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Abstract 

Background: Genome-wide association studies have identified connections 
between genetic variations and diseases, but they only examine a small portion 
of single nucleotide polymorphisms. To enhance genetic findings, researchers suggest 
imputing genotypes for unmeasured SNPs to improve coverage and statistical power. 
When this is not possible, summary statistics imputation can be used as an alterna-
tive. The available summary statistics imputation tools rely on reference panels, such 
as the 1000 Genomes Project, to estimate linkage disequilibrium (LD) between variants 
for accurate imputation. Tools like FAPI and SSIMP use these reference panels in variant 
call format (VCF) for this purpose, though this process can be time-consuming. A more 
effective approach for processing reference panels in summary statistics imputation 
was proposed in RAISS. In this approach, the LD among the variants is precomputed 
from the reference panel, prior to imputation, thereby reducing computational time.

Results: We present PRED-LD, an imputation method for GWAS summary statistics 
that aims to enhance the resolution of genetic association analyses. The proposed 
method uses precomputed linkage disequilibrium statistics from HapMap, Pheno 
Scanner and TOP-LD to impute summary statistics, given beta coefficients and stand-
ard errors. The single-point approach that we describe provides a fast and accurate 
way to estimate associations for untyped single nucleotide polymorphisms that exhibit 
high linkage disequilibrium (LD). The proposed method is faster, provides accurate 
imputation compared to existing tools, and has been implemented in both a web ser-
vice (https:// compg en. dib. uth. gr/ PRED- LD/) and a command-line tool (https:// github. 
com/ pbagos/ PRED- LD), making it a useful resource for the research community.

Conclusions: PRED-LD offers an efficient and accurate method for GWAS sum-
mary statistics imputation, providing faster performance, direct result interpretation, 
and the ability to use multiple reference panels. Also, the online version of PRED-LD 
simplifies obtaining LD information and performing imputation tasks without down-
loading reference panels and will be continuously updated to support tools for meta-
analysis and fine-mapping in GWAS.
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Background
Genome-wide association studies (GWAS) have been successful in identifying links 
between genetic variations and diseases [1]. However, it is important to note that 
GWAS only explores a fraction of single nucleotide polymorphisms and, depending 
on the platform used, most studies include information for different typed markers. 
To further enhance genetic association discoveries, researchers have suggested imput-
ing genotypes for many unmeasured SNPs to increase the coverage, thereby enhancing 
statistical power, increasing the accuracy of fine-mapping, and enabling effective meta-
analyses [2]. When genotype imputation is not feasible for practical or ethical reasons, 
summary statistics imputation provides a practical alternative. Tools such as DIST [3], 
ImpG [4], FAPI [5], SSIMP [6] and RAISS [7] are designed to perform summary sta-
tistics imputation, with the use of reference panels, such as the 1000 Genomes Project 
[8]. Moreover, DISTMIX [9] is employed to execute summary statistics imputation in 
admixed populations. It is based on the same algorithm as DIST and weights to each 
under study GWAS population can be applied. GAUSS [10], a recent R package, offers 
a range of functions for the estimation of ancestry proportions of study cohorts, calcu-
lation of linkage disequilibrium, imputation of summary statistics, and the conducting 
of transcriptome-wide association studies. Its imputation functions are based on DIST 
and DISTMIX algorithms and utilize a reference panel [11] comprising 32,953 genomes 
from 29 ethnic groups, thereby enhancing the accuracy of the results, particularly in the 
case of rare variants. These panels offer haplotype information from individuals with the 
same ancestry as the population under study and can achieve an accurate imputation, 
although the imputation process for an entire GWAS can be a time-consuming task. We 
present here a simpler yet efficient and very fast method for imputing summary statistics 
using precalculated linkage disequilibrium (LD). The proposed method is available as an 
open-source tool, PRED-LD, which also features a web service version, for easy use in 
summary statistics imputation tasks.

Methods/Implementation
Within the framework of PRED-LD, LD information along with the respective variant 
allele frequencies and LD patterns can be derived from three different sources used as 
reference panels (Fig.  1.), from HapMap [12], Pheno Scanner [13], and TOP-LD [14]. 
Pheno Scanner provides LD statistics with r2 > 0.8 and Minor Allele Frequency 
(MAF) > 0.01 that have been computed using the super-ancestries in 1000 Genomes pro-
ject phase 3 reference panels corresponding to Europeans, East Asians, South Asians, 
Africans, and Admixed Americans. HapMap LD data involves a collection of linkage dis-
equilibrium data compiled from merged genotype data from phases I + II + III submit-
ted by HapMap genotyping centers to the DCC. These LD data were generated from 
the HaploView [15] software. HapMap LD data include samples from various popula-
tions. TOP-LD is an online platform for investigating LD patterns, which leverages high-
coverage whole genome sequencing (WGS) data from European, African, East Asian 
and South Asian individuals participating in the NHLBI TOPMed [16] program, with 
r2 ≥ 0.2 . TOP-LD is an advanced tool for exploring LD that provides a comprehensive 
view of genetic variations through the TOPMed WGS data, particularly rare variants, 
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within specific populations. Compared to other LD resources such as HaploReg [17] or 
LDlink [18], TOP-LD represents a 2.6- to 9.1-fold increase in variant coverage. Regard-
ing the selection of the reference panel, an intuitive solution would be to use TOP-LD 
as the primary reference for the imputation tasks, given that it encompassed the most 
extensive collection of variants. The imputation results with TOP-LD as reference panel, 
were both accurate and rapid. However, we investigated also the use of additional panels 
(Pheno Scanner, HapMap) in order to explore potential improvements.

PRED-LD, contrary to other method uses a single-point imputation method that relies 
on beta coefficients (β = log (OR)) and standard errors from GWAS summary statistics. 
To estimate imputed beta coefficients for variants that were not typed (u), we first iden-
tify in the panel the typed SNP (t) with the maximum r2 with the untyped one and then 
we use a well-known result by Zondervan and Cardon [19]. Zondervan and Cardon 
expanded an earlier finding, presented by Ackerman and coworkers [20], which dem-
onstrated that for a trait locus with alleles T and t, having allele frequencies 1-pt and 
pt respectively, and a marker locus with alleles U and u and allele frequencies 1-pu and 
pu respectively, the odds ratio for an association involving the indirect allele u can be 
derived using the haplotype frequencies, as displayed in Eq. (1):

Fig. 1 Venn diagram of all the variants included in the LD reference panels that PRED-LD employs, in all 
ancestries
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where ORt is the trait or disease allelic OR of the typed variant, and ptu, ptU, pTu and pTU 
correspond to the relevant haplotype frequencies. Given that D = ptu − ptpu , Zonder-
van and Cardon showed that Eq. (1) can be reformulated as follows:

where D = ±r
√
pt(1− pt)pu(1− pu) , is the LD coefficient between the typed (t) and 

the untyped SNP (u), and r is the pairwise Pearson’s correlation coefficient between the 
typed and untyped SNPs. Since the primary data is logOR and their standard errors, it is 
useful to rewrite Eq. (1) as:

Some reference panels, like HapMap, provide information only on r2 and D’, so in such 
cases we also need to determine the sign of D . In doing so, we utilize the D′ information 
from the LD panels. Given that D′ = D/Dmax [21] and

it is now possible to ascertain which case, whether D is positive or negative, yields the 
corresponding D′ value. In other words, using the known allele frequencies, we enumer-
ate the two expressions in the right-hand side of Eq. (4) and decide which one holds. We 
need to mention that Eqs. from (1) to (4) all refer to population parameters. When we 
try to estimate the respective quantities from the sample, we need to denote them as 
estimates (for instance β̂t and so on). Afterwards, by noticing that Eq. (3) is a function of 
βt, an estimate of the variance and the standard errors of the imputed beta coefficients 
can be calculated using the Delta Method [22]:

with the derivative of f being given by:

Obviously, we use in Eq.  (6) the sample estimates of the population parameters (D, 
βt, pt, pu) and we plug the estimate of f ′(βt) in Eq. (5) to obtain the estimated variance. 
This approach leverages the linkage disequilibrium and the allelic frequency information 
from the panels to assign the effect (logOR and its standard error) of the untyped marker. 
It is of importance to note that for each SNP to be imputed we utilize information of a 
single typed SNP, the one with the highest r2 . This approach allows the simultaneous use 
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of multiple panels and the inclusion of the SNP with the highest r2 . This contrasts with 
other methods that use all SNPs within a given window utilizing a multivariate approach 
and offers a number of significant advantages as we will see below.

Implementation

The Python source code of PRED-LD is accessible via a public GitHub repository at 
https:// github. com/ pbagos/ PRED- LD. Users of PRED-LD can explore linkage disequi-
librium information from various populations of the HapMap, Pheno Scanner, and 
TOP-LD precalculated LD panels, along with the results of the imputation process. 
Moreover, the users can conduct a more targeted imputation on specific rsIDs, giving 
a list of variants as an additional input argument and conduct whole GWAS imputation 
tasks. In addition, the web tool version includes Manhattan plots and QQ plots to depict 
the imputation results. The web version of PRED-LD (Figs. 2 and 3.) is publicly available 
at: https:// compg en. dib. uth. gr/ PRED- LD/. It is important to note that the web version 
of PRED-LD has a limitation of 20,000 rows for the input file. This restriction must be 
considered, to ensure that the imputation process will not be computationally intensive.

Datasets

To measure the accuracy of our method, we used eight distinct GWAS datasets. We col-
lected a diverse set of Genome-Wide Association Studies (GWAS) focused on various 
traits, derived from open databases. The case–control ADHD dataset [23] was obtained 
from dbGaP [24], while datasets for traits such as urinary albumin to creatinine ratio 
(UACR) and glomerular filtration rate (GFR) [25] were obtained from GWAS Atlas [26]. 
The GFR data includes studies from both European and African populations. Addi-
tional datasets include studies on epilepsy [27], colorectal cancer [28], double eyelid [29] 
and coronary artery disease (CAD) [30], all derived from GWAS Atlas. This collection 
reflects a wide range of traits, populations, and genotyping platforms. The details of 
each.

Fig. 2 Screenshot from the web interface of PRED-LD. In the sidebar panel, the user can select the desired 
options to perform an imputation task and in the main panel, the imputation results, LD information and 
plots are displayed

https://github.com/pbagos/PRED-LD
https://compgen.dib.uth.gr/PRED-LD/
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study, including the specific traits, populations, and genotyping platforms, are pro-
vided in Table 1.

Results
The initial hypothesis was that the entire GWAS imputation tasks could be performed 
using all the available summary statistic imputation tools, thereby obtaining imputed 
values for the input variants provided in the input files. The first measure we use is the 
“number of imputed SNPs”. That is, given the entire GWAS, the total number of addi-
tional SNPs whose effect could be predicted. This approach, however, does not provide 

Fig. 3 Screenshot of results and plots of the web version of PRED-LD

Table 1 Overview of collected GWAS datasets

GWAS Database Database ID Sample size Number of 
SNPs

Population Platform

ADHD dbGaP phs001869.
v1.p1

1,001 247,475 EUR Illumina Infinium 
PsychArray-24

UACR GWAS Atlas 4061 31,164 90,283 EUR Illumina 
HumanExome 
chip

GFR GWAS Atlas 4053 14,308 64,719 EUR Illumina 
HumanExome 
chip

GFR GWAS Atlas 4054 2,162 59,504 AFR Illumina 
HumanExome 
chip

Epilepsy GWAS Atlas 4160 24,927 4,948,714 EUR Illumina OmniEx-
press-24 v1.1

Colorectal 
Cancer

GWAS Atlas 4097 33,870 7,492,477 EAS Illumina OmniEx-
press

Double Eyelid GWAS Atlas 4021 5,614 549,759 EAS Custom Affym-
etrix Axiom array

CAD GWAS Atlas 3925 148,815 9,024,593 EUR UK Biobank SNP 
array
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any clues as to whether these predictions are good or not. Thus, we need to perform pre-
dictions also on the SNPs that are already in the dataset and evaluate the performance. 
This approach would normally allow for a straightforward leave-one-out cross-valida-
tion. This was only possible with DIST and SSIMP (and PRED-LD), since the other tools 
do not offer such an option and performing the analysis repeatedly would require an 
enormous amount of time. In order to provide a fair comparison of all available meth-
ods, the performance of each tool was assessed according to the following procedure. For 
each GWAS dataset, we randomly removed (masked) 20% of the SNPs in chromosome 
1 from the original dataset, performed summary statistic imputation on the removed 
variants, and computed the R2 correlation coefficient between the observed z-scores and 
the imputed z-scores, as well as the observed and the imputed - − log10 (p) values. These 
measures account for the two measures of “imputation accuracy”.

For DIST, FAPI and SSIMP, the imputation tasks were performed with the default set-
tings. For RAISS, the subcommand "performance-grid-search" was performed to select 
its optimal performance parameters (eigen threshold and min-ld) prior to the imputation 
process, setting the same window length as the other methods (1000kbp). It is impor-
tant to note that DIST had only two reference panels available for European popula-
tions (1000 Genomes Phase 1 Release 3 European and UK10K). Consequently, summary 
statistics imputation tasks with DIST for non-European populations were conducted 
using the 1000 Genomes Phase 1 Release 3 European reference panel, which included 
386 samples and 9,544,788 total variants, despite the inherent bias in the results. Fur-
thermore, FAPI performs p-value imputation, so only the − log10 (p) values were com-
pared. GAUSS uses the same algorithms as DIST and DISTMIX, but it is designed for 
a different purpose and performs imputation in a narrow region. Finally, DISTMIX was 
excluded from the comparisons as it is designed for summary statistics imputation in 
admixed populations, whereas all the GWAS datasets consisted of discrete populations. 
To provide a clear understanding of the population representation and variant coverage 
within each reference panel, all the reference panels used in this study are described in 
Table 2. For all methods an important post-processing step was necessary, since in many 
cases the GWAS uses the alternative allele for reference and vice versa, which results in 
some of the beta coefficients to be given with the opposite sign. In such cases the refer-
ence and alternative allele for each marker were harmonized in order to have the GWAS 
under investigation to match those of the reference panel.

In the case of PRED-LD, we initially performed an evaluation in order to choose the 
best option regarding the reference panel. We thus investigated the use of the differ-
ent panels separately, as well as in combination. In all cases we use an r2 threshold of 
0.5 which is regarded as an appropriate and impartial threshold for high LD (but we 
also investigated this, see below). Moreover, no minor allele frequency threshold was 
employed. The imputation tasks conducted on individual panels yielded promising 
results within a short time frame, particularly when using TOP-LD and Pheno Scanner, 
as illustrated in Table 3. The HapMap reference panel, being the smaller one, yields lower 
accuracy. However, combining all available panels resulted in slight improvements in the 
overall performance so we decided to include it as the default option for the method. 
The user, however, may choose differently (see below), especially when computation 
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time is of essence, since as it is apparent from the results, using only one of the panels 
results in a significant decrease in the execution time.

The comparisons of the summary statistics imputation tools across the aforemen-
tioned GWAS datasets revealed that PRED-LD demonstrated superior efficiency in 
terms of speed. On average PRED-LD, with the default option for combining all pan-
els, completed the imputation task 3–20 times faster than other tools, including DIST, 
FAPI, and SSIMP, while maintaining superior imputation accuracy. To illustrate this, 
in certain datasets, SSIMP requires more than 18 h to complete the imputation pro-
cess, whereas PRED-LD achieves the same result in less than 20 min. RAISS is also 
fast, but nevertheless PRED-LD is approximately 27.56% faster in overall execution 
time and 76.44% faster in time per 1,000 SNPs imputed. While tools such as DIST and 

Table 2 Description of the reference panels used by the different methods. We list a summary of 
the sample sizes and the total variants across the available populations

Reference panel Label population sample Number 
of 
samples

Total Variants

TOP-LD (r2 ≥ 0.2) EUR European 13,160 69,524,944

AFR African 1,335 60,392,677

SAS South Asian 239 22,309,649

EAS East Asian 844 35,538,656

Pheno scanner (MAF > 1% and 
r
2 > 0.8,1000 Genomes project—

Phase 3, hg19 and hg38)

EUR European 503 11,159,862

AFR African 661 11,159,862

SAS South Asian 489 11,159,862

EAS East Asian 504 11,159,862

AMR American 347 11,159,862

HapMap ASW African ancestry in Southwest USA 90 1,561,113

CEU Utah residents with Northern and 
Western European ancestry from 
the CEPH collection

180 1,412,161

CHB Han Chinese in Beijing, China 90 1,328,283

CHD Chinese in Metropolitan Denver, 
Colorado

100 1,305,880

GIH Gujarati Indians in Houston, Texas 100 1,407,540

JPT Japanese in Tokyo, Japan 91 1,296,969

LWK Luhya in Webuye, Kenya 100 1,529,438

MEX Mexican ancestry in Los Angeles, 
California

90 1,409,947

MKK Maasai in Kinyawa, Kenya 180 1,419,626

TSI Toscans in Italy 100 1,419,920

YRI Yoruba in Ibadan, Nigeria 180 1,501,085

RAISS (1000 Genomes Project Phase 
3, hg38)

EUR European 632 8,193,280

AFR African 893 13,876,891

SAS South Asian 601 8,579,150

EAS East Asian 585 7,245,426

AMR American 490 9,347,814

SSIMP & FAPI (1000 Genomes Project 
Phase 3, hg19)

EUR European 503 81,271,745

AFR African 661 81,271,745

SAS South Asian 489 81,271,745

EAS East Asian 504 81,271,745

AMR American 347 81,271,745
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Table 3 Comparison of summary statistics imputation performance across each linkage 
disequilibrium panels, that PRED-LD utilizes. These results were obtained using an r2 threshold of 0.5 
for TOP-LD and HapMap LD panels and the r2 threshold of 0.8 for Pheno Scanner, as its data inherently 
provide information using this r2 threshold. When using the HapMap LD panel, we performed 
imputation for each subpopulation separately based on the respective GWAS population

LD Panel GWAS Imputed 
SNPs

R2(z) R2
(

− log10 (p)
)

Imputation 
percentage 
in masked 
SNPs (%)

Time Time per 
1000 SNPs 
imputed (s)

TOP-LD ADHD (EUR) 243,062 0.719 0.545 39.14 6 m 1 s 1.5

UACR (EUR) 64,371 0.866 0.748 6.15 5 m 13 s 4.9

GFR (EUR) 57,200 0.674 0.625 8.97 5 m 11 s 5.4

GFR (AFR) 41,834 0.851 0.592 7.15 3 m 9 s 4.5

Epilepsy (EUR) 440,870 0.924 0.860 91.82 9 m 50 s 1.3

Colorectal 
Cancer (EAS)

378,395 0.823 0.772 62.68 7 m 7 s 1.1

Double Eyelid 
(EAS)

274,356 0.628 0.427 47.27 6 m 8 s 1.3

CAD (EUR) 682,449 0.925 0.894 77.87 12 m 21 s 1.1

Pheno Scanner ADHD (EUR) 277,745 0.913 0.859 23.13 2 m 44 s 0.6

UACR (EUR) 53,201 0.941 0.945 6.15 2 m 3 s 2.3

GFR (EUR) 52,243 0.857 0.789 9.05 1 m 57 s 2.2

GFR (AFR) 19,155 0.876 0.756 3.44 1 m 24 s 4.4

Epilepsy (EUR) 460,371 0.942 0.894 95.06 8 m 7 s 1.1

Colorectal 
Cancer (EAS)

339,280 0.917 0.876 61.25 3 m 40 s 0.6

Double Eyelid 
(EAS)

281,966 0.803 0.661 41.81 2 m 54 s 0.6

CAD (EUR) 589,504 0.960 0.938 77.65 10 m 13 s 1.0

HapMap (CEU) ADHD (EUR) 44,510 0.568 0.472 30.22 1 m 20 s 1.8

HapMap (TSI) 43,810 0.662 0.509 29.62 1 m 51 s 2.5

HapMap (CEU) UACR (EUR) 7,161 0.859 0.818 2.58 1 m 20 s 11.2

HapMap (TSI) 7,061 0.545 0.816 2.74 1 m 51 s 15.7

HapMap (CEU) GFR (EUR) 7,200 0.530 0.490 3.93 1 m 9 s 9.6

HapMap (TSI) 7,076 0.725 0.605 4.01 1 m 32 s 13.0

HapMap (ASW) GFR (AFR) 3,799 0.586 0.527 2.15 2 m 44 s 43.2

HapMap (LWK) 3,289 0.702 0.488 1.81 2 m 18 s 42.0

HapMap (MKK) 3,694 0.642 0.463 1.98 1 m 53 s 30.6

HapMap (YRI) 3,400 0.840 0.530 1.72 1 m 27 s 25.6

HapMap (CEU) Epilepsy (EUR) 73,686 0.745 0.673 18.48 1 m 9 s 0.9

HapMap (TSI) 73,101 0.795 0.700 18.31 2 m 17 s 1.9

HapMap (CHB) Colorectal 
Cancer (EAS)

40,336 0.760 0.732 9.54 1 m 14 s 1.8

HapMap (JPT) 40,609 0.772 0.761 9.43 2 m 26 s 3.6

HapMap (CHD) 39,193 0.820 0.790 9.00 2 m 56 s 4.5

HapMap (CHB) Double Eyelid 
(EAS)

42,239 0.598 0.546 19.29 1 m 13 s 1.7

HapMap (JPT) 42,829 0.624 0.543 20.20 2 m 26 s 3.4

HapMap (CHD) 41,244 0.703 0.551 18.68 2 m 54 s 4.2

HapMap (CEU) CAD (EUR) 82,190 0.836 0.806 11.73 1 m 42 s 1.2

HapMap (TSI) 82,278 0.795 0.799 11.75 2 m 30 s 1.8

Mean perfor-
mance

TOP-LD 272,817 0.801 0.683 42.63 6 m 52 s 2.6

Pheno Scanner 259,183 0.901 0.840 39.69 4 m 7 s 1.6

HapMap 34,435 0.705 0.631 11.36 1 m 54 s 11.0

All panels 
combined

338,803 0.817 0.728 49.90 20 m 12 s 8.2

Bold values denote the average performance across the datasets
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SSIMP may achieve higher imputation coverage, they are associated with substan-
tially longer run times and lower imputation accuracy. To provide fair runtime com-
parisons among the compared tools, we also took into consideration calculating the 
execution time per 1,000 SNPs imputed. Once again, PRED-LD is the faster among 
the tools considered here. The detailed comparison results are presented in Table 4 
and Fig. 4.

The use of PRED-LD is transparent, and the user can choose different options 
regarding the reference panels or the r2 threshold, in order to accomplish different 
tasks. To showcase the inverse relationship between accuracy and coverage we per-
formed prediction in the test datasets under different LD thresholds for PRED-LD 
and R2 thresholds for the other tools (Figs. 5 and 6). Thus, using a threshold of 0.8 
we obtain smaller coverage but increased accuracy, whereas using a threshold of 0.5 
we have lower accuracy but increased coverage for each tool. On the other hand, 
selecting only one panel may result to even faster imputations (3 to 10 times faster 
compared to the default option), with a moderate decrease in accuracy (Table  3). 
The only metric in which PRED-LD does not clearly outperform the other tools is 
coverage (and the number of imputed SNPs). In Table 4 we showed that DIST and 
SSIMP surpass PRED-LD in this regard, but PRED-LD can increase its coverage to 
almost match that of DIST, simply by lowering the LD threshold. Also, FAPI shows 
slightly better overall performance than PRED-LD in terms of R2

(
− log10 (p)

)
 , with 

a small difference, whereas PRED-LD achieves 11.04% higher average coverage. In 
order to perform a head-to-head comparison against DIST and SSIMP, which show 
the higher coverage among the methods, in an unbiased manner, we performed the 
following additional evaluations. We filtered the results of DIST and SSIMP using 
the reported coefficient of determination (R2) and we kept only the imputed SNPs 
with reported R2 > 0.5. We also performed two additional comparisons of PRED-LD 
against DIST and SSIMP. The first considers the same number of imputed SNPs of 
PRED-LD (ranked in descending order of R2 for DIST and SSIMP), while the sec-
ond focuses on all the common imputed variants in every intersection combination. 
This way, we have results as comparable as possible to the ones obtained by PRED-
LD with the r2 > 0.5 default option for selecting the SNPs. The results are given in 
Table 5, where we can see that PRED-LD gives comparable results with DIST and 
SSIMP, except for speed, since it is still up to 3 and 20 times faster, respectively.

All the comparisons were conducted on a server equipped with an Intel Xeon E5-2660 
v4 processor operating at a base frequency of 2.00 GHz, supported by 64 GB of RAM. 
The analysis code, for the execution commands and the presented results, is available in 
the GitHub repository of PRED-LD at the following link: (https:// github. com/ pbagos/ 
PRED- LD/ tree/ main/ paper).

https://github.com/pbagos/PRED-LD/tree/main/paper
https://github.com/pbagos/PRED-LD/tree/main/paper
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Conclusions
PRED-LD offers an efficient method that performs GWAS summary statistics imputa-
tion. We showed that it is significantly faster compared to other methods, being at the 

Table 4 Comparison of the performance of the summary statistics imputation methods across the 
GWAS datasets

Bold values denote the average performance across the datasets

GWAS Tool Imputed 
SNPs

R2(z) R2
(

− log10 (p)
)

Imputation percentage 
in masked SNPs

Time Time per 
1000 SNPs 
imputed (s)

ADHD (EUR) PRED-LD 345,047 0.701 0.583 1,894/3,791 = 49.96% 21 m 37 s 3.8

RAISS 213,003 0.576 0.366 1,504/3,791 = 39.67% 7 m 57 s 2.2

DIST 737,618 0.558 0.402 3,784/3,791 = 99.81% 33 m 6 s 2.7

SSIMP 1,875,319 0.614 0.452 3,763/3,791 = 99.26% 126 m 6 s 4.0

FAPI 262,431 – 0.761 949/3,791 = 25.03% 146 m 45 s 33.5

UACR (EUR) PRED-LD 91,989 0.885 0.874 166/1,819 = 9.12% 14 m 56 s 9.7

RAISS 30,052 0.836 0.853 80/1,819 = 4.39% 7 m 24 s 14.7

DIST 742,568 0.245 0.348 620/1,819 = 34.08% 25 m 1 s 2.0

SSIMP 1,879,310 0.198 0.195 1,256/1,819 = 69.04% 117 m 54 s 3.8

FAPI 47,068 – 0.947 90/1,819 = 4.94% 139 m 10 s 177.4

GFR (EUR) PRED-LD 84,689 0.723 0.683 165/1,270 = 12.99% 14 m 20 s 10.2

RAISS 24,284 0.853 0.826 69/1,270 = 5.43% 7 m 15 s 17.9

DIST 742,593 0.185 0.171 639/1,270 = 50.31% 25 m 5 s 2.0

SSIMP 1,879,896 0.145 0.070 1,111/1,270 = 87.48% 116 m 38 s 3.7

FAPI 44,498 – 0.899 84/1,270 = 6.61% 139 m 10 s 187.6

GFR (AFR) PRED-LD 51,633 0.838 0.585 98/1,160 = 8.44% 29 m 16 s 34.0

RAISS 6,465 0.405 0.121 18/1,160 = 1.55% 9 m 27 s 87.7

DIST 743,044 0.068 0.022 527/1,160 = 45.43% 9 m 17 s 0.8

SSIMP 3,245,785 0.210 0.070 1,139/1,160 = 98.18% 153 m 50 s 2.8

FAPI 47,232 – 0.514 83/1,160 = 7.15% 164 m 44 s 209.3

Epilepsy (EUR) PRED-LD 516,837 0.927 0.873 72,589/73,759 = 98.41% 15 m 24 s 1.8

RAISS 148,826 0.872 0.737 54,835/73,759 = 74.34% 60 m 22 s 24.3

DIST 451,355 0.943 0.889 71,503/73,759 = 96.94% 232 m 28 s 30.9

SSIMP 1,627,415 0.945 0.892 73,109/73,759 = 99.11% 1,096 m 24 s 40.4

FAPI 182,768 – 0.922 66,251/73,759 = 89.82% 131 m 21 s 43.1

Colorectal 
Cancer (EAS)

PRED-LD 473,097 0.862 0.815 12,658/17,240 = 73.42% 9 m 15 s 1.2

RAISS 240,299 0.877 0.770 8,839/17,240 = 51.27% 10 m 2 s 2.5

DIST 689,032 0.759 0.506 14,028/17,240 = 81.36% 93 m 50 s 8.2

SSIMP 1,783,481 0.850 0.787 16,512/17,240 = 95.77% 185 m 1 s 6.2

FAPI 312,408 – 0.912 10,851/17,240 = 62.94% 92 m 6 s 17.7

Double Eyelid 
(EAS)

PRED-LD 367,707 0.664 0.499 4,709/7,820 = 60.21% 7 m 48 s 1.3

RAISS 238,279 0.705 0.470 4,418/7,820 = 56.49% 7 m 53 s 2.0

DIST 716,061 0.552 0.282 7,261/7,820 = 92.85% 64 m 20 s 5.4

SSIMP 1,810,525 0.815 0.684 7,775/ 7,820 = 99.42% 183 m 27 s 6.1

FAPI 279,728 – 0.760 3,437/7,820 = 43.95% 135 m 29 s 29.1

CAD (EUR) PRED-LD 779,429 0.935 0.908 120,683/139,282 = 86.64% 49 m 2 s 3.8

RAISS 139,507 0.892 0.812 74,897/139,282 = 53.77% 112 m 44 s 48.5

DIST 251,662 0.905 0.872 112,862/139,282 = 81.03% 135 m 10 s 32.2

SSIMP 1,450,754 0.867 0.835 136,174/139,282 = 97.76% 1,877 m 55 s 77.7

FAPI 170,791 – 0.239 98,148/139,282 = 70.46% 142 m 7 s 49.9

Mean perfor-
mance

PRED-LD 338,803 0.817 0.728 49.90% 20 m 12 s 8.2

RAISS 130,089 0.752 0.619 35.86% 27 m 53 s 25.0

DIST 634,241 0.527 0.436 72.72% 76 m 15 s 10.5

SSIMP 1,944,061 0.581 0.498 93.25% 428 m 9 s 18.1

FAPI 168,365 – 0.744 38.86% 136 m 21 s 93.5
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Fig. 4 Radar plot comparing the overall summary statistics imputation performance across the GWAS 
datasets. PRED-LD demonstrates the highest accuracy and coverage ratio and it is faster compared to the 
other tools. Only DIST and SSIMP outperform it in terms of imputation coverage and number of imputed 
SNPs

Fig. 5 Plot showing the inverse relationship of accuracy and coverage across different r2 and R2 thresholds 
for PRED-LD (combined and separate panels) and the compared tools, respectively. The results are obtained 
from the GWAS datasets as described in the text. We show the mean and the standard error of the mean for 
the predictions across the different datasets. PRED-LD allows both for a definition of a strict LD threshold or a 
lower one, resulting either in a more accurate imputation or a broader coverage, respectively. RAISS achieves 
high accuracy, but with the least coverage across all choices of thresholds. FAPI exhibits high R2 , but with 
more limited coverage compared to SSIMP, DIST and PRED-LD. Notably, SSIMP offers the highest accuracy 
and coverage ratio for R2 > 0.5 and R2 > 0.6 at the expense of execution time (see also Table 4). DIST delivers 
the best coverage overall, at the expense of the lowest R2 among the tools evaluated



Page 13 of 16Manios et al. BMC Bioinformatics          (2025) 26:107  

Fig. 6 Plot showing the inverse relationship of accuracy (z-values) and coverage across different r2 and R2 
thresholds for PRED-LD (combined and separate panels) and the compared tools, respectively. The results 
are comparable to those of Fig. 5, with the absence of FAPI which reports only p-values. Regarding PRED-LD, 
the combined panels option demonstrates a high accuracy-coverage ratio, whilst when selecting the 
Pheno Scanner panel, PRED-LD exhibits the best results among all tools and PRED-LD panels. RAISS achieves 
high accuracy but moderate coverage in all thresholds. SSIMP offers the highest accuracy and coverage 
for R2 > 0.5 and R2 > 0.6 . DIST delivers the best coverage overall, but lower R2 among RAISS, SSIMP, and 
PRED-LD (in all its panels)

Table 5 Comparison of the mean performance of PRED-LD, DIST and SSIMP when the results 
of the latter two are filtered using (i) the reported coefficient of determination and keeping only 
the imputed SNPs with reported R2 > 0.5, (ii) retaining the same number of imputed SNPs with 
PRED-LD (ranked in descending order of R2 for DIST and SSIMP) and (iii) considering only the 
common imputed SNPs of PRED-LD across all intersection combinations. The three methods show 
comparable performance across all metrics except for speed. Execution time in other methods 
cannot be reduced since the R2 can only be calculated after the imputation is performed

Filter Tool Imputed SNPs R2(z)
(

R2 − log10 (p)
)

Imputation 
percentage in 
masked SNPs (%)

Time

R
2 > 0.5 (DIST, SSIMP) 

and r2 > 0.5 (PRED-LD)
DIST 314,074 0.661 0.539 61.30 76 m 15 s

SSIMP 310,107 0.858 0.760 54.84 428 m 9 s

PRED-LD 338,803 0.817 0.728 49.90 20 m 12 s

Same number of 
imputed SNPs of 
PRED-LD

DIST 338,803 0.765 0.628 52.69 76 m 15 s

SSIMP 0.879 0.808 53.86 428 m 9 s

PRED-LD 0.817 0.728 49.90 20 m 12 s

Common SNPs (DIST-
SSIMP-PRED-LD)

DIST 158,650 0.785 0.666 46.13 76 m 15 s

SSIMP 0.837 0.737 428 m 9 s

PRED-LD 0.816 0.725 20 m 12 s

Common SNPs (DIST-
PRED-LD)

DIST 162,354 0.787 0.666 46.47 76 m 15 s

PRED-LD 0.816 0.725 20 m 12 s

Common SNPs 
(SSIMP-PRED-LD)

SSIMP 219,732 0.837 0.739 49.39 428 m 9 s

PRED-LD 0.817 0.727 20 m 12 s
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same time equally accurate. The simplicity of the method offers a number of additional 
significant advantages. First, this approach allows both for the definition of a strict r2 LD 
threshold or a lower one, resulting either in a more accurate imputation or a broader 
coverage, respectively. The user may perform an imputation and then filter the results 
according to the respective needs. A high threshold for the r2 will produce smaller cov-
erage but higher accuracy, whereas using a lower threshold will yield low accuracy but 
increased coverage. Second, the method can use and combine different reference panels 
with ease in a wide range of populations, since for each imputation only information 
from one SNP is used. When the computation time is an essential parameter, the user 
may choose one of the panels and significantly speed up the calculations (3 to 10 times 
faster compared to the default option), with a slight decrease in accuracy. Of course, this 
means that the method can easily take advantage of additional reference panels that will 
appear in the future.

The only downside of the method, compared to methods that use multiple markers, 
seems to be a somewhat reduced coverage (at least compared to SSIMP). This is eas-
ily understood if we imagine a situation in which none of the typed markers pass the 
r2 threshold, but there are several markers that may contribute information through 
the multivariate normal distribution. However, to perform a fair comparison, we have 
shown that altering the r2 threshold for PRED-LD, or the R2 threshold for DIST and 
SSIMP, results in imputation accuracies and coverages that are comparable, with PRED-
LD still clearly outperforming these methods in terms of speed. The methods using the 
multivariate normal distribution need additional computations in order to regularize the 
variance–covariance matrix, or to avoid multicollinearity. Thus, it seems that the single 
marker approach with the direct imputation from Eq. (2) or Eq. (3) is preferable, espe-
cially when the SNPs in the GWAS and the panel are dense.

We also need to comment on the use of different panels. A direct comparison of the 
methods that use different panels is not so easy to perform, given that each tool uses dif-
ferent file formats and specifications, but some observations can be made. For instance, 
we have shown that PRED-LD performance increases with larger and denser panels. On 
the other hand, the multiple marker methods use panels of different size (DIST uses the 
smaller one, whereas FAPI and SSIMP use a larger one, even compared to TOP-LD) but 
this does not directly translate to increased performance; they all seem to be less effi-
cient compared to PRED-LD.

Finally, we need to emphasize that PRED-LD imputes beta coefficients and standard 
errors, from which the other statistics can be produced (z-values or p-values). Furthermore, 
the imputation accuracy of PRED-LD is high, either regarding z-values or p-values. In con-
trast, other methods (RAISS and DIST) can impute only z-scores or p-values, whereas FAPI 
imputes only p-values. This may be restrictive in some cases where the downstream analy-
sis requires beta coefficients. Thus, PRED-LD is suitable both for applications that can uti-
lize p-values, such as gene-based tests, as well as for applications in which the effect size is 
needed, such as random effects meta-analysis.

Taken together, PRED-LD is an optimal choice for large-scale GWAS imputation tasks, in 
which both computation efficiency and imputation accuracy are critical. The online version 
of PRED-LD can assist users in obtaining LD information from various sources and per-
forming various imputation tasks with ease, without the need to download reference panels 
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for multiple populations and chromosomes. PRED-LD will be continuously updated, for 
instance by adding new reference panels, or performing optimizations in speed (paralleliza-
tion and so on), and we believe that it will be widely used. In particular, we are planning to 
incorporate PRED-LD in various tools that will facilitate, for instance, meta-analysis allow-
ing for non-overlapping sets of variants, in tools that perform analysis of multiple traits, or 
for statistical fine-mapping of causal variants in GWAS.
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