MAE↓ PCC↑ MAE↓

Standard 0.641 1.64 0.625 1.51 0.633 1.57

Without PPI-Graphomer 0.624 1.70 0.586 1.64 0.601 1.71

Without esm2 feature 0.545 1.83 0.521 1.69 0.511 1.91

Without esm-if1 feature 0.608 1.70 0.603 1.63 0.605 1.66
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features extracted by ESM2, removal of features extracted by ESM-IF1, and exclusion 
of the PPI-Graphormer module. To ensure consistency, the same training parameters, 
datasets, and metrics were employed throughout the experiments.

As shown in the ablation study results (Table 3), the sequence features extracted by 
ESM2 play a crucial role, with a significant decline in performance observed when these 
features are removed. In contrast, the structural features extracted by ESM-IF1 offer only 
limited performance improvement. This potential explanation is that ESM2 is trained on 
a larger data scale and possesses higher feature dimensionality, which implicitly encodes 
sufficient structural information. In contrast, ESM-IF1 is trained on a smaller sample 
size and similarly lacks adequate complex data, limiting its ability to supplement the 
patterns of interface interactions. Furthermore, the inclusion of the PPI-Graphormer 
module provides additional performance benefits. By employing a skip connection-
like approach, the PPI-Graphormer module underscores the interaction information of 
interface residues, further enhancing model performance.

Conclusion
Protein-protein affinity prediction holds a crucial position in the study of protein inter-
actions. However, the limited availability of datasets in this domain significantly con-
strains the application of deep learning. As large-scale models continue to advance, the 
underlying principles of protein interactions are expected to be captured through self-
supervised training on extensive datasets, addressing various downstream tasks based 
on protein interactions. In this study, we employed large models, ESM2 and ESM-IF1, 
to extract sequence and structural features, effectively capturing evolutionary-scale 
and spatial information of proteins. To address the inadequate capability of large mod-
els in capturing interface interactions, we proposed the PPI-Graphormer module based 
on chemical bonding. Utilizing a training set derived from PDBbind, our model dem-
onstrated robust generalization performance when compared with other established 
methods.
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