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Abstract 

Gene expression is the basis for cells to achieve various functions, while DNA 
methylation constitutes a critical epigenetic mechanism governing gene expression 
regulation. Here we propose DeepMethyGene, an adaptive recursive convolutional 
neural network model based on ResNet that predicts gene expression using DNA 
methylation information. Our model transforms methylation Beta values to M 
values for Gaussian distributed data optimization, dynamically adjusts the output 
channels according to input dimension, and implements residual blocks to mitigate 
the problem of gradient vanishing when training very deep networks. Benchmarking 
against the state-of-the-art geneEXPLORE model  (R2 = 0.449), DeepMethyGene  (R2 = 
0.640) demonstrated superior predictive performance. Further analysis revealed 
that the number of methylation sites and the average distance between these sites 
and gene transcription start sites (TSS) significantly affected the prediction accuracy. 
By exploring the complex relationship between methylation and gene expression, 
this study provides theoretical support for disease progression prediction and clinical 
intervention. Relevant data and code are available at https:// github. com/ yaoyao- 11/ 
DeepM ethyG ene.

Keywords: DNA methylation, Gene expression, Diseases, Deep learning

Background
Gene expression is the basic process of transforming genetic information into 
biological functions, which is of central significance for the growth, development, and 
functional regulation of organisms. Aberrant gene expression plays a pivotal role in the 
initiation and progression of many diseases, including cancer. For instance, mutations 
or dysregulated expression of tumor suppressor genes such as P53 and PTEN disrupt 
critical cellular pathways, including apoptosis and cell cycle control, thereby promoting 
oncogenesis [1, 2]. By accurately predicting gene expression patterns, researchers can 
uncover disease-specific molecular mechanisms, offering valuable insights into targeted 
strategies for disease prevention, early diagnosis, and therapeutic intervention.
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DNA methylation is an important epigenetic modification that regulates gene 
expression by adding methylated groups in DNA cytosine. Changes in methylation 
patterns, particularly abnormal methylation in gene promoter regions, are often 
associated with the development of various diseases and can serve as biomarkers for 
tumors [3]. Thus, in-depth study of the effects of methylation on gene expression not 
only helps to understand the complex mechanisms of gene regulation but may also 
provide new perspectives and approaches for treating various diseases, particularly 
cancer and genetic disorders.

In recent years, machine learning has been extensively applied in the field of biology, 
including genomics [4–6], gene regulation [7–14], protein structure prediction and 
functional analysis [15–18], drug discovery [19–22], and biomarker discovery [23–
26]. Feature extraction is crucial for understanding biological data, and deep learning 
provides powerful approaches. Techniques such as Convolutional Neural Networks 
(CNNs), Graph Convolutional Networks (GCNs), and node2vec address distinct 
challenges.

In the field of gene regulation and epigenetic analysis, several studies have focused 
on predicting miRNA-disease associations using diverse architectures: DBNMDA [27], 
which combines unsupervised pre-training with supervised fine-tuning, implemented 
deep belief networks to model complex association patterns, which innovatively uses 
the information of all miRNA-disease pairs during the pre-training process. These 
approaches were further extended by network embedding techniques, as demonstrated 
in NCMD [28], which integrated node2vec with neural collaborative filtering to capture 
topological features in biological networks, demonstrating the potential of integrating 
network embedding and deep learning techniques.

Studies such as Gunasekaran et  al. [29] employed CNN architectures combined 
with bidirectional LSTM networks that increases the accuracy of DNA sequence 
classification, demonstrating the effectiveness of hierarchical feature learning in genomic 
applications. DeepRHD [30] combines CNN-based feature extraction with traditional 
machine learning classifiers, achieving notable improvements in remote homology 
detection across multiple benchmark datasets through this multi-stage approach. The 
integration of complementary feature extraction strategies has proven particularly 
valuable for modeling complex biological interactions. A recent study[10] exemplifies 
this trend, where the combination of kernel methods with graph convolutional networks 
(GCNs) yielded high-accuracy predictions of lncRNA-protein interactions. These 
examples collectively highlight how hybrid architectures that merge different feature 
extraction paradigms can effectively capture intricate biomolecular relationships.

To better understand the relationship between methylation and gene expression, 
it is necessary to study transcriptional regulatory regions. In particular, enhancers are 
critical regulatory elements that can be affected by methylation and play significant 
roles in aberrant gene expression in cancers [31], and may be located either proximally 
or distally to their target genes [32]. This highlights the importance of considering the 
methylation status of distal genomic regions in gene regulation and related disease 
research. DB Seal et  al. [33] utilized deep learning to integrate DNA methylation and 
copy number variation data to predict gene expression, but the analysis was limited to 
promoter regions within 1500 BP of the TSS, overlooking methylation in other regions. 
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The geneEXPLORE [34] emphasized the importance of long-distance DNA methylation 
in predicting gene expression, proposing the innovative view that methylation at distant 
locations within a gene may be more significant than proximal methylation, although 
the prediction accuracy  (R2) was only 0.491, indicating room for improvement. In 
the meantime, the static architecture limits biological data processing. Fixed output 
channels can’t adapt to different input sizes or feature complexities, often resulting in 
either wasted computing power or lost information.

Therefore, we proposed DeepMethyGene to construct a model using variable 
convolution kernel and ResNet block in an attempt to further improve the accuracy 
of predicting gene expression based on methylation. DeepMethyGene predicted the 
expression levels of 13,982 genes in TCGA breast cancer data, achieving a five-fold cross-
validation result  R2 of 0.64. The DeepMethyGene model showed significant superiority 
over the geneEXPLORE model in predicting gene expression, especially when the 
number of methylation sites within a 1 Mb radius around the gene location was limited 
and the average distance to the gene transcription start site (TSS) was minimal, leading 
to notably higher prediction accuracy.

Methods
Datasets

We used DNA methylation (450 K array) and RNA sequencing data from several cancer 
types in TCGA, including breast cancer (BRCA), colon cancer (COAD), glioblastoma 
(GBM), and lung adenocarcinoma (LUAD). The BRCA dataset, consisting of 873 samples 
(788 tumor and 85 normal samples), served as the primary training set and the core 
dataset for downstream analysis. To evaluate the model’s generalization performance, 
we also assessed its performance on the COAD, GBM, and LUAD datasets. All data were 
obtained from the Xena Public Data Hubs.

Data preprocessing

Data preprocessing followed the methodology outlined in [34]. Methylation data were 
filtered and imputed for missing values and converted from beta to M values. Gene 
expression data were filtered according to expression level and promoter region probe 
information to obtain highly representative probes and genes.

The BRCA dataset was used as the core for model construction, and the BRCA 
normal samples (N = 85) were used to retrain the model to reduce the effect of potential 
heterogeneity on model performance. COAD, GBM and LUAD datasets were selected as 
validation to evaluate the predictive performance in different cancer types. Performance 
indicators included  R2 value and other related evaluation indicators.

DeepMethyGene model

We present DeepMethyGene, a predictive model built on an adaptive, recursive 
convolutional neural network architecture inspired by ResNet [35]. This model is 
specifically designed to process one-dimensional input data, making it ideally suited 
for time series analysis and signal processing. The network architecture is pivotal in 
its ability to dynamically adjust its complexity based on the scale of input data, thereby 
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optimizing computational efficiency and effectiveness. The integration of residual blocks 
within the architecture significantly enhances the model’s ability to train deeply without 
succumbing to common issues like gradient vanishing or explosion.

DeepMethyGene employs an AdaptiveRegressionCNN architecture, consisting of 2 
Conv1 d layers followed by fully connected layers for feature mapping and regression 
prediction. After the first convolution, the network incorporates a Residual Block to 
enhance feature representation, followed by a second convolution layer and another 
residual block. The final regression output is computed through a 512-unit fully 
connected layer and a single-neuron output layer. The model is optimized using Adam (lr 
= 0.001) with MSELoss as the loss function and is evaluated via fivefold cross-validation, 
computing the Pearson correlation coefficient and  R2. The training process runs for a 
maximum of 700 epochs, with early stopping (patience = 90) to prevent overfitting. A 
more detailed discussion of the Residual Block design and its role in deep learning will 
be presented in the following section.

Additionally, we also utilized Support Vector Machines (SVM) [36] and Deep Forest 
[37] as core models for modeling and prediction. However, both were found to be less 
effective compared to DeepMethyGene in handling the complex, high-dimensional 
bioinformatics data typically involved in this study.

Design of residual blocks

Residual blocks are constructed with two layers of one-dimensional convolution (Conv1 
d), where each layer maintains the same number of input and output channels, uses a 
kernel size of 3, and padding of 1 to preserve the dimensionality of the data through 
the convolution process. This design allows the addition of more convolutional layers 
without altering the data dimensions. Following each convolution layer, a LeakyReLU 
activation function with a negative slope of 0.01 is employed to mitigate the issue of 
information loss due to the activation function’s dead zones. Residual blocks enhance 
the stability of deep network training by establishing direct connections between the 
output of the convolution layers and the original input, thus alleviating issues related to 
gradient vanishing or explosion in deep networks.

Architecture of the adaptive regression convolutional neural network

The adaptive regression CNN architecture consists of convolutional layers and residual 
blocks. To handle varying input dimensions effectively, we designed a dynamic channel 
allocation strategy: the first convolutional layer adapts its output channels based on input 
size, with a minimum of 64 channels. The subsequent layers reduce this to 32 channels 
minimum. We incorporated residual blocks between convolutional layers and then the 
extracted features are processed through fully connected layers, whose dimensions are 
determined by our _calculate_to_linear function. This design enables robust regression 
performance across different input scales, as shown in Fig. 1.

Support vector machine (SVM)

The Support Vector Machine (SVM) [36] is a widely-used supervised learning algorithm 
that effectively performs classification and regression analysis by constructing one or 
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more hyperplanes to maximally separate data categories. SVM is particularly effective 
in small datasets and low-dimensional spaces, as SVM’s kernel-based dimensionality 
transformation enables effective classification even with limited samples.

In our analysis, while SVM performed well for basic classification tasks, it 
showed notable limitations with our high-dimensional bioinformatics datasets. The 
computational burden became prohibitive when processing feature vectors in the order 
of thousands, particularly during kernel optimization. These constraints significantly 
impacted the model’s practical applicability for large-scale genomic analyses. 
Additionally, SVM faces challenges in processing nonlinear and complex patterns, 
particularly in time-series data analysis, where data typically includes time-dependent 
and dynamically changing features.

Deep forest

Deep Forest [37], also known as cascade forest, is an emerging machine learning 
framework based on ensemble learning principles, which constructs a multi-layered 
model structure of decision trees. Each layer’s output serves as the input for the next 
layer, creating a multi-tiered decision system. This model excels in certain machine 
learning tasks, especially in handling data with complex structures and inter-feature 
relationships. In our study, Deep Forest demonstrated certain advantages in processing 
structured data such as tabular data, particularly when non-linear relationships between 
features existed. However, when applied to time-series data, despite its ability to handle 
complex relationships between features to some extent, Deep Forest did not perform 
as well as deep learning methods like ResNet in capturing the continuity and dynamic 
changes inherent in time-series data. Time-series data typically involves dependencies 
over time, which necessitates a model capable of capturing and utilizing these 
dependencies for effective prediction, an area where the static structure of Deep Forest 
shows limitations.

Results
DeepMethyGene accurately predicts gene expression using DNA methylation

To ensure the validity of data utilization and the equity of result comparison, we 
employed a five-fold cross-validation method to evaluate multiple computational 
models, including DeepMethyGene, geneEXPLORE, Support Vector Machine 

Fig. 1 Framework of DeepMethyGene. This diagram illustrates the framework of DeepMethyGene. Input 
Data: The input is gene expression data from 13,892 genes. The number of methylations between the left and 
right 1 Mb of different gene expression sites is different
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(SVM), and Random Forest, across the same set of 13,982 genes. During this process, 
DeepMethyGene demonstrated the highest predictive performance, achieving a 
mean R2 value of 0.640, which was significantly higher than that of geneEXPLORE 
(0.449), SVM (0.327), and Random Forest (0.374) (Table 1). These results indicate that 
DeepMethyGene, leveraging its convolutional neural network architecture, was able to 
more effectively capture and utilize data features, leading to superior predictive accuracy.

Furthermore, to assess the contribution of the convolutional layers, we conducted 
an ablation study by constructing a variant of DeepMethyGene without convolutional 
layers (NoConvLayer). The results showed that removing the convolutional layers led 
to a considerable drop in performance, with the mean R2 decreasing to 0.360, which 
is significantly lower than the full model’s performance (0.640). This underscores 
the importance of the convolutional layers in enhancing model performance. 
Table  1 provides a detailed summary of the predictive performance across different 
models, further validating the advantages of DeepMethyGene in processing complex 
bioinformatics data with deep learning technology.

Considering the presence of both cancer and normal samples in the dataset, to 
minimize the potential impact of sample heterogeneity on model performance and 
generalization ability, we retrained the model using a dataset that exclusively comprised 
normal samples, as shown in Fig. 2A. Compared to the predictive performance obtained 
from training with all samples (R2 = 0.640), DeepMethyGene maintained a high level 
of predictive accuracy for normal samples (R2 = 0.628). Therefore, we chose all samples 

Table 1 Comparison of gene expression prediction performance across models

The table presents the predictive performance of DeepMethyGene compared to DeepMethyGene (NoConvLayer), 
geneEXPLORE, SVM, and Random Forest. The P-value indicates the significance level of the performance difference between 
each model and DeepMethyGene, calculated using Wilcoxon signed-rank test

Method Mean Median Std Max Min P-value

SVM 0.327 0.317 0.132 0.767  − 0.357 < 0.0001

RandomForest 0.374 0.365 0.139 0.936  − 0.108 < 0.0001

geneEXPLORE 0.449 0.452 0.141 0.938 0.005 < 0.0001

NoConvLayer 0.360 0.358 0.205 0.932 0.001 < 0.0001

DeepMethyGene 0.640 0.641 0.133 0.957 0.165

Fig. 2 Predictive performance of DeepMethyGene on different datasets. (A) The predictive performance of 
the model trained exclusively on the BRCA dataset of normal samples  (R2 = 0.628) is comparable to that of 
the model trained on all samples  (R2 = 0.640). (B) Predictive performance of the model evaluated across three 
independent datasets: LUAD  (R2 = 0.640), GBM  (R2 = 0.696), and COAD  (R2 = 0.668)
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containing cancer and normal samples as the data set, with more sample data and thus 
better results.

We evaluated its performance on three independent datasets, which encompassed 
colorectal adenocarcinoma (COAD), glioblastoma multiforme (GBM), and lung 
adenocarcinoma (LUAD), respectively, as illustrated in Fig.  2B. The results showed 
that the model’s predictive performance on these three datasets was comparable to 
its performance on the breast invasive carcinoma (BRCA) dataset, with  R2 values 
of 0.668, 0.696, and 0.640 for the COAD, GBM, and LUAD datasets, respectively. We 
demonstrated that DeepMethyGene exhibits good predictive performance across 
different TCGA subsets, reflecting its strong generalization and robustness.

The prediction performance is influenced by the number of CpGs near a gene

In our analysis of the predictive performance of DeepMethyGene across 13,982 genes, 
we observed a significant correlation between the accuracy of the predictions and 
the density of methylation sites within a 1 Mb radius of the gene locus. Specifically, 
there appears to be a relationship between the concentration of methylation sites and 
predictive accuracy. Additionally, a comparative analysis was conducted between the 
predictions of DeepMethyGene and another predictive tool, geneEXPLORE. The results 
indicated that DeepMethyGene’s predictions, as measured by the  R2 value, surpassed 
those of geneEXPLORE for 13,734 genes, while for 248 genes, the performance was 
inferior. This outcome is directly associated with the number of methylation sites 
(Fig. 3A).

To further investigate this phenomenon, we analyzed the relationship between model 
performance and methylation site density. Our results showed that the comparative 
advantage of DeepMethyGene over geneEXPLORE diminished as methylation site 
numbers increased (Fig.  3B). This inverse correlation suggests that dense methylation 
patterns may introduce signal complexity that affects DeepMethyGene’s prediction 
accuracy. These findings highlight how methylation site distribution patterns influence 
model effectiveness, an important consideration for future algorithm development.

Fig. 3 Relationship between the number of methylation sites and predictive outcomes of geneEXPLORE 
and DeepMethyGene. (A) Illustrates that the number of methylation sites within a 1 Mb radius of the gene 
expression loci affects the predictive performance of both DeepMethyGene and geneEXPLORE. As observed, 
DeepMethyGene demonstrates superior performance compared to geneEXPLORE in regions with relatively 
lower methylation site density. (B) Illustrates the relationship between the differential predictive performance 
of DeepMethyGene and geneEXPLORE in terms of the  R2 value for gene expression predictions and the 
number of methylation sites. Compare =  R2(DeepMethyGene) −  R2(geneEXPLORE). The results indicate that 
a lower number of methylation sites corresponds to a superior predictive performance of DeepMethyGene 
over geneEXPLORE
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The prediction performance is associated with the distance between CpGs and genes

Our study analyzed gene expression predictions across 13,982 genes using 
DeepMethyGene, revealing a strong relationship between prediction accuracy 
and methylation site proximity to transcription start sites (TSS). We compared 
DeepMethyGene’s performance with geneEXPLORE to evaluate the strengths and 
limitations of different prediction approaches. The comparative analysis provided key 
insights into how spatial distribution of methylation sites influences prediction accuracy. 
Our findings indicated that DeepMethyGene surpassed geneEXPLORE in predictive 
 R2 values for 13,734 genes, while it underperformed for 248 genes. This variation 
in predictive accuracy appears to be associated with the average distance between 
methylation sites and gene TSS (Fig. 4A).

We further analyzed the relationship between the methylation sites and the average 
distance of the TSS. Our analysis showed that DeepMethyGene achieved better 
prediction accuracy  (R2) than geneEXPLORE when methylation sites were located 
closer to the TSS (Fig.  4B). This spatial dependence indicates that the distribution of 
methylation sites around the TSS significantly affects the performance of the model. The 
improved prediction accuracy in the proximal region may reflect the enhanced ability of 
DeepMethyGene to capture local regulatory patterns.

Conclusions
In this study, we used 450K methylation array data and gene expression data from 
TCGA dataset to construct DeepMethyGene, a novel deep learning method that can 
predict gene expression data. One of the key challenges in methylation analysis is the 
inconsistency in the number and location of methylation sites across different genes. 
Therefore, we built an adaptive recursive convolutional neural network to solve this 
problem. Compared to the traditional geneEXPLORE framework, DeepMethyGene can 
dynamically adjust the number of channels based on the different input dimensions, to 
efficiently extract features from complex methylation profiles, which not only ensures 
the prediction accuracy, but also improves the computational efficiency.

Fig. 4 The average distance between the transcription start sites and methylation sites influences the 
difference in  R2 values between DeepMethyGene and geneEXPLORE. (A) Suggests that the average 
distance between transcription start sites and methylation sites impacts the differential  R2 values between 
DeepMethyGene and geneEXPLORE. DeepMethyGene tends to outperform geneEXPLORE when the 
average distance is comparatively smaller. (B) Illustrates the relationship between the differential predictive 
performance of DeepMethyGene and geneEXPLORE in terms of the  R2 value for gene expression 
predictions and the average distance between transcription start sites and methylation sites. Compare 
=  R2(DeepMethyGene) −  R2(geneEXPLORE). The results indicate that a lower average distance corresponds to 
a superior predictive performance of DeepMethyGene over geneEXPLORE
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Another core framework of our model is ResNet, which has many advantages that 
can be used to better cope with our problem of learning the complex relationship 
between methylation data and gene expression. The results also show that our model has 
advantages over the traditional algorithms (elastic network, SVM and random forest) of 
geneEXPLORE. In addition, in terms of data selection and processing, we converted the 
methylation β values into m values to achieve a Gaussian-like data distribution, which 
also improved the statistical properties and predictive stability of the model. Future 
research may extend the application of this model to a broader range of time series 
analysis tasks and further optimize the network structure to improve predictive accuracy 
and generalization ability, which is crucial for understanding the molecular mechanisms 
of diseases and developing effective treatment strategies.
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