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Abstract 

Background: The field of computational drug design is undergoing rapid advance-
ments, highlighting the need for innovative methods to enhance the efficiency 
and accuracy of calculating ligand-receptor interactions. In this context, we introduce 
the M01 tool, a comprehensive computational package designed to facilitate the gen-
eration and docking of small molecule-peptide hybrids. M01 integrates several estab-
lished tools, such as RDKit and EasyDock, into a user-friendly platform that automates 
the workflow from hybrid generation to docking simulations. This tool is particularly 
beneficial for researchers with limited chemistry expertise, helping them leverage 
advanced computational techniques.

Results: The M01 tool features an intuitive interface for visualizing molecules 
and selecting connection points in generating new ligands. It also offers automated 
receptor preparation using UniProt or PDB IDs and generates default docking con-
figuration files. Furthermore, it includes ligand preparation and docking capabilities 
through EasyDock and calculates molecular descriptors relevant to drug-likeness prop-
erties. Validation studies with peptide-alkoxyamine hybrids demonstrated the tool’s 
effectiveness, generating over 14,000 unique hybrid molecules and showcasing its 
versatility in drug design applications.

Conclusions: The M01 tool represents a significant advancement in computational 
drug design, streamlining the process of creating hybrid molecules and conduct-
ing docking studies. Its ability to automate complex workflows and provide essential 
molecular insights can empower researchers and enhance the development of novel 
therapeutics, ultimately contributing to more efficient drug discovery efforts.
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Introduction
The field of computational drug design is rapidly evolving and plays a crucial role in 
identifying and optimizing potential drug candidates. A significant number of com-
pounds that undergo drug development fail in clinical trials, necessitating structural 
modifications to improve their efficacy, pharmacokinetic properties, and effectiveness 
[1]. Despite extensive efforts and resources spent on the matter, the cost and time 
to introduce novel drug candidates have increased over the last three decades [2]. In 
response to these challenges, hybrid generation is one popular strategy for enhancing 
the pharmacologic properties of drugs. Hybrid compounds consisting of small mol-
ecule and peptide components, also known as peptide–drug conjugates, are attractive 
complex molecules that have emerged as promising candidates in drug design [3–5].

These hybrids may combine the beneficial properties of endogenous peptide ligands 
and small-molecule antagonists targeting the corresponding receptors. Peptides them-
selves play a crucial role in regulating numerous biological processes, including those 
involved in the pathological states of pain [6] and various behavioral processes [6–8], 
and they also exhibit antibiotic properties [9]. The hybridization of molecules can offer 
numerous advantages, such as overcoming drug resistance [10], improving the solubil-
ity of other drugs [11], and modulating multiple targets [12]. Thus, the rational bind-
ing of peptides to small molecules can enhance their properties. Despite these potential 
advantages, small oligopeptides face several intrinsic challenges, such as biodegradation, 
increased clearance, and poor bioavailability [13]. To address these issues, pseudo-pep-
tides have been developed [14, 15]. Strategies for creating pseudo-peptides include sub-
stituting L-amino acids with D-amino acids, modifying amide bonds, and cyclizing the 
peptides [16].

Hybrid molecule generation can benefit from computational drug design meth-
ods, including molecular design methods and docking simulations, which have greatly 
enhanced the efficiency and accuracy of ligand-receptor interaction studies [17]. How-
ever, the selection of the correct number, type, and order of peptides for hybridization 
can be complicated. Additionally, these computational methods often require special-
ized expertise and involve complex procedures, creating barriers for researchers who 
may not have a strong chemistry background. Therefore, the development of integrable, 
automated, and user-friendly software is highly desirable for researchers.

One semi-automated tool for docking small molecules is EasyDock [18], designed by 
Minibaeva and colleagues for customizable docking that incorporates proper ligand 
preparation and optimization for subsequent docking processes. It primarily uses RDKit 
modules for three-dimensional (3D) embedding [19], substituting boron atoms, in case 
found in the ligand structure, with carbons for achieving the possibility of docking cal-
culations through Vina and creating a PDBQT file via the Meeko module [20]. It also 
enables users to protonate ligands with the pkasovler toolkit, which predicts protonation 
state with graph convolutional networks. In addition to EasyDock, there are also other 
necessary modules for docking processes, including PDBFixer for receptor file curation 
and MGLTools [21] for PDBQT file creation. Additionally, there needs to be an option 
for AlphaFold structures because there is no access to all of the 3D macromolecule 
structures through experimental methods. These packages need to be pipe-lined to be 
used effortlessly.
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To address these challenges, we developed the M01 tool, an automated computational 
package designed for generating small molecule-peptide hybrids and docking them into 
a curated protein structure within a comprehensive pipeline. The M01 tool integrates 
several established software packages, including RDKit, EasyDock, PDBFixer, MGL-
Tools, Autodock Vina, and Smina [22–24] into a cohesive platform that streamlines 
the workflow from hybrid generation to docking simulation. This tool is intended for 
researchers with limited expertise in chemistry. Compared to existing tools, the M01 
tool enables the generation of a list of possible hybrids consisting of all possible com-
binations of the input peptides, and complete automation through features like recep-
tor download, preparation, and curation. Receptor curation is managed by the PDBFixer 
package, which scans the protein structure for any missing or non-standard residues and 
atoms, replacing them according to SEQRES records that contain the sequences of the 
reported protein tertiary structures. A default docking configuration is then applied, 
minimizing the need for user interaction and docking expertise.

In addition to the main Jupiter notebook-based tool, we provide a user-friendly web-
based graphical user interface (GUI) for ligand generating and an easy way to perform 
molecular descriptor calculations for pharmacokinetic and drug-likeness properties pre-
dictions, facilitating further analysis and predictions.

The workflow designed in the M01 tool software is illustrated in Scheme 1.

Implementation
Hybrid generation

The hybrid generation method involves the creation of small molecule-peptide hybrids 
using the RDKit module. This library is used for molecular manipulation and for hybrid-
izing small molecules with peptides. The core component of this method is the Ligan-
dBuilder class, which manages the formation of peptide bonds and the removal of the 
hydrogens necessary for this process. A depiction of the graphical online web tool is 
shown in Scheme 2.

• The input_amino_acids function allows users to input sequences of L- and D-amino 
acids, along with other custom molecules in SMILES format, to create diverse 
molecular combinations. L- and D-amino acid sequences are converted into RDKit 
molecule objects using FASTA parsing methods, ensuring compatibility with stere-
oisomeric configurations. The “other molecules” input handles non-standard amino 
acids and bulky protecting groups that are capable of forming peptide bonds. In this 
step, all the unique combinations and permutations of the amino acids are generated 
and connected to the core ligand to ensure a thorough search for the desirable pep-
tide. RDKit’s molecule sanitization and hydrogen addition steps guarantee structural 
validity, enabling robust hybrid ligand generation. A depiction of the Jupiter note-
book is shown in Scheme 3.

• The create_peptide_bond method employs predefined SMARTS reaction pat-
terns to form peptide bonds between two molecular fragments. It specifically 
targets molecules containing carboxylic acid, carbonate, or amine substructures. 
To maximize bond formation success, the method iterates through four poten-
tial reactions, two of which involve hydroxyl groups on the carboxylic terminal. 
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Scheme 1 Workflow of hybrid generation and docking using M01 tool

Scheme 2 A view of the webpage M01 tool
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Each reaction is implemented as a SMARTS-based transformation using RDKit’s 
ChemicalReactions module. Products of successful reactions undergo validation 
and are returned as RDKit molecule objects. If no suitable bond is formed, the 
function provides feedback on the failure. A Summary of SMARTS patterns used 
in peptide bond formation is detailed in Table 1.

• The remove_extra_hydrogens method is designed to fine-tune the hydrogen count 
on nitrogen atoms, particularly in aromatic heterocycles and other complex 
molecular structures. The method manually adjusts the explicit hydrogen count 
to prevent kekulization errors during molecule sanitization. This is crucial for pre-
serving chemical accuracy in nitrogen-containing heterocycles commonly used in 
drug design.

• The generate_ligands method systematically explores peptide-ligand combinations 
by attaching peptide sequences to a specified connection site of a target small 
molecule. The method takes two inputs: the connection_site, which identifies the 
atom index for ligand attachment, and the terminal, which specifies whether the 
attachment occurs at the carboxyl (C) or amino (N) terminus. For carboxyl-ter-
minal attachments, the method directly replaces hydroxyl groups with the input 
molecule. For amino-terminal attachments, it first modifies the ligand by adding a 

Scheme 3 a Input fields for ligand and receptor information in the M01 notebook tool. b Visualization of the 
input molecule for selecting the connection site. c Input fields for specifying the connection site and amino 
acid sequences

Table 1 Summary of SMARTS Patterns and Their Corresponding Chemical Reactions for Peptide 
Bond Formation

Reaction Type Reactant 1 Reactant 2 Product Chemical Reaction

Reaction with OH (1) [C:1](= [O:2])[OH:3] [N:4] [C:1](= [O:2])[N:4] Carboxylic acid 
+ Amine → Amide

Reaction with OH (2) [N:4] [C:1](= [O:2])[OH:3] [C:1](= [O:2])[N:4] Amine + Carboxylic 
acid → Amide

Reaction without OH (1) [N:4] [C:1](= [O:2])[O:3] [C:1](= [O:2])[N:4] Amine + Ester 
→ Amide

Reaction without OH (2) [C:1](= [O:2])[O:3] [N:4] [C:1](= [O:2])[N:4] Ester + Amine 
→ Amide
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cesium atom to enable precise attachment points. The connection sites are deter-
mined using SMARTS queries, ensuring accurate molecular linkage at functional 
groups. Each generated ligand undergoes validation steps, including hydrogen 
removal, handling nitrogen heterocycles, structural sanitization, and conversion 
to canonical SMILES, making them suitable for downstream computational dock-
ing simulations.

Ligand preparation

Ligand preparation is implemented via the EasyDock module, to which ligands can be 
provided as SMILES strings. Then, RDKit’s EmbedMolecule and UFFOptimizeMol-
ecule modules create optimized structures. Protonation is implemented at pH 7.4 or 
any desired pH with the pkasolver module. Although automated protonation applica-
tions are not optimal [25], their use in high-throughput practices is widely accepted [26]. 
Then, the molecule is converted to PDBQT format via the Meeko module and can be 
used for docking simulation.

Target preparation

Either UniProt [27] or PDB IDs [28] can be used as input to prepare a receptor for fur-
ther docking calculations. In the event of receiving a UniProt ID, the program connects 
to the UniProt application programming interface (API) provided by the database to 
query and access its data programmatically. Data retrieved from the API is then parsed 
to search for PDB IDs and chains related to the desired protein. In cases of multiple PDBs 
per entry, the chain with the largest amino acid count and highest resolution is selected. 
After the PDB ID and chain are chosen, the PDB file is downloaded with the Biopython 
module [29], and extra chains are removed from the file. In this step, the centroid of the 
chain is also calculated and added to the PDB file for further docking calculations. The 
PDBFixer module is also integrated with the target preparation module, which is used to 
fix common problems in PDB files, such as missing atoms, missing residues, non-stand-
ard residues, etc. Additionally, all heteroatoms, including water molecules, are removed 
in this step. PDB files with multiple chains are accessible through PDB IDs.

To address the challenge of docking simulations for proteins without experimentally 
determined structures, the M01 tool now incorporates a robust feature for fetching and 
utilizing AlphaFold-predicted structures. This functionality is implemented through 
the AlphaFoldStructureFetcher class, which automates the retrieval of AlphaFold CIF 
files from the AlphaFold Database and converts them into PDB format for use in dock-
ing simulations. Additionally, the tool calculates the centroid of the protein structure 
and appends this information to the PDB file, facilitating grid box placement in dock-
ing workflows. This enhancement significantly expands the tool’s applicability, enabling 
researchers to perform docking studies on proteins with no available experimental struc-
tures while maintaining high-quality input data. The integration of AlphaFold-predicted 
structures is optional, allowing users to choose between experimental and predicted 
structures based on their specific needs.
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In the M01 tool, the MGLtools tool was used to check hydrogens, add Gasteiger 
charges [30] to the structure, and remove non-polar hydrogens by merging them into 
the adjacent carbon atom.

Docking configuration

This tool automatically generates default configuration files for docking, which mini-
mizes the required input files. The latest version of Autodock Vina (1.2.5) and Smina 
(2020.12.10) are used for the docking simulations based on user preferences. The input 
PDBQT files and chain centroid are prepared as described in the previous sections, 
while the protein setup and configuration files still need to be created. The chain cen-
troid serves as the center of the grid box, and a box measuring 126 × 126 × 126 Å is 
selected to encompass the entire chain, allowing for a blind docking process. A high 
exhaustiveness value of 32 is preferred to compensate for the relatively large grid box 
size [22, 23]. A maximum of 10 binding modes per ligand will be generated, and in the 
subsequent analysis, only the mode with the highest binding affinity will be considered.

Molecular descriptor calculation

For each ligand, the M01 tool computes several key descriptors related to drug-likeness 
properties that are crucial for evaluating the drug-likeness and pharmacokinetic behav-
ior of the compound. These descriptors include:

1. Crippen-Wildman Partition Coefficients (logP): This is a measure of the compound’s 
lipophilicity, or hydrophobicity, which reflects its ability to partition between water 
and an organic solvent, typically octanol. LogP is crucial for predicting a compound’s 
membrane permeability and absorption. The calculation is performed using the 
Crippen-Wildman partition model, which is based on experimentally derived coeffi-
cients for each atom type in the molecule. RDKit’s CalcCrippenDescriptors function 
is used to estimate the logP value [31].

2. Hydrogen Bond Donor (HBD) Count: The number of hydrogen bond donors (typi-
cally N–H or O–H groups) in a molecule. Hydrogen bonding is a key interaction 
that influences a compound’s solubility, membrane permeability, and receptor bind-
ing affinity. A high number of HBD groups can limit the absorption and distribution 
of a compound, as they increase polarity and reduce lipophilicity. This is calculated 
by RDKit’s CalcNumLipinskiHBD function [32].

3. Hydrogen Bond Acceptor (HBA) Count: The number of hydrogen bond acceptors 
(typically lone pairs on electronegative atoms such as nitrogen, oxygen, or fluorine) 
in the molecule. Like hydrogen bond donors, hydrogen bond acceptors play a critical 
role in a molecule’s ability to interact with biological targets. This descriptor is calcu-
lated using RDKit’s CalcNumLipinskiHBA function [32].

4. Molecular Weight (MW): The molecular weight of the compound is calculated as the 
sum of the atomic weights of the constituent atoms. Molecular weight is a funda-
mental descriptor for drug-likeness, as it influences various pharmacokinetic proper-
ties such as absorption and clearance. RDKit’s CalcExactMolWt function is used to 
compute this property [32].
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5. Topological Polar Surface Area (TPSA): TPSA is a descriptor that quantifies the sur-
face area of a molecule that is polar. It is an important predictor of drug absorption, 
as compounds with high TPSA tend to have poor membrane permeability and are 
less likely to cross the blood–brain barrier. RDKit’s CalcTPSA function is used to 
compute this descriptor.

6. Quantitative Estimate of Drug-likeness (QED) Score: The QED score is a measure of 
how closely the compound’s physicochemical properties align with those of known 
drugs. It takes into account multiple properties such as LogP, molecular weight, 
hydrogen bond donors/acceptors, and TPSA, providing a numerical estimate of 
drug-likeness. The QED score is calculated using RDKit’s QED.qed function, where 
higher values indicate more drug-like compounds [33].

Once the descriptors are computed, they are stored and processed in a structured for-
mat, allowing for easy analysis and visualization. These data are then accessible via our 
drug-likeness_assessment notebook, a tool designed to further analyze and visualize the 
calculated properties. This notebook provides users with the ability to explore the rela-
tionships between the descriptors and assess the potential drug-likeness of the ligands in 
a comprehensive and interactive manner. The drug-likeness_assessment notebook facili-
tates the identification of promising compounds based on their drug-likeness properties, 
aiding in the selection of ligands for further experimental or computational validation.

Results and discussion
In this section, we evaluate the tool’s performance by regenerating a set of previously 
generated ligands and checking the validity, diversity, and drug-likeness properties of the 
generated molecules. In this article, we refer to the small-molecule substructure of the 
hybrid as the “core ligand” and to the amino acids and/or other hybridizing molecules as 
“hybridants.”

Performance

To confirm the accurate performance of the M01 tool software in generating hybrid 
structures, a set of peptide-alkoxyamine hybrids was utilized in the validation step. These 
hybrids were previously studied for their antiplasmodial activity by Embo-Ibouanga et al. 
[34]. The validation process involved selecting a core molecule, choosing the hybridants, 
and identifying the expected hybrids among the results. The hybrid generation process 
used three D-amino acids (D-valine, D-phenylalanine, and D-valine) along with three 
L-amino acids (L-valine, L-phenylalanine, and L-valine). These amino acids were input-
ted as one-letter symbol sequences. This process resulted in 14,074 unique hybrid mol-
ecules, representing all possible combinations of the hybridants. The generated hybrids 
included the molecules tested in the study by Embo-Ibouanga et al. as well as new hybrid 
combinations. A list of the amino acids and other molecules used in this hybridization 
process is provided in Table 2. All generated molecules can be found in Additional File 
1. The regenerated hybrid molecules used in the work of Embo-Ibouanga et al. with their 
given names and IDs are presented in Additional File 2. For more detailed instructions 
on how to use the tool, please refer to our user manual.
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Molecular clustering and descriptor visualization

To organize and analyze the generated hybrid molecules, we employed a deep clus-
tering approach that combines the power of Variational Autoencoders (VAE) and 
K-means clustering as introduced by Hamid Hadipour et al. [35]. Initially, we encoded 
molecule-specific atom and bond information using a Principal Component Analy-
sis (PCA)-based method, which allowed us to extract both local and global chemical 
properties of the molecules. Using the embeddings obtained from the VAE, which 
captures both the global chemical properties and the local atom and bond features, 
we proceeded to cluster the molecules into 525 distinct groupsThe number of clusters 
was optimized using the Silhouette, Calinski-Harabasz and Davies-Bouldin indexes, 
which helped identify the optimal number of clusters based on the similarity between 
the molecules [36–38].

We then applied the K-means algorithm to the VAE embeddings to group the mol-
ecules effectively. K-means, a widely used unsupervised machine learning algorithm, 
helped us partition the high-dimensional embeddings into clusters based on molecu-
lar similarity. After clustering, we visualized the results using t-SNE, a dimensionality 
reduction technique, which projected the high-dimensional data into two dimen-
sions, making it easier to interpret and analyze the distribution of molecules across 
the clusters. The visualization of the molecules proposed by Embo-Ibouanga et  al. 
highlights a unique region in the scatter plot where the compounds are clustered, 
indicating a strong correlation between their structural characteristics and biologi-
cal activities. This suggests that this clustering method has effectively identified and 
grouped compounds with similar properties, reinforcing the experimental evidence 
of their structure and activity relationship.

The successful reproduction of these relationships using our tool suggests its 
robustness and reliability in identifying potential drug candidates. Furthermore, 
exploring additional compounds within this specific region of the scatter plot may 
yield promising candidates for future drug development.

Table 2 List of Amino Acids and Other Molecules Used for Hybridization

Core SMILES structure D-amino acids L- amino acids Other molecules

Val
Phe
Val

Val
Phe
Val

Val
Phe
Val

Val
Phe
Val
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By leveraging both the clustering technique and our drug-likeness assessment 
tool, researchers can efficiently prioritize the most promising ligands. This approach 
allows for the focused evaluation of a selected number of compounds from each clus-
ter, based on their significant structural and activity similarities, thereby streamlin-
ing the process of identifying potential therapeutic agents through docking studies. A 
detailed visualization of the molecular distribution and clustering, including both the 
embedding space and the cluster-specific molecule groups, can be seen in Scheme 4.

Finally, the drug-likeness properties of the generated ligands were calculated and 
visualized using the drug-likeness_assessment notebook. This approach systemati-
cally evaluates key molecular properties, including MW, LogP, TPSA, HBD, HBA, 
and QED. The properties of the experimental compounds were then compared to the 
mean values of the entire batch of generated molecules to assess their drug-likeness 
potential. The results of these evaluations are summarized in Scheme 5.

Tool comparison for molecular docking and hybrid generation

Various computational tools have been developed to support molecular docking, 
hybrid generation, and pharmacokinetics evaluation, each offering different features 

Scheme 4 a Distribution of molecules across 500 clusters, illustrating the grouping of data points based 
on their feature similarities. b t-SNE scatter plot of the dataset, visualizing the two-dimensional embedding 
of the clustered data points, with key molecules annotated for reference (available in Embo-Ibouanga et al. 
study)
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and levels of automation. These tools vary in their ease of use, receptor curation 
capabilities, and the ability to generate hybrid molecules or analyze pharmacokinetic 
properties. Additionally, some tools provide advanced functionalities such as scaffold 
hopping and analog generation, which are beneficial for optimizing lead compounds 
and exploring chemical diversity in drug design.

A comprehensive comparison of these tools, detailing their key features, ease of use, 
output types, and capabilities in receptor curation, automation, hybrid generation, phar-
macokinetics, and scaffold hopping/analog generation is provided in Table 3.

Scheme 5 a Distribution of molecular weight in the generated molecules. b Distribution of LogP in the 
generated molecules. c Distribution of topological polar surface area (TPSA) in the generated molecules. 
d Distribution of quantitative estimate of drug-likeness (QED) in the generated molecules. e Comparative 
spider charts visualizing molecular descriptors relative to the mean values of all generated molecules
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Limitations and outlook

The model’s performance may be limited by the available computational power, espe-
cially during large-scale docking simulations of complex molecular structures. A key 
issue is the reliance on scoring functions, which often oversimplify molecular interac-
tions, neglecting factors like solvation effects, ligand flexibility, and protein dynamics. 
Additionally, docking studies can be resource-intensive; although AutoDock Vina or 
Smina is efficient, larger systems or high-throughput screenings still require significant 
computational power and time. This limitation restricts the number of compounds that 
can be docked effectively within a feasible timeframe. The stochastic nature of docking 
algorithms also introduces variability, necessitating multiple runs for reliable results, 
which further increases computational demands. Additionally, conjugated molecules 
with amino acids present docking challenges due to their size and complexity. While 
AutoDock Vina or Smina has advanced molecular docking, researchers must be aware of 
these limitations and complement computational studies with experimental validation 
and more sophisticated modeling approaches. The vast number of potential structures 
and the size of the grid box significantly increase the computational demands. However, 
even the largest grid boxes often fail to encompass all the molecules of large protein 
structures, highlighting the need for a more precise, active-site-based grid center.

Additionally, using UniProt IDs as input can present challenges for users. Each Uni-
Prot entry typically contains only one protein subunit, whereas many proteins consist 
of multiple peptides or nucleic acid chains. For certain ligands, such as fluoroquinolone 
antimicrobials, the binding occurs at the cleavage site between two protein chains of 
their target receptor, DNA gyrase, and may also interact with DNA. In these scenarios, 
relying solely on the UniProt ID may not yield acceptable results.

With the introduction of the M01 tool, we aim to automate the docking process exten-
sively, making it user-friendly for the entire scientific community for implementing com-
plex de novo drug design models. Future developments will include options for docking 
with nucleic acids, a full-option web server platform, homology modeling of proteins, 
and customizable grid boxes. Moreover, user feedback and real-world applications will 
offer valuable insights for continuous improvements.

Conclusion
This study presents an automated hybrid generating and docking pipeline, named M01 
tool, in which the user can measure ligand-receptor affinities with minimal previous 
expertise in the field. This tool is capable of generating various peptides to be hybridized 
with a small molecule, allowing the identification of the optimal structures. This study 
mainly consisted of previously generated modules that do not necessitate further valida-
tion. With the advent of artificial intelligence and especially machine learning methods, 
there appears to be an increasing need for simple platforms to provide models with a 
robust, easy-to-implement reward system for new molecules, which can be handled with 
this automated, customizable Python-based docking package. The ligand generation and 
drug-likeness assessment section of this tool is also available at https:// m01to ol. com/. 
More features and tools specially docking environment can be accessed by GitHub.

https://m01tool.com/
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Availability and requirements

Project name: M01 tool.
Project home page: https:// github. com/ mahsa sheikh/ M01- tool.
Operating system(s): Platform independent.
Programming language: Python 3.
Other requirements: RDKit, vina, Smina, PDBFixer, mgltools.
License: MIT-license.
Any restrictions to use by non-academics: no limitation.

Abbreviations
3D  Three-dimensional
GUI  Graphic user interface
API  Application programming interface
TPSA  Topological polar surface area
QED  Quantitative estimate of drug-likeness
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