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Abstract 

The primary goal of predictive modeling for compositional microbiome data is to bet-
ter understand and predict disease susceptibility based on the relative abundance 
of microbial species. Current approaches in this area often assume a high-dimensional 
sparse setting, where only a small subset of microbiome features is considered 
relevant to the outcome. However, in real-world data, both large and small effects 
frequently coexist, and acknowledging the contribution of smaller effects can sig-
nificantly enhance predictive performance. To address this challenge, we developed 
Bayesian Compositional Generalized Linear Mixed Models for Analyzing Microbi-
ome Data (BCGLMM). BCGLMM is capable of identifying both moderate taxa effects 
and the cumulative impact of numerous minor taxa, which are often overlooked 
in conventional models. With a sparsity-inducing prior, the structured regularized 
horseshoe prior, BCGLMM effectively collaborates phylogenetically related moder-
ate effects. The random effect term efficiently captures sample-related minor effects 
by incorporating sample similarities within its variance-covariance matrix. We fitted 
the proposed models using Markov Chain Monte Carlo (MCMC) algorithms with rstan. 
The performance of the proposed method was evaluated through extensive simula-
tion studies, demonstrating its superiority with higher prediction accuracy compared 
to existing methods. We then applied the proposed method on American Gut Data 
to predict inflammatory bowel disease (IBD). To ensure reproducibility, the code 
and data used in this paper are available at https:// github. com/ Li- Zhang 28/ BCGLMM.
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Introduction
Compositional data exclusively depict relative abundances, such as, relative abun-
dance of chemical elements in a mineral, the relative abundance of various nutrients 
in a food type, or the relative abundance of species in microbiome data [1]. In com-
positional data, the sum over the amounts of all components is fixed, so each com-
ponent cannot vary independently [2]. This fixed-sum constraint makes modeling 
compositional data as predictors in generalized linear models inapplicable, as com-
positional data is not full-rank and the variance matrices are always singular. Thus, 
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modeling compositional data and performing variable selection has been a barrier in 
recent years.

In 1982, Aitchison et  al. laid the foundation for compositional data analysis by 
introducing a linear log-contrast model that employed the additive log-ratio trans-
formation [3]. This transformation involves selecting one component as a reference 
and applying a log-ratio transformation to the remaining components, effectively 
addressing the constant-sum constraints. To address the singular challenge in a high-
dimensional setting, where the dimensionality is comparable to or much larger than 
the sample size, various extensions have been proposed. Lin et  al. proposed an l1 
regularization method for linear log-contrast model for variable selection [4]. They 
introduced a coordinate descent method of multipliers for efficient computation. The 
zero-sum constraint on the variable coefficients ensures that the model is equiva-
lent to a log-contrast model and invariant to sample-specific scaling. Building upon 
these foundations, Zacharias et al. applied an elastic-net regularization to the logistic 
zero-sum model [5]; in 2019, Lu et al. extended their idea to generalized linear regres-
sion framework and developed a de-biased procedure to obtain asymptotically unbi-
ased and normally distributed estimates [6]. Calle et al. performed variable selection 
through elastic-net penalization on generalized linear model containing all possible 
pairwise log-ratios [7].

In addition to the aforementioned techniques, more advanced and sophisticated meth-
ods have emerged to address the phylogenetic correlation among taxa in high-dimen-
sional compositional microbiome data. For instance, Zhang et al. employed a Bayesian 
framework, utilizing a generalized transformation approach and a z-prior to effectively 
handle the constraints inherent to compositional data [8]. This approach further incor-
porates an Ising prior, designed to promote the joint selection of microbiome features 
that exhibit close genetic sequence similarity, providing a more comprehensive under-
standing of the microbiome structure. Furthermore, Zhang et al. have proposed a Bayes-
ian approach that utilizes a structured regularized horseshoe prior for variable selection 
[9]. This approach also incorporates a soft sum-to-zero constraint to ensure compliance 
with the inherent compositionality of the data. By integrating the structured regularized 
horseshoe prior, this method facilitates effective variable selection while considering the 
potential dependencies and interactions among microbiome features.

All these methods are developed within the context of a high-dimensional sparse set-
ting, where the underlying assumption that only a limited set of predictors influences the 
final outcome. However, in real-world scenarios, it is often more realistic to acknowledge 
that, alongside these large effects, there exists a multitude of smaller effects. Recognizing 
and incorporating these small effects can be instrumental in enhancing the predictive 
power of models.

To address this challenge, we propose the incorporation of generalized linear mixed 
models. In contrast to traditional sparse models, generalized linear mixed models effec-
tively assume that each predictor contributes to the outcome, with effect sizes follow-
ing a normal distribution. Drawing inspiration from the Bayesian Sparse Linear Mixed 
Model by Zhou et al. [10], which provides a hybrid approach combining the benefits of 
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sparse and mixed models, we introduce the Bayesian Compositional Generalized Linear 
Mixed Models for Analyzing Microbiome Data (BCGLMM) to bridge this gap.

The BCGLMM consists of a standard generalized linear mixed model, with a random 
effect term and a structured regularized horseshoe prior applied to the compositional 
predictors. The structured regularized horseshoe prior can effectively capture the poten-
tial phylogenetic relatedness among taxa when selecting for moderate effects, while 
the random effect term can effectively accumulate the combined effects of the numer-
ous small contributors for each sample. Further, to address the fixed-sum constraint in 
compositional data, we utilize a soft sum-to-zero restriction on coefficients through the 
use of prior distribution. This comprehensive model not only considers both major and 
minor contributors but also respects the unique compositional nature of the data, mak-
ing it a valuable tool for predictive modeling in high-dimensional compositional micro-
biome research.

The paper is structured as follows. In Sect. Methods, we describe our proposed model, 
including formula specifications and prior distribution. We then present a performance 
evaluation of the proposed method on simulated data in Sect. Simulation studies  and 
apply the method to identify bacterial genus associated with Inflammatory bowel dis-
ease (IBD) levels in American Gut Project questionnaire in Sect. Real date application. 
Section Discussion includes a discussion.

Methods
Model specification

Suppose y = (y1, y2, · · · , yn) is an n-vector response, and X = (xij) are n×m matrix of 
covariates with the constraints, 

∑m
j=1 xij = 1 and xij ≥ 0 . These covariates are referred 

to as compositional variables. In microbiome data, these covariates X are relative abun-
dances of m taxa, i.e., the observed counts divided by the total sequences.

The Bayesian Compositional Generalized Linear Mixed Models for Analyzing Micro-
biome Data (BCGLMM) is based on a standard generalized linear mixed model, which 
comprises three key components: the linear predictor η , link function g and data distri-
bution p [11].

The linear predictor η in this model comprises a linear function of the compositional 
variables and one random effect term:

where β include the intercept β0 and slope β1,β2, · · · ,βm . The term u represents subject-
specific random effects that follows a distribution with mean 0 and variance Kν . Fol-
lowing the principles of generalized linear mixed models, u are referred to as “random 
effects”, while β are referred to as “fixed effects” [11]. The mean of the response variable 
is linked to the linear predictor through a link function g:

The distribution of the outcome data y depends on the linear predictor η as well as a dis-
persion parameter φ (1 for Binomial and Poisson distribution), which can be expressed 
as:

(1)
ηi =β0 + xiβ + ui

u ∼MVNn(0,Kν)

(2)µi = E(yi|ηi) = g−1(ηi)
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Due to the constant-sum constraint inherent in compositional data, compositions can-
not vary independently of each other. To accommodate the compositional nature of 
covariates X, a generalized transformation has been proposed [4, 6], and the linear pre-
dictor η can be expressed as:

with β∗ = (β∗
1 ,β

∗
2 , ...,β

∗
m)

T are the m regression coefficients and Z = (z1, z2, · · · , zm) =

{

log(xij)
}

 , 
are the n×m matrix of log-transformation of the original compositional data. In micro-
biome data, many observed counts of taxa are zero, which are typically replaced by a 
small pseudo-count, 0.5 or 0.5 times the minimum abundance before dividing by the 
sum to obtain relative abundance and log-transformation [6, 8].

Following Morris et  al. [12], the sum-to-zero restriction 
∑m

j=1 β
∗
j = 0 can be realized 

through “soft-centers” by assuming

which tightly constrains the sum of β∗ to be within some epsilon of zero.

Prior distribution

A critical issue arises in microbiome data where the number of taxa, m, is typically compa-
rable to or larger than the limited sample size, n. Conventional methods can be nonidentifi-
able when estimating the parameters. To address this, a Bayesian approach can be used by 
specifying prior distributions on the parameters [11].

For the intercept and the dispersion parameter, relatively flat priors can be uti-
lized. For instance, in the context of scaled data, assumptions such as β0~t(3,0,10) and 
φ0~half-t(3,0,10). In case where the model involves other covariates, we can use weakly 
informative priors, for example Cauchy (0, 2.5) [13]. For the compositional coefficients, we 
use the regularized horseshoe prior, a recently developed sparsity inducing prior for high-
dimensional models. The regularized horseshoe prior can be expressed as [14]:

There are three types of parameters in regularized horseshoe prior: the global shrink-
age parameter τ , the local shrinkage parameters �j , and the slab parameter c2 . The global 
shrinkage parameter τ shrinks all the coefficients β∗

j  toward zero, while the heavy-tailed 

(3)Pr(y|η,φ) =

n
∏

i=1

p(yi|ηi,φ)

(4)η = β0 + Zβ∗ + u,

m
∑

j=1

β∗
j = 0

(5)
m
∑

j=1

β∗
j ∼ N (0, 0.001 ∗m)

(6)

β∗
j |�j , τ , c ∼ N (0, τ 2�̃2j )

�̃
2
j =

c2�2j

c2 + τ 2�2j

�j ∼ half-Cauchy(0, 1)

τ ∼ half-Cauchy(0, 1)

c2 ∼ Inv-Gamma(ν/2, νs2/2)
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half Cauchy priors for the local shrinkage parameters �j allow some of coefficients to 
escape the shrinkage. The slab parameter c2 serves to provide some shrinkage for large 
coefficients, ensuring that the model is always identifiable. The above regularized horse-
shoe prior ensures that small coefficients are heavily shrunk towards zero while large 
coefficients remain large.

Following Piironen and Vehtari [14], we set ν = 4 and s2 = 2 for the slab parameter c2 , 
resulting in a weakly informative prior on c2 . In previous work [9, 15], we have shown 
that the global shrinkage parameter τ with a heavy-tailed Cauchy prior is minimally 
impacted by the choice of the scale; in this article, we use the default setting with a scale 
of 1.

IAR model for phylogenetic relatedness

As discussed in the regularized horseshoe prior, we understand that it is the local scale 
�j that determines the shrinkage severity for the β∗

j  estimates. Phylogenetic related taxa 
should have similar effects, and these similarities can be modeled by dependence upon 
the prior distribution of local scale �j so that species with similar genetic sequence will 
have similar chance of being selected [9, 15].

To model these spatially structured priors, Zhang et.al [9, 15] proposed employing the 
intrinsic autoregressive (IAR) model, a special case of the CAR model [16, 17]. Despite 
having an improper distribution, the IAR model enables the modeling of stronger 
dependencies among variables compared to traditional CAR models and has been effec-
tively used as a prior distribution [17, 18].

To work with these models, �j are log-transformed, with ψj=log(�j ), and ψj ∈ (−∞,∞) . 
ψ thus follows a normal distribution, and with the IAR model, each ψj varies about the 
mean of its correlated neighbors rather than a global mean [9, 15]. The pairwise differ-
ence formula can be expressed as:

Here, i ∼ j indicates taxa i and j i.e., with their weight wij . W = (wij) is the weight matrix, 
measuring the relatedness among taxa. The values of this matrix are determined through 
the analysis of a similarity matrix, assigning greater weights to taxa exhibiting significant 
phylogenetic similarity compared to those with relatively lower similarity. Specifically, 
we can construct the similarity matrix via the following transformation of taxonomic 
distance metrics:

where D = (dij) is an m×m taxon-based distance or dissimilarity matrix (e.g., weighted, 
or unweighted UniFrac distance or the Bray-Curtis dissimilarity) [19, 20], D(2) is the ele-
ment-wise squared distance matrix, I is the m×m identity matrix, 1 in 1m11′ is the m× 1 
vector of ones.

(7)p(ψ) ∝ exp







−
1

2

�

i∼j

wij(ψi − ψj)
2







(8)W = −
1
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(I−

1

m
11′)D(2)(I−
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m
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Variance structure for sample‑related random effect

The random effect u captures the combined small effects of all markers, with the 
assumption that comparable samples are believed to capture similar effects. Conse-
quently, we have the opportunity to integrate sample similarity into the modeling of 
variance-covariance matrix of u. This matrix of pairwise similarities between individu-
als is defined as the kernel matrix K [21]. For microbiome composition data, the OTUs 
are related by a phylogenetic tree. Kernels that exploit the degree of divergence between 
different sequences can be much more powerful than similarity measures that ignore 
the phylogenetic-tree information [21]. To measure similarities between the microbiome 
compositions among subjects, we construct the kernel matrix K through the following 
transformation of sample distance metrics [22]:

where D = (dij) is an n× n sample-based pairwise distance matrix (UniFrac distance or 
the Bray-Curtis dissimilarity). Here, I is the n× n identity matrix, 1 in 1n11

′ is the n× 1 
vector of ones.

Note that we use D(2) to calculate the weight matrix W and the kernel matrix K. D(2) 
differ in these two formulas: one represents an m×m matrix of squared Euclidean dis-
tances between taxa, while the other represents an n× n matrix of squared Euclidean 
distances between samples.

Algorithm

The proposed method can be implemented in Stan using brms package. The brms pack-
age provides an interface for defining and fitting Bayesian models, making use of the 
powerful Stan platform, which is a C++ package for obtaining full Bayesian inference 
[23]. The package incorporates a highly efficient Markov chain Monte Carlo (MCMC) 
algorithm, specifically the Hamiltonian Monte Carlo (HMC) method and its adaptive 
version known as the No-U-Turn sampler (NUTS) [11]. The Hamiltonian Monte Carlo 
algorithm generates posterior samples for all the parameters from the joint posterior 
distribution, which is defined by the likelihood function and the prior distributions, i.e.,

The posterior sample is then used to summarize the posterior distribution for each 
parameter in various ways. In our simulation studies and real data analyses, we used the 
posterior mean as point estimate.

Evaluation of predictive performance

There are various measures to assess the performance of the fitted model, including devi-
ance, a generic way of measuring the model’s quality defined as −2

∑n
i=1 log(yi|ηi,φ) , 

mean squared error (MSE), defined as 1n
∑n

i=1(yi − ŷi)
2 . For continuous response, R 

squared and mean absolute error (MAE), defined as 1n
∑n

i=1 |yi − ŷi| are considered. For 

(9)K = −
1

2
(I−

1

n
11′)D(2)(I−

1

n
11′)

(10)p(β0,β
∗, τ , �, c2,u|y, z) ∝ p(y|η,φ)p(

m
∑

j=1

β∗)p(β0)p(β
∗)p(τ )p(�)p(c2)p(u)
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binary response, two additional measures can be employed: area under the ROC curve 
(AUC) and misclassification rate, which is defined as 1n

∑n
i=1 I(|yi − ŷi| > 0.5) where 

I(|yi − ŷi| > 0.5) = 1 if |yi − ŷi| > 0.5 and I(|yi − ŷi| > 0.5) = 0 if |yi − ŷi| ≤ 0.5 [24].
To evaluate the predictive performance of the proposed model, a general way is to fit 

the model using a data set (training data), and then calculate the above measures with an 
external data set (validation data). If external data is not available, the commonly used 
method is cross-validation. Vehtari et al. developed an approximate leave-one-out cross-
validation method, which uses the posterior samples from the fitted model to calculate 
the cross-validated quantities without the need to refit the model [9, 25].

Simulation studies
Simulation design

We use simulation to test our proposed approach BCGLMM. The proposed method was 
tested for both continuous and binary outcomes.

We first generated a 400×m (m = 100, 300, 500) data matrix U = (uij) from 
a multivariate normal distribution Nm(θ ,�) , and then used the transforma-
tion xij = e(uij)/

∑m
k=1 e

(uik ) to obtain the relative abundance matrix X = (xij) . Two 
groups of effects β∗

j  , a small number of moderate effects and a larger number of 
small effects, are considered. For the small number of moderate effects, we consid-
ered three sets: one with 0 effects, one with 6 effects and the other with 12 effects. In 
the first set, there are no moderate effects. In the second set, the true coefficients are 
β∗
j  , those j = 16+ 2ι, ι = 1, 2, · · · , 6 . The corresponding 6 nonzero coefficients are 

β∗
j = (2.08, 1.50,−1.16,−0.86,−2.12, 0.56) . In the third set, the true variables are β∗

j  , 
where j = 16+ 2ι, ι = 1, 2, · · · , 12 . The corresponding 12 nonzero coefficients are 
β∗
j = (2.08,−1.41,−1.39,−1.15, 2.12, 0.51, 1.31,−0.95,−0.86, 1.93,−1.34,−0.85) . For 

the larger number of small effects, we explored different quantities of small effects, with 
their proportion set at three levels corresponding to the total number of predictors: 0.2, 
0.5, and 0.7. These small effects were generated from a Normal distribution with a mean 
of 0 and a standard deviation of 0.2. The sum of the effects in the two groups equals 
0. In total, we considered 27 scenarios for both continuous and binary outcomes. For 
each scenario, we replicated the simulation 100 times and summarized the results across 
these replicates.

We let θj = log(0.5m) among the moderate effects and 0 otherwise. Among the 
moderate effect predictors, the covariance is assumed to be �ij = 0.75− 0.015|i − j| , 
while among the small effect predictors, the covariance is assumed to be 
�ij = 0.25− 0.00015|i − j| [8]. This means the correlation between two covariates is 
negatively proportional to their distance. Next, we generated the normal continuous out-
come from the univariate normal distribution N (ηi, 1.6

2) , where ηi =
∑m

j=1 log(xij)β
∗
j  . 

For the binary response, we dichotomized these continuous responses at median by 
setting individuals with 50% largest continuous response as case ( yi = 1 ) and the other 
individuals as control ( yi = 0 ) [26].

In this study, we applied our proposed method in three distinct ways: BCGLMM, 
which considers both the sample-related random effect and predictor relatedness simul-
taneously; BCGLM, which focuses solely on the predictor correlations [9]; and BGLM, 
which ignores both the random effect and predictor correlations. This allowed us to 
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assess how predictor interrelationships and random effects influence model fitting out-
comes. As we know that for now, there is no such paper that has addressed the composi-
tional challenges and random effects, so we did not consider other methods.

Since our application focus on the relationship between y and X, not on interpreting 
estimates of β∗

j  , we will assess the prediction performance of simulation. Deviance, R 
squared, mean absolute error (MAE), and mean squared error (MSE) will be reported 
for continuous responses; deviance, area under the ROC curve (AUC), MSE, and mis-
classification rate (MR) will be reported for binary responses. Note that ideal models will 
have lower values for deviance, MSE, MAE, misclassification rate, and higher values for 
AUC and R squared.

Bray-Curtis distance was employed to calculate dissimilarity matrix D between taxa/ 
sample in our simulation [19]. To evaluate the accuracy of our prognostic model, we uti-
lized the leave-one-out cross-validation technique to assess its prediction performance. 
We implemented the approximate Bayesian leave-one-out cross-validation method [25], 
which is computationally more efficient than exact leave-one-out cross-validation since 
it only requires one evaluation of the model rather than refitting the model n times.

All statistical analyses were performed using R software (version 4.0.5). Our proposed 
method, BCGLMM, R function BCGLM and BGLM were implemented with the brms 
package (version 2.17.0).

Simulation result

Tables  1 and 2 present the prediction performance for continuous and binary out-
comes, respectively, in scenarios involving 6 moderate effects. Table  1 demonstrates 
that BCGLM, which accounts for predictor intercorrelation, outperforms BGLM across 
all scenarios with lower deviance and lower mean squared error (MSE). This empha-
sizes the significance of considering interrelationships among predictors. In scenarios 
where m = 100 , compared to BCGLM and BGLM, BCGLMM that incorporates sample-
related random effect did not exhibit a clear advantage when the proportion ∈ (0.2, 0.5) . 
However, when the proportion is set to 0.7, BCGLMM begins to show better perfor-
mance. As m ∈ (300, 500) , BCGLMM consistently outperforms the other two methods, 
and this trend becomes more pronounced as the proportion of small effects increases. 
Specifically, when m = 500 , BCGLMM displays significantly higher R-squared values 
and much lower deviance compared to the other methods. For instance, with m = 300 
and a proportion of small effects set at 0.7, the model using BCGLMM has a deviance of 
2388.5 and an R-squared value of 0.814, in contrast to 2621.4 and 0.787 for BGLM. The 
result aligns with expectations, as the random effect u in BCGLMM captures the com-
bined small effects of all markers, and these effects become more evident as the propor-
tion of small effects increases.

A similar trend was observed for binary outcomes, as presented in Table 2. BCGLM, 
which incorporated predictor correlations, outperformed BGLM, exhibiting lower devi-
ance and higher AUC. This trend became more apparent as the number of predictors 
and the proportion of small effects increased. In contrast to continuous outcomes, when 
m = 300 , BCGLMM demonstrated superior performance compared to BCGLM and 
BGLM for binary outcomes.
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In Supporting information Tables  1 and 2, we present the prediction performance 
for continuous and binary outcomes, respectively, in set 1 when there are no moderate 
effects. Similarly, in Table 3 and Table 4, we display the prediction performance for con-
tinuous and binary outcomes, respectively, in scenarios involving 12 moderate effects. 
A very similar trend to that observed in scenarios with 6 moderate effects is seen for 
continuous outcomes. As depicted in Fig. 1, the superiority of BCGLMM becomes even 
more pronounced for continuous outcomes in scenarios with 12 moderate effects, par-
ticularly for m ∈ (300, 500) . In the case of binary outcomes, BCGLMM consistently out-
performs the other two methods in all the scenarios with 12 moderate effects. Figure 2, 
which compares the deviance for binary outcomes, further emphasizes the increased 
superiority of BCGLMM in scenarios with 12 moderate effects compared to scenarios 
with 6 moderate effects.

In summary, the methods exhibit good convergence when m ∈ (100, 300) for both con-
tinuous and binary responses. When m = 500 , a modification is introduced by replacing 
the half-Cauchy priors for the local parameters �j with half-t priors with 3 degrees of 

Table 1 Model performance comparison between the proposed methods for continuous 
outcomes with 6 moderate effects

‡ Proportion: the proportion of small effects corresponding to the total predictors. BCGLMM, which considers both the 
sample-related random effect and predictor correlations simultaneously; BCGLM, which focuses solely on the predictor 
correlations; and BGLM, which ignores both the random effect and predictor correlations

m Proportion‡ Model Deviance R
2 MSE MAE

100 0.2 BGLM 1907.1 0.670 2.930 1.363

BCGLM 1902.9 0.671 2.919 1.360

BCGLMM 1911.2 0.669 2.940 1.365

0.5 BGLM 1976.7 0.714 3.104 1.402

BCGLM 1971.7 0.715 3.091 1.399

BCGLMM 1972.7 0.715 3.094 1.401

0.7 BGLM 2016.5 0.740 3.203 1.424

BCGLM 2012.1 0.741 3.192 1.421

BCGLMM 2009.9 0.742 3.186 1.422

300 0.2 BGLM 2147.6 0.701 3.531 1.503

BCGLM 2130.7 0.704 3.488 1.494

BCGLMM 2089.8 0.712 3.386 1.478

0.5 BGLM 2450.3 0.751 4.287 1.660

BCGLM 2430.6 0.754 4.238 1.651

BCGLMM 2286.1 0.775 3.877 1.584

0.7 BGLM 2621.4 0.787 4.715 1.749

BCGLM 2596.8 0.790 4.654 1.737

BCGLMM 2388.5 0.814 4.133 1.637

500 0.2 BGLM 2282.8 0.720 3.869 1.583

BCGLM 2244.7 0.728 3.773 1.564

BCGLMM 2103.6 0.752 3.421 1.488

0.5 BGLM 2839.0 0.778 5.260 1.849

BCGLM 2765.4 0.786 5.075 1.816

BCGLMM 2300.6 0.832 3.913 1.576

0.7 BGLM 3213.1 0.788 6.195 2.009

BCGLM 3096.6 0.798 5.903 1.961

BCGLMM 2521.0 0.846 4.464 1.676
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freedom. This adjustment effectively addresses the occurrence of divergent transitions 
in the No-U-Turn Sampler (NUTS) due to the heavy-tailed nature of the Cauchy priors. 
For binary responses, we also replace the global parameters τ with half-t priors with 3 
degrees of freedom to avoid problems arising from data separation in logistic regression 
[14].

Real data application
We showcased the efficacy of our proposed method by implementing it on a publicly 
available American Gut Project questionnaire. The project, established to advance our 
knowledge of human microbiomes, involves participants who provided fecal, oral, and/
or integumentary body samples. Additionally, participants completed a self-adminis-
tered questionnaire covering demographics, lifestyle preferences, medical history, and 
dietary patterns. The project offers open-source, open-access 16  S rRNA data catego-
rized by rarefaction depth and sequence trim length [27].

Table 2 Model performance comparison between the proposed methods for binary outcomes 
with 6 moderate effects

‡ Proportion: the proportion of small effects corresponding to the total predictors. MR: misclassification rate. BCGLMM, 
which considers both the sample-related random effect and predictor correlations simultaneously; BCGLM, which focuses 
solely on the predictor correlations; and BGLM, which ignores both the random effect and predictor correlations

m Proportion‡ Model Deviance AUC MSE MR

100 0.2 BGLM 357.3 0.869 0.146 0.217

BCGLM 354.0 0.872 0.145 0.213

BCGLMM 361.3 0.866 0.148 0.219

0.5 BGLM 335.9 0.884 0.137 0.200

BCGLM 333.4 0.886 0.136 0.198

BCGLMM 335.9 0.884 0.136 0.200

0.7 BGLM 333.9 0.885 0.136 0.200

BCGLM 330.9 0.888 0.134 0.197

BCGLMM 328.7 0.889 0.133 0.196

300 0.2 BGLM 360.6 0.864 0.148 0.220

BCGLM 353.2 0.871 0.144 0.215

BCGLMM 350.0 0.874 0.142 0.208

0.5 BGLM 355.3 0.867 0.146 0.215

BCGLM 348.6 0.872 0.142 0.209

BCGLMM 333.3 0.887 0.135 0.196

0.7 BGLM 336.0 0.881 0.137 0.200

BCGLM 327.7 0.888 0.133 0.193

BCGLMM 312.1 0.903 0.124 0.176

500 0.2 BGLM 360.4 0.866 0.147 0.218

BCGLM 344.3 0.880 0.140 0.203

BCGLMM 350.3 0.876 0.142 0.206

0.5 BGLM 344.8 0.878 0.140 0.203

BCGLM 328.6 0.893 0.132 0.187

BCGLMM 332.3 0.891 0.133 0.190

0.7 BGLM 346.3 0.875 0.140 0.203

BCGLM 321.7 0.898 0127 0.177

BCGLMM 327.3 0.895 0.131 0.184
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Our study includes 1002 species for 4684 samples taken from the fecal body site. 
The self-administered questionnaire contains 204 host characteristics, including 
the diagnoses of inflammatory bowel disease (IBD), with 165 of them are IBD cases 
defined by responses “Diagnosed by a medical professional (doctor, physician assis-
tant)” and 4519 IBD control defined by “I do not have this ailment”.

Our analysis aimed to predict IBD event using the 1002 species as predictors. Zero 
count was replaced with 0.5, which is commonly used in microbiome data analysis 
[8], before being divided by the sum to obtain the species composition. The proposed 
method, BCGLMM (mixed effects logistic regression with samplewise random effect 
and structured regularized horseshoe prior here), was applied based on the log-trans-
formed compositions. For comparison, we also fitted the BCGLM (logistic regression 
with structured regularized horseshoe prior) and BGLM (logistic regression with reg-
ularized horseshoe prior) models.

To evaluate the accuracy of our prognostic model, we utilized the approximate 
Bayesian leave-one-out cross-validation method [25]. Model performance was eval-
uated using the area under the ROC curve (AUC). The cross-validated AUC values 
for BCGLMM, BCGLM and BGLM were 0.702, 0.687 and 0.672, respectively. These 
results demonstrate the effectiveness of these models in predicting IBD. Notably, our 
BCGLMM approach, which considers both sample-related random effects and pre-
dictor correlations simultaneously, outperformed the other methods, underscoring 
the strong predictive power of our model and its potential to enhance the diagnosis 
and treatment of inflammatory bowel disease.

Fig. 1 Deviance comparison among the three methods in various scenarios for continuous outcomes. 
BCGLMM considers both the sample-related random effect and predictor correlations simultaneously, BCGLM 
focuses solely on predictor correlations, and BGLM ignores both the random effect and predictor correlations
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Discussion
We have introduced a novel statistical and computational method, Bayesian Composi-
tional Generalized Linear Mixed Models for Analyzing Microbiome Data (BCGLMM). 
This method not only addresses the compositional constraint in estimating the regres-
sion coefficients but also incorporates phylogenetic relationships among bacterial taxa. 
We operate under the biologically plausible assumption that closely related taxa share 
similar effects on the clinical trait.

BCGLMM presents a novel approach to modeling microbiome data, enabling the 
incorporation of both a small number of individually substantial genetic effects and 
the collective impact of numerous small genetic factors. The balance between these 
two types of effects is deduced from the available data. This study marks the first 
attempt to integrate sparse models and mixed models for the analysis of composi-
tional microbiome data. Prior research has predominantly concentrated on sparse 
settings, assuming that only a few predictors among the high-dimensional set are 
nonzero. In our work, we introduce a sparsity-inducing prior, the regularized horse-
shoe prior, which effectively selects for moderate effects. By incorporating a mixed 
model, the random effect term efficiently captures sample-related small effects by 
considering sample similarities as a variance-covariance matrix. This innovative 
approach aims to provide a more comprehensive understanding of microbiome data, 
enhancing our ability to identify relevant factors and relationships.

Fig. 2 Deviance comparison among the three methods in various scenarios for binary outcomes. BCGLMM 
considers both the sample-related random effect and predictor correlations simultaneously, BCGLM focuses 
solely on predictor correlations, and BGLM ignores both the random effect and predictor correlations
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The flexibility and versatility of BCGLMM extend beyond the analysis of continu-
ous outcomes, making it a valuable tool for various types of data. In addition to its 
successful application to binary outcomes, as demonstrated in both simulation and 
real data analyses, BCGLMM can be readily extended to accommodate other types 
of outcomes, such as ordinal, count, or survival data. This adaptability underscores 
the broad utility of our innovative approach, ensuring its relevance in a wide range of 
research areas and applications.

Our work builds upon prior studies of our group [9, 15], further expanding the 
capabilities of this modeling framework. While BCGLMM offers a robust solution for 
analyzing microbiome data, it is essential to acknowledge that, like many posterior 
sampling-based methods, it carries a substantial computational burden. This burden 
stems from the demands on memory and CPU time, which can be significant in large-
scale studies. Despite these challenges, BCGLMM represents a significant advance-
ment in the field of microbiome research, providing a powerful and flexible tool for 
addressing complex data structures with the ability to renew valuable insights.

Conclusion
We have introduced a novel statistical and computational method for disease predic-
tion that utilizes compositional microbiome data. This method effectively addresses 
several critical challenges inherent in compositional microbiome data, including its 
compositional structure, high dimensionality, and phylogenetic relationships. By 
employing a mixed model approach, our method enhances disease prediction by 
effectively combining small effects, thereby improving predictive accuracy. This rep-
resents the first time that these specific challenges have been systematically addressed 
in the context of disease prediction using microbiome data.
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