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Abstract 

Background: A gene regulatory network (GRN) is a graph-level representation 
that describes the regulatory relationships between transcription factors and target 
genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug 
design, and metabolic systems, and the rapid development of single-cell RNA sequenc-
ing (scRNA-seq) technology provides important opportunities while posing significant 
challenges for reconstructing GRNs. A number of methods for inferring GRNs have 
been proposed in recent years based on traditional machine learning and deep learn-
ing algorithms. However, inferring the GRN from scRNA-seq data remains challenging 
owing to cellular heterogeneity, measurement noise, and data dropout.

Results: In this study, we propose a deep learning model called graph repre-
sentational learning GRN (GRLGRN) to infer the latent regulatory dependencies 
between genes based on a prior GRN and data on the profiles of single-cell gene 
expressions. GRLGRN uses a graph transformer network to extract implicit links 
from the prior GRN, and encodes the features of genes by using both an adjacency 
matrix of implicit links and a matrix of the profile of gene expression. Moreover, it 
uses attention mechanisms to improve feature extraction, and feeds the refined gene 
embeddings into an output module to infer gene regulatory relationships. To evaluate 
the performance of GRLGRN, we compared it with prevalent models and performed 
ablation experiments on seven cell-line datasets with three ground-truth networks. 
The results showed that GRLGRN achieved the best predictions in AUROC and AUPRC 
on 78.6% and 80.9% of the datasets, and achieved an average improvement of 7.3% 
in AUROC and 30.7% in AUPRC. The interpretation discussion and the network visuali-
zation were conducted.

Conclusions: The experimental results and case studies illustrate the considerable 
performance of GRLGRN in predicting gene interactions and provide interpretability 
for the prediction tasks, such as identifying hub genes in the network and uncovering 
implicit links.
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Background
The regulation of gene expression determines cell identity and function during the 
development of an organism. The expression of specific genes in distinct cells leads to 
the formation of different types of cells, where transcription factors (TFs) generated by 
the regulatory genes bind to specific regions of the target genes to regulate the levels of 
gene expression [1, 2]. A gene regulatory network (GRN) is a graph-level representation 
that describes the TFs and target genes in cells, where each node represents a gene and 
each edge represents the regulatory relationship between genes [3]. Previous research 
has shown that GRNs can provide important insights into cellular dynamics [4–6], the 
development of target drugs [7–9], and the formulation of models of metabolic systems 
and their optimization [10–12]. Therefore, it is theoretically and practically valuable to 
investigate the reconstruction of GRNs, as this can provide accurate insights into cellular 
phenotypes from the genomic perspective.

Experiments on molecular interactions involving microarrays [13] and chromatin 
immunoprecipitation sequencing (ChIP-seq) [14] have been used to investigate gene reg-
ulatory relationships in the past few years, and can contribute to reconstructing GRNs. 
However, the relevant methods are typically time consuming, labor intensive, and highly 
dependent on the experimental conditions. With the development of single-cell high-
throughput sequencing technology, researchers can now obtain a large amount of data 
on various types of omics at the cellular level. A number of methods for inferring GRNs 
based on traditional machine learning technologies have been developed to reconstruct 
GRNs, including GENIE3 [15] and GRNBoost2 [16]. Moreover, many deep learning-
based approaches have been applied to enhance the quality of the resulting inferences. 
CNNC [17] and DeepDRIM [18] can be used to convert the data on gene expression into 
images and leverage convolutional neural networks (CNNs) to infer GRNs. STGRNS 
[19] makes use of a BERT-based model to fully extract the features of data on gene 
expression to infer GRNs through transfer learning. Further improving the quality of 
such inferences requires leveraging their known regulatory relationships and using the 
profiles of gene expression from scRNA-seq datasets. Recent research [20–22] has pro-
posed several methods to infer GRNs that consider not only the data on gene expres-
sions, but also prior topological information on the GRNs. For instance, PMF-GRN [23] 
employs the probabilistic matrix factorization and variational inference as core methods 
to capture the inferred transcription factor activity and latent regulatory relationships 
in GRNs. Compared with other benchmark models, PMF-GRN demonstrates superior 
inference performance and reliable uncertainty estimation capabilities. VMPLN [24] is 
based on the mixture Poisson-lognormal (MPLN) model to infer GRNs from count data 
of mixed populations. In addition to achieving strong predictive performance, VMPLN 
demonstrates the reliability of inferring results from highly mixed multi-cell type data. 
These methods can provide novel solutions for reconstructing GRNs using graph-based 
information. The CNNGRN [25] incorporates prior link-related information into the 
CNN to extract the features of genes, GCNG [26] and GNNLINK [27] use graph con-
volutional networks (GCNs) [28] to obtain low-dimensional embeddings of genes, while 
GENELINK [29] uses graph attention neural networks [30] to obtain gene representa-
tions. Due to the sparsity and heterogeneity of the graphs of GRNs, directly using the 
explicit link-related information contained in them to obtain the gene embeddings fails 
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to fully exploit the topological features of the prior GRNs [31]. Advanced approaches 
to learning graph representations need to be applied to fully learn the implicit links 
between genes.

In this study, we propose a deep learning model for reconstructing GRNs based on 
graph representation learning, called GRLGRN. It is designed to infer the latent regula-
tory dependencies between genes according to a prior GRN and data on the profiles of 
single-cell gene expressions. GRLGRN leverages a graph transformer network [32] in its 
gene embedding module to extract implicit links from the graph of the prior GRN, and 
to further encode the features of the genes from an adjacency matrix of implicit links 
and the corresponding matrix of the profile of gene expression. Furthermore, a convo-
lutional block attention module (CBAM) [33] is used to enhance feature extraction, and 
the refined gene embeddings are fed into an output module to infer the gene regulatory 
relationships. Moreover, a regularization term of graph contrastive learning [34, 35] is 
introduced when optimizing the loss function during the training of the model, with the 
aim of preventing model over-fitting owing to the excessive smoothing of the features 
of genes. We compared the inferences obtained by the GRLGRN with those of six mod-
els on benchmark datasets across seven cell lines, and corresponding to three types of 
ground-truth networks. The results showed that GRLGRN outperformed all other mod-
els on most datasets. We also conducted ablation experiments to verify the effectiveness 
of its modules and compared the computational costs of GRLGRN and its variants. Fur-
thermore, we verified that GRLGRN improved model inference accuracy by combining 
graph contrastive learning and the automatic weighted loss training techniques [42]. In 
addition, GRLGRN can visualize the results to provide insights into the GRNs and to 
reveal the contributions of all the explicit and implicit links to the representation.

The key contributions of our research are as follows: (i) We first leverage a graph trans-
former network to extract implicit links from a prior GCN, and then generate a GCN to 
obtain the gene embeddings. (ii) We use a CBAM to refine the features of the genes. (iii) 
We introduce graph contrastive learning to reduce the excessive smoothing of the fea-
tures of genes by GRLGRN.

Methods
Benchmark datasets

The BEELINE database [36] comprises scRNA-seq data from seven types of cell lines: 
(i) human embryonic stem cells (hESCs), (ii) human mature hepatocytes (hHEPs), (iii) 
mouse dendritic cells (mDCs), (iv) mouse embryonic stem cells (mESCs), (v) mouse 
hematopoietic stem cells with erythroid lineage (mHSC-E), (vi) mouse hematopoietic 
stem cells with granulocyte-monocyte lineage (mHSC-GM), and (vii) mouse hematopoi-
etic stem cells with lymphoid lineage (mHSC-L). Each cell line corresponded to three 
ground-truth networks with varying densities that have been documented in STRING 
[37], cell type-specific ChIP-seq [38], and non-specific ChIP-seq [39]. In addition, the 
500 and 1000 gene sets that varied by the largest magnitude for each ground-truth net-
work of a cell line, including TFs with a corrected P-value of less than 0.01, were identi-
fied to generate GRNs at two scales. We considered a total of 42 benchmark scRNA-seq 
datasets, each of which comprised a ground-truth GRN and a matrix of the profile of 
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gene expressions describing their intensity. Detailed information on the benchmark 
datasets is listed in Supplementary Table S1, Additional file 1.

Proposed framework

The architecture of the proposed model of GRN inference, called GRLGRN, is shown in 
Fig. 1. It consists of a gene embedding module, a feature enhancement module, and an 
output module. The main task of GRLGRN is to infer the potential regulatory dependen-
cies between genes from a prior GRN graph and data on the profile of gene expressions.

Gene embedding module

The gene embedding module is shown in Fig. 1A. It uses a graph transformer network 
[32] to extract implicit links in a graph transformer layer and obtain gene representa-
tions in a subsequent GCN layer.

Fig. 1 Overall architecture of GRLGRN. A Gene embedding module. We extracted implicit links by using 
a graph transformer network and obtained gene embeddings by using a GCN. B Feature enhancement 
module. We leveraged channel and spatial attention mechanisms to obtain a refined feature matrix XGE . C 
Output module. We computed the Hadamard product of a given pair of genes and fed it into a two-layer 
perceptron to obtain the scores of inferences of gene regulatory interactions
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We can use the directed graph G = (V , E) , which describes any prior GRN, to formulate 
five graphs: the directed subgraph G1 , the edges of which represent the regulatory relation-
ships from the TFs to the target genes in G , the directed graph G2 , the edges of which are 
in the opposite directions to those of G1 , the directed subgraph G3 , the edges of which rep-
resent TF–TF regulatory relationships in G , the directed graph G4 , the edges of which are 
in the opposite directions to those of G3 , and the self-connected gene graph G5 . We then 
concatenate the adjacency matrices of these five graphs As ∈ {0, 1}5×N×N , where N is the 
number of genes, i.e., N = |V| . Furthermore, individually passing through two parallel, 
parameterized layers yields the two tensors Q(1) and Q(2) ∈ R

B×N×N . This process satisfies

where i = 1, 2 and j = 1, 2, ...,B , Q(i)(j, :, :) denotes the j-th channel matrix of Q(i) , 
As(k , :, :) denotes the adjacency matrix of Gk , B denotes the number of output channels 
of each parameterized layer, and ε(i)k ,j denotes the training parameter γ (i)

k ,j  after normaliza-
tion in the i-th layer:

Then, the inner product of Q(1) and Q(2) in each channel yields a tensor AL ∈ R
B×N×N . 

The above process can be expressed as

where j = 1, 2, ...,B . AL(j, :, :) ∈ R
N×N is the adjacency matrix of the j-th generated two-

length meta-path graph, and is called the adjacency matrix of the implicit link. As dis-
cussed in [32], the concentrated tensor AL contains information on the adjacency of B 
meta-path graphs with at most two lengths, comprising explicit links (one length) and 
implicit links (two lengths).

By applying a parameter-shared GCN to each channel of an adjacency tensor of the 
implicit link AL and the matrix of the profile of gene expression XF ∈ R

N×D for N genes, 
we can implement gene embeddings to obtain a tensor of the embeddings of the gene 
X IE ∈ R

B×N×H that satisfies

where j = 1, 2, ...,B , H denotes the number of dimensions of the gene embed-
ding, X IE(j, :, :) denotes the matrix of the embedding of the j-th gene in X IE , 
ÃL,j := AL(j, :, :)+ I , I denotes an identity matrix, D̃j denotes the degree matrix of ÃL,j , 
and W  denotes the training parameters of the GCN.

Feature enhancement module

The feature enhancement module is shown in Fig.  1B. It is used to further 
refine the gene representations by leveraging channel and spatial attention 

(1)Q(i)(j, :, :) =

5
∑

k=1

ε
(i)
k ,jAs(k , :, :),

(2)ε
(i)
k ,j =

exp(γ
(i)
k ,j )

∑5
k=1 exp(γ

(i)
k ,j )

.

(3)AL(j, :, :) = Q(1)(j, :, :) ·Q(2)(j, :, :),

(4)X IE(j, :, :) = LayerNorm(ReLU(D̃
−1

j ÃL,jXFW )),
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mechanisms. Assuming that the square root of H is M, we can convert the tensor 
of gene embeddings X IE into X r

IE ∈ R
B×N×M×M by reshaping X IE(i, j, :) ∈ R

H into 
X r
IE(i, j, :, :) ∈ R

M×M , i = 1, 2, ...,B, j = 1, 2, ...,N  . Furthermore, we pass B reshaped ten-
sors X r

IE(i, :, :, :) ∈ R
N×M×M , i = 1...B through a parameter-sharing CBAM that con-

sists of a channel attention module and a spatial attention module. Finally, we flatten 
each resulting tensor into a matrix and take the average of B flattened matrices to 
obtain the refined feature matrix XGE ∈ R

N×H . It satisfies the following:

where the details of the CBAM are provided in Supplementary Note S1, Additional file 1.

Output module

The output module is shown in Fig. 1C. It provides the results of inference of regu-
latory associations between genes according to the refined feature matrix XGE . The 
refined feature vectors of any gene pair (i,  j) are represented by ui := XGE(i, :) and 
uj := XGE(j, :) , where 1 ≤ i < j ≤ N  . We take the Hadamard product of these two vec-
tors, apply an ReLU activation function to them, and pass them through a two-layer 
perceptron with activation functions ReLU and Sigmoid . This yields the output score 
ŷ ∈ [0, 1] of inference of the regulatory association between the genes i and j, and 
satisfies

For causal inference of potential regulatory relationships in GRNs, the output module is 
slightly modified as shown in Fig. 2 ui and uj are concatenated fed into the subsequent 
layers to yields the output score p̂ ∈ [0, 1] of inferring the causal regulatory from gene i 
to gene j. the process can be expressed as

When prior information about the transcription factor and target gene in the input gene 
pair (i, j) is available, the number of output neurons is two, and the task is to determine 
whether there is an interaction between the gene pair. When this prior information is 

(5)XGE =
1

B

B
∑

i=1

Flatten(CBAM(X r
IE(i, :, :, :))),

(6)ŷ = Sigmoid(Linear(ReLU(Linear(ReLU(ui ⊙ uj))))).

(7)p = Softmax(Linear(ReLU(Linear(ReLU(Concat(ui,uj)))))).

Fig. 2 Output module that can provide inference results of directed regulatory relationships, where the 
representations of genes i and j are combined by the concatenation instead of the Hadamard product in 
Fig. 1
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unknown, the number of output neurons is three, and the task involves determining: i) 
whether there is an interaction between the gene pair, ii) whether gene i regulates gene j, 
and iii) whether gene j regulates gene i.

Model training

As shown in Fig. 3, we regarded any gene pair whose regulatory dependency appeared 
in the ground-truth GRN of a dataset as a positive sample, and labeled it as 1. Con-
versely, we regarded any gene pair whose regulatory dependency was not in the 
ground-truth GRN of a dataset as a negative sample, and labeled it as 0 [40]. We sub-
sequently randomly chose positive and negative samples to form training, validation, 
and test sets according to a certain ratio. Specifically, to ensure the proportion of pos-
itive and negative samples for each TF in the partitioned datasets to be consistent 
with the benchmark dataset, we randomly assigned 66% of the positive and negative 
samples of each TF to the training set. Larger size of training set can ensure that the 
model could effectively learn and extract features related to gene pair interactions. 
Furthermore, we used a smaller proportion, 3.4%, of positive and negative samples for 
the validation set to evaluate hyperparameter selections. The remaining 30.6% of gene 
pair samples were randomly assigned to the test set, and model performances were 
evaluated on this relatively larger test set to ensure that the performance metrics were 
robust. To prevent information leakage, we made sure that the prior GRN input to the 
model during training consisted only of gene pairs that interacted in the training set.

We applied binary cross-entropy as the loss function when training the model to 
calculate the loss between the actual values of the labels and their predicted values:

Fig. 3 Partition of the dataset. Gene pairs with observed interactions in the ground-truth network are 
regarded as positive samples, labeled as 1; conversely, any gene pair whose regulatory dependency is not 
present in the ground-truth GRN of a dataset is considered a negative sample, labeled as 0. The positive and 
negative samples for each TF are randomly selected into training, validation, and test subsets according to a 
specific ratio
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where ys denotes the value of the label of any given gene pair, ŷs denotes its value pre-
dicted by GRLGRN (Eqs. (1)–(6)), and n denotes the number of gene pairs in a training 
batch.

Moreover, as shown in Fig. 4, we applied graph contrastive learning to GRNs provided 
by non-specific CHIP-seq [41] to prevent model over-fitting owing to the excessive 
smoothing of the features of the genes. The gene representations XEE ∈ R

N×H corre-
sponding to information on explicit links were contained in a GCN that shared the same 
parameters with the gene embedding module. By contrasting the gene embeddings of 
XEE and XGE , the regular term Ngc of graph contrastive learning could then be calcu-
lated as

where um := XGE(m, :) , vm := XEE(m, :) , N is the number of genes, and the value of 
the gene pair P(um, vm) is defined in Supplementary Note S2, Additional file  1. Then, 
the loss function containing the regularization term for graph contrast learning can be 
defined as

where α = 1
2σ 2

1

 and β = 1
2σ 2

2

 are weight coefficients, σ1 and σ2 are trainable parameters, 

and b = Logσ1σ2 is used as a loss function bias term. During the training process, the 
automatic weighted loss approach proposed in [42] was used to dynamically balance two 
different loss function terms in Eq. 10 and to enhance the stability of model parameter 
update. This addressed the limitation of manually setting weight coefficients based on 
empirical values when dealing with datasets of varying scales, thereby improving the 
model applicability across different scenarios.

The GRLGRN inference model can be trained and applied on PyTorch version 2.1. 
We set the hyperparameters corresponding to different ground-truth networks in Sup-
plementary Table  S2, Additional File 1. As shown in Fig.  5, we compared the model 

(8)Lossbc(y, ŷ) = −
1

n

n
∑

s=1

(

ys log
(

ŷs
)

+
(

1− ys
)

log
(

1− ŷs
))

,

(9)Ngc = −
1

2N

N
∑

m=1

(P(um, vm)+ P(vm,um)),

(10)Loss = αLossbc + βNgc + b,

Fig. 4 Framework of graph contrastive learning. During training, the regularization term Ngc is calculated by 
contrasting two matrices of gene features XGE and XEE , and the loss function containing Ngc is optimized for 
the GRNs.
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performance of AUROC scores under different learning rates and feature dimensions 
(AUPRC scores can be found in Figure S1 of Additional file1). Therefore, during the 
training process, we set the batch size to 1024, with the learning rate and feature dimen-
sion set to 0.0002 and 256, respectively. We used the Adam optimizer to update GRL-
GRN parameters iteratively according to the gradient descent strategy. All experiments 
were conducted on a computer equipped with an Intel(R) Xeon(R) Gold 6226R CPU, 
256GB of RAM, and three NVIDIA GTX 4090 GPUs.

Results
Performance on benchmark datasets

To evaluate the performance of the proposed GRLGRN, we compared it with six mod-
els (GNNLINK, GENELINK, STGRNS, GNE, GRNBoost2, and GENIE3) across seven 
cell lines under three ground-truth networks provided by STRING, cell type-specific 
ChIP-seq, and non-specific CHIP-seq. GNNLINK and GENELINK use GNNs to directly 
encode the features of genes from their explicit links (original edges), STGRNS uses a 
BERT-based encoder to learn the features of genes only from the data on gene expres-
sion, GNE [43] uses the topological structure of the GRN and data on gene expression 
to learn the low-dimensional features of genes by using a multi-layer perceptron (MLP), 
while GRNBoost2 and GENIE3 are built based on the random forest algorithm.

The results of the performances of all models in terms of inferring the GRNs on 42 
benchmark datasets are shown in Fig.  6 (AUROC metric) and Supplementary Figure 
S2, Additional file 1 (AUPRC metric). The scRNA-seq datasets contained data on seven 
types of cell lines and three types of ground-truth networks, with TFs+ 500 and TFs+ 
1000. As shown in Table  1, the proposed GRLGRN achieved the best predictive per-
formance, in terms of the average AUROC and AUPRC, on 78.6% (33 of 42) and 80.9% 
(34 of 42) of the benchmark datasets, with average improvements of 7.3% and 30.7%, 
respectively. Figure  6A shows that compared with the second-best model (CNNLINK 
or GENELINK) on the AUROC metric across datasets, the proposed GRLGRN yielded 
average improvements of approximately 6.7% (12 of 14), 3.6% (8 of 14), and 6.35% (13 of 
14) across the three ground-truth networks. It yielded average improvements of at least 
approximately 8.8% over the other models across the three ground-truth networks in 
terms of AUPRC scores. The box plots in Fig. 6B and Supplementary Figure S2B, Addi-
tional file  1 respectively show the distributions of the AUROC and AUPRC scores of 
GRLGRN and the other models on the benchmark datasets of ground-truth networks 

Fig. 5 AUROC metric values of GRLGRN under different learning rates and feature dimensions
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with TFs+ 500 (above) and TFs+ 1000 (below). The results graphically depict the signifi-
cant improvements in performance brought about by the proposed GRLGRN in terms 
of the AUROC and AUPRC metrics. They thus demonstrate that our graph represen-
tation learning-based approach to GRN inference yields superior performance to other 
methods. Furthermore, Fig. 7 and Supplementary Figure S3, Additional file 1 presents 
the values of performance metrics (AUROC and AUPRC) by applying GRLGRN to the 
non-causal inference (output module in Fig. 1) and causal inference (output module in 
Fig. 2) of potential regulatory relationships in cell-type-specific GRNs, the results show 
that the non-causal inference performances are better than the causal inference per-
formances on 71.4% (10/14) and 78.6% (11/14) of the datasets, with improvements of 
approximately 0.97% and 1.3%, respectively (More details can be found in Table S3 and 
S4 of the Additional file 1). Moreover, the results also demonstrate that GRLGRN can 
provide relatively significant causal inference performances for directed GRNs.

Fig. 6 A The performance of the proposed GRLGRN and six prevalent models in terms of inferring GRNs on 
all benchmark datasets of ground-truth networks with TFs and 500 most significantly varying genes (top), 
and ground-truth networks with TFs and 1000 most significantly varying genes (bottom) on the AUROC 
metric. Each row corresponds to a different type of cell, while each column represents a model of inference. 
The depths of colors of the heatmap correspond to the magnitudes of the values. B The corresponding box 
plots of the AUROC values on 21 benchmark datasets of ground-truth networks with the TFs and 500 most 
significantly varying genes (top), and on 21 benchmark datasets of ground-truth networks with the TFs and 
1,000 most significantly varying genes (bottom). The bars inside the boxes represent the median values, their 
top and bottom edges represent the upper and lower quartiles, respectively, the bars outside the boxes 
represent the maximum and minimum values, and the small circles represent outliers

Table 1 Average values of the AUROC and AUPRC obtained by GRLGRN and other prevalent six on 
42 benchmark datasets. The bold values represent the superior evaluation metric values

Model AUROC AUPRC

GRLGRN 0.88 (33/42) 0.51 (34/42)
GNNLINK 0.82 0.39

GENELINK 0.81 0.29

STGRNS 0.67 0.24

GNE 0.64 0.19

GRNBoost2 0.57 0.16

GENIE3 0.60 0.15
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In addition, the above results show that the models that incorporated graphs of prior 
GRNs—GRLGRN, GNNLINK, and GENELINK—provided superior inference-related 
performance on most benchmark datasets, which verifies the advantages of graph repre-
sentation learning. The two models based on traditional machine learning (GRNBoost2 
and GENIE3) exhibited an inferior inferential capacity to the other models, which dem-
onstrates the advantages of deep learning methods.

Ablation study

To verify the effectiveness of each module of the proposed model, we conducted ablation 
experiments in which the inferential performance of GRLGRN and its variants was com-
pared on the benchmark datasets. By simultaneously removing the graph transformer 
layer from the gene embedding module and the CBAM from the feature enhancement 
module, we obtained a variant model of GRLGRN called GRLGRN-v1. Moreover, only 
removing the CBAM from GRLGRN yielded another variant model called GRLGRN-v2. 
The architectures of these two variants are shown in Supplementary Figure S4, Addi-
tional file 1.

Figure  8 presents the AUROC scores of GRLGRN, GRLGRN-v1, and GRLGRN-v2 
on the benchmark datasets of ground-truth networks with TFs+ 500 and TFs+ 1000, 
while their detailed AUPRC scores are shown in Supplementary Figure S5, Additional 
file 1. The proposed GRLGRN, which contained both the graph transformer layer and 
the CBAM, outperformed its two variant models overall (GRLGRN-v1 and GRLGRN-
v2). GRLGRN was superior to GRLGRN-v2 in terms of AUROC and AUPRC scores on 
80.9% (34 of 42) and 83.3% (35 of 42) of the scRNA-seq datasets, respectively. It recorded 
average improvements over GRLGRN-v2 in terms of AUROC of approximately 5.7% 
(14 of 14), 0.8% (7 of 14), and 1.02% (13 of 14) on the three ground-truth networks. Its 
average values of improvement in terms AUPRC scores over GRLGRN-v2 were approxi-
mately 25.9% (13 of 14), 2.41% (10 of 14), and 14.5% (12 of 14) on the three different 
ground-truth networks. GRLGRN-v2 was superior to GRLGRN-v1 and yielded average 
improvements of approximately 3.8% and 11.9% in AUROC and AUPRC scores respec-
tively across the three ground-truth networks.

Moreover, we compared the computational scales of GRLGRN and its variants in terms 
of the average training time (see Table  2) and GPU memory usage (see Table  3). The 
results show that GRLGRN that incorporates the graph transformer layer and CBAM 

Fig. 7 AUROC scores of GRLGRN for non-causal inference and causal inference of potential regulatory 
relationships in cell-type-specific GRNs
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needs the longest average training time and the largest GPU memory usage, GRLGRN-
v2 with no CBAM needs shorter average training time and smaller GPU memory usage, 
and GRLGRN-v1, which has the lowest model complexity, needs the shortest average 

Fig. 8 Performances of GRLGRN and two variants (GRLGRN-v1 and GRLGRN-v2) in terms of inferring GRNs 
on the AUROC metric values. A The AUROC metric values on ground-truth networks with TFs and 500 most 
significantly varying genes (top), and ground-truth networks with TFs and 1000 most significantly varying 
genes (bottom). B Distributions of AUROC metric values on the TFs+500 (top) and TFs+1000 (bottom) 
benchmark datasets

Table 2 The average training time and GPU memory usage of GRLGRN, GRLGRN-v1, and GRLGRN-v2 
across 21 (TFs+ 500) datasets

Model Average time (s) GPU 
memory 
(MB)

GRLGRN 709.19 1020.0

GRLGRN-v2 616.34 876.0

GRLGRN-v1 530.58 556.0

Table 3 The average training time and GPU memory usage of GRLGRN, GRLGRN-v1, and GRLGRN-v2 
across 21 (TFs+ 1000) datasets

Model Average time (s) GPU 
memory 
(MB)

GRLGRN 1330.07 1434

GRLGRN-v2 1192.5 1354.0

GRLGRN-v1 915.79 993.0
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training time and the smallest GPU memory usage. More detailed information can be 
found in Table S8-S10 in Additional File 1.

The results verify the importance of the graph transformer layer and CBAM to the 
proposed GRLGRN. The above results show that GRLGRN-v1, which was based on 
information on explicit links, yielded the worst inferential performance. This shows that 
using the graph transformer layer in the gene embedding module to extract the features 
of genes can considerably enhance the inference of GRNs. Although GRLGRN-v2 used 
the graph transformer layer in the graph feature extraction module, its inferential capac-
ity was still worse than that of GRLGRN. This demonstrates that applying the CBAM 
can further improve inferential performance, which highlights the advantage of the 
attention mechanism.

Furthermore, to validate the effectiveness of applying graph contrastive learning, we 
compared the inference performances, in terms of AUROC and AUPRC metrics, pro-
vided by the GRLGRN models trained with and without graph contrastive learning on 
non-specific ChIP-seq datasets. As shown in Fig. 9 and Table 4, in terms of the AUROC, 
graph contrastive learning improved inference performances on 85.7% (12/14) of the 
datasets, achieving an average improvement of approximately 1.8%. Moreover, Figure S6 
and Table S5 of Additional file 1 shows that, in terms of AUPRC, graph contrastive learn-
ing improved inference performances on 57.1% (8/14) of the datasets, achieving an aver-
age improvement of approximately 2.5%. In addition, to further investigate the impact of 
the automatic weighted loss training techniques on model test performance, as shown 

Fig. 9 AUROC scores of the GRLGRN models trained with and without graph contrastive learning on TFs+ 
500 (left) and TFs+ 1000 (right) non-specific ChIP-seq datasets

Table 4 Details of AUROC scores of the GRLGRN models trained with (outside brackets) and 
without (in brackets) graph contrastive learning on TFs+ 500 and TFs+ 1000 non-specific ChIP-seq 
datasets. The bold values represent the superior evaluation metric values

Dataset TFs+ 500 TFs+ 1000

hESC 0.8664 (0.8594) 0.8770 (0.8540)

hHEP 0.8948 (0.8838) 0.8798 (0.8612)

mDC 0.9206 (0.9104) 0.9116 (0.8974)

mESC 0.9226 (0.9208) 0.9223 (0.9198)

mHSC-E 0.8667 (0.8739) 0.8676 (0.8816)

mHSC-GM 0.8240 (0.8212) 0.8795 (0.8585)

mHSC-L 0.7103 (0.6890) 0.7600 (0.7396)
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in Table  S6 of Additional File 1, in terms of the AUROC and AUPRC, the automatic 
weighted loss training techniques improved inference performances on 64.2% (9/14) of 
the datasets, achieving an average improvement of approximately 1.24%. The AUPRC 
metric shows improvement across all datasets (more details can be found in Table S7 
of Additional File 1). The above results demonstrated that combining GRLGRN with 
graph contrastive learning and automatic weighted loss training techniques can improve 
model inference accuracy.

Interpretation of graph transformer layer

To interpret the importance of extraction of implicit links in the graph transformer layer 
for the downstream task of GRN inference, we now discuss the contributions of all the 
generated meta-path graphs that were learned on the hESC scRNA-seq datasets of cell 
type-specific ground-truth networks with TFs+ 500 and TFs+ 1000. The contribution of 
any meta-path (implicit or explicit link) to the j-th output channel of the graph trans-
former layer, with j = 1, 2, ...,B , is ε(1)k1,j

· ε
(2)
k2,j

, k1, k2 = 1, 2, ..., 5, where ε(i)k ,j is defined in Eq. 
(2), and is the attention score for the edge in Gk.

Figure  10 interprets the importance of implicit links for ground-truth GRNs at two 
scales (TFs+ 500 and TFs+ 1000) in the same cell line (hESC), which are learned by the 
graph transformer layer to extract the features of genes via graph representation learn-
ing. Supplementary Tables S11 and S12, Additional file 1 show the contributions of all 
possible explicit and implicit links that have been learned. For instance, the implicit links 
between the target genes at two scales are the most important when extracting the fea-
tures. This illustrates the importance of the association of two target genes regulated by 
the same TF during feature extraction. Moreover, the skip-level implicit links between 
the TFs and the target genes play a significant role. This shows that joint expression and 
skip-level implicit links can be regarded as playing a feed-forward role in a three-node 
network motif [44]. In addition, the explicit links between the TFs and target genes act 
as identity matrices.

The above results show that the proposed GRLGRN can automatically learn useful 
implicit links and optimize the process of feature extraction based on downstream tasks.

Fig. 10 Visualization of the contributions of different types of implicit (and explicit) links to TFs+ 500 (left) 
and TFs+ 1000 (right) hESC scRNA-seq datasets. The ground-truth network of hESC was provided by cell 
type-specific ChIP-seq, while the contribution of each type of link was obtained by computing the product of 
its attention scores. A The attention scores on the hESC with TFs and 500 most significantly varying genes. B 
The attention scores on the hESC with TFs and 1000 most significantly varying genes
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Network visualization of prediction results

Finally, Fig.  11A visualizes a reconstructed GRN that was inferred by GRLGRN from 
the cell-type-specific ground-truth network with TFs and 500 most significantly vary-
ing genes for hESC cell line, where the 11 largest nodes are genes with degrees higher 
than 50. We note that GRLGRN is able to identify hub genes with high degrees, such 
as TFAP2 A, TEAD4, and JUND. For the sake of simplicity, we do not plot the genes 
whose degrees are lower than five and the corresponding regulatory associations. Specif-
ically, TF AP- 2 α , which is encoded by TFAP2 A and is hub gene with the highest degree, 
is crucial for various biological processes, including embryonic development, cell dif-
ferentiation, and disease regulation [45]. In the development of neural crests, AP- 2 α 
regulates the expression of various target genes by binding to specific DNA sequences, 
contributing to the development of facial structures, ocular tissues, the nervous sys-
tem, and kidneys [46]. Mutations in TFAP2 A are associated with congenital diseases 
such as Axenfeld-Rieger syndrome and cleft lip/palate. Additionally, AP- 2 α indirectly 
influences key signaling pathways by regulating the expression of genes such as EGFR, 
c-MYC, and Cyclin D1 [47], potentially functioning as an oncogene or tumor suppressor 
at different stages or in distinct tumor microenvironments of cancers, including breast 
cancer, melanoma, and head and neck squamous cell carcinoma. Therefore, modulat-
ing the expression of the hub gene TFAP2 A through gene regulatory networks (GRNs) 
could offer new insights into the treatment of related diseases. Furthermore, we used the 
trained GRLGRN to predict TFAP2 A-gene pairs. Figure 11B shows the top twenty gene 
pair interactions predicted for TFAP2 A, where the green lines represent interactions 
included in the benchmark training set (prior knowledge), and the red lines represent 
interactions outside the benchmark training set that have been confirmed (benchmark 
test set). The records on the bioGRID official website explain how TFAP2 A and DNM3 
ta regulate gene expression through methylation [48]. These results illustrate the effec-
tiveness of GRLGRN in predicting novel potential gene pair interactions. Moreover, the 
TFs+ 1000 scRNA-seq dataset is visualized in Supplementary Figure S7, Additional File 

Fig. 11 A Visualization of a reconstructed cell type-specific ground-truth network that was inferred by 
GRLGRN, with TFs and 500 most significantly varying genes on the hESC scRNA-seq dataset. Eleven genes 
with the highest degrees, including TFAP2 A, TEAD4, and JUND, are represented by the large red nodes. B 
Visualization of 20 strongest newly inferred gene regulatory associations between TFAP2 A (hub gene) and 
other genes
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1, which highlights the effectiveness of GRLGRN in inferring interactions related to hub 
genes.

Discussion
With the rapid advancement of high-throughput scRNA-seq technology, researchers 
have obtained various scRNA-seq data at a cellular resolution. Compared with tradi-
tional bulk data on omics, scRNA-seq data can avoid diluting information on individual 
cells to enable a better understanding of the intrinsic activities occurring within cells 
[36]. A number of methods for inferring GRNs based on traditional machine learning 
and deep learning have been developed in recent years, and provide new and effective 
tools based on scRNA-seq data. However, owing to biological heterogeneity, measure-
ment errors, and data dropout, inferring GRNs based on scRNA-seq data still faces 
significant challenges [19]. Although GRLGRN makes significant progress in predict-
ing potential interactions between genes, it still has certain limitations. GRLGRN is a 
supervised-learning-based model, which means that its performance depends on the 
reliability of sample labels. However, obtaining precise labels in biological networks 
remains a challenging issue, making it one of the factors that limits GRLGRN inference 
capabilities.

In the future works, unsupervised learning methods such as clustering, dimensional-
ity reduction, and contrastive learning can be explored to uncover latent patterns and 
structures in gene expression profiles, thereby reducing the dependencies on data labels 
and providing more information for subsequent gene representations. Moreover, we can 
further try to apply transfer learning and meta-learning techniques can leverage existing 
knowledge in the field of bioinformatics, and try to incorporate multi-model data such 
as DNA methylation, histone modifications, etc., and protein interaction data to provide 
a more comprehensive view of gene regulations.

Conclusion
In this study, we proposed GRLGRN—a deep learning model for extracting informa-
tion on implicit links and gene embeddings from structures based on prior GRNs and 
profiles of gene expression by using a graph transformer network. We used attention 
mechanisms to optimize the capability of GRLGRN to extract gene representations. 
We took the Hadamard product of the gene representations of any given gene pair 
and then passed it through a two-layer perceptron to obtain its regulatory relation-
ship scores. In addition, we used graph contrastive learning during model optimiza-
tion to reduce the degradation of its inferences due to over-smoothing. A comparison 
of GRLGRN with six prevalent models on scRNA-seq datasets from seven types 
of cell lines and three types of ground-truth networks (at scales of TFs+ 500 and 
TFs+ 1000) showed that our method outperformed the other models in terms of 
the AUROC and AUPRC metrics on most scRNA-seq datasets. The experimental 
results indicated that the model was also able to achieve good performance for causal 
regulation. Furthermore, we conducted ablation experiments that not only verified 
the effectiveness of the graph transformer layer in the gene embedding module and 
CBAM in the feature enhancement module but also demonstrated the computational 
costs of GRLGRN and its variants. Moreover, we also validated the effectiveness of 
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graph contrastive learning and automatic weighted loss training techniques. Our dis-
cussion of the interpretation of its results and network visualization provided insights 
that can help us better understand GRNs as well as the contributions of all explicit 
and implicit links to them.

The proposed GRLGRN delivers superior inferential performance to that of GENIE3 
[15] and GRNBoost2 [16] by introducing deep learning technology. Moreover, it can 
use information on prior links through graph representation learning, unlike GNE 
[43] and STGRNS [19]. Compared with GENELINK [29] and GNNLINK [27], which 
leverage link-related information, an innovation of GRLGRN lies in its ability to fully 
exploit the link-related information of prior GRNs through the graph transformer 
layer, and to identify implicit links of various forms. It then uses a GCN to obtain the 
corresponding gene embedding. The strength of GRLGRN lies in its ability to learn 
useful explicit and implicit links adaptively in accordance with downstream tasks. 
Furthermore, its use of a regularization term for graph contrastive learning during 
training enables it to maximize the consistency in features between embeddings to 
mitigate the risk of overfitting.
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