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Abstract 

Background:  A significant challenge in precision medicine is confidently identifying 
mutations detected in sequencing processes that play roles in disease treatment 
or diagnosis. Furthermore, the lack of representativeness of single nucleotide variants 
in public databases and low sequencing rates in underrepresented populations 
pose defies, with many pathogenic mutations still awaiting discovery. Mutational 
pathogenicity predictors have gained relevance as supportive tools in medical 
decision-making. However, significant disagreement among different tools 
regarding pathogenicity identification is rooted, necessitating manual verification 
to confirm mutation effects accurately.

Results:  This article presents a cross-platform mobile application, DTreePred, 
an online visualization tool for assessing the pathogenicity of nucleotide variants. 
DTreePred utilizes a machine learning-based pathogenicity model, including a decision 
tree algorithm and 15 machine learning classifiers alongside classical predictors. 
Connecting public databases with diverse prediction algorithms streamlines variant 
analysis, whereas the decision tree algorithm enhances the accuracy and reliability 
of variant pathogenicity data. This integration of information from various sources 
and prediction techniques aims to serve as a functional guide for decision-making 
in clinical practice. In addition, we tested DTreePred in a case study involving a cohort 
from Rio Grande do Norte, Brazil. By categorizing nucleotide variants from the list 
of oncogenes and suppressor genes classified in ClinVar as inexact data, DTreePred 
successfully revealed the pathogenicity of more than 95% of the nucleotide variants. 
Furthermore, an integrity test with 200 known mutations yielded an accuracy of 97%, 
surpassing rates expected from previous models.

Conclusions:  DTreePred offers a robust solution for reducing uncertainty 
in clinical decision-making regarding pathogenic variants. Improving the accuracy 
of pathogenicity assessments has the potential to significantly increase the precision 
of medical diagnoses and treatments, particularly for underrepresented populations.
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Background
Advancements in cost reduction and efficiency of genetic and genomic tests have led 
to their widespread adoption in the healthcare sector. These tests are increasingly 
utilized for diagnosing, monitoring, preventing, and treating various diseases, with a 
particular emphasis on cancer [1–5]. However, a typical tumor can harbor thousands 
of mutations, and the genetic heterogeneity can make the unambiguous classification 
of these alterations even more challenging [6, 7]. Thus, the potential benefit of genetic 
tests depends on the correct identification and interpretation of pathogenic genetic 
variants, as they provide a basis for treatment decisions, clinical recommendations, and 
genetic investigations of the patient’s family [8, 9]. A reliable method for identifying the 
pathogenicity of single nucleotide variants (SNVs) may present significant potential 
for studying underrepresented cohorts, which can benefit from genetic counseling or 
precision medicine [10–12]. Families meeting clinical criteria for cancer, in general, 
could benefit from a more precise assessment of pathogenicity for rare nucleotide 
variants, usually classified as variants of uncertain significance (VUS) or conflicting 
data. This identification also provides a basis for effective medicines against diseases 
through association studies that link genetic variants to drug responses [13, 14]. 
Accurate pathogenic nucleotide variant identification must be the first step in medicine 
development, leading to more effective treatments on the basis of a patient’s genetic 
makeup.

Over the last few decades, extensive research has focused on predicting the 
pathogenicity of genetic nucleotide variants, resulting in the development of numerous 
tools, databases, and methodologies [15–17]. However, disagreements regarding the 
pathogenic impact of specific nucleotide variants are more common than expected [18, 
19]. For instance, an analysis of nucleotide variant prediction by classical prediction tools 
revealed discrepancies, such as SIFT classifying the R533H (c.1598G > A) and A4906V 
(c.14717C > T) variants associated with malignant hyperthermia (MH) as neutral, 
whereas Polyphen2 and PANTHER classified them as pathogenic [20]. Furthermore, a 
benchmark study highlighted discrepancies between SIFT and Polyphen2 [21], with an 
accuracy variation between 70 and 80%.

In this context, machine learning (ML) techniques can help solve such disagreements 
and predict pathogenicity with greater accuracy on the basis of the volume and variety 
of available data [20, 22–24]. Recently, our group proposed a decision tree that predicts 
the pathogenicity of Variants of Uncertain Significance (VUS) [25] and validated 
it with the ClinVar database [25, 26]. A decision tree is a machine learning algorithm 
designed to make a sequence of binary decisions on input data, ultimately assigning 
a classification (or label) to the data. It organizes data in a hierarchical tree structure, 
making it particularly suitable for problems where input variables are discrete, the target 
classification is binary, and the model requires clear and interpretable results [27]. The 
tree presented superior accuracy to several consolidated pathogenicity prediction tools, 
including SIFT and PolyPhen, by more than ten percentage points and had a competitive 
advantage over machine learning algorithm models [25]. This algorithm was effectively 
applied in a case involving a patient with Familial Hemophagocytic Lymphohistiocytosis 
(FHL) type 5, characterized by a compound heterozygous phenotype in the STXBP2 
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gene, comprising a known pathogenic mutation and a variant of uncertain significance 
(VUS) not previously linked to FHL [28]. It also enabled the identification of a novel 
pathogenic DDB2 variant, NM_000107.3:c.1027G > C, in a case of Brazilian siblings with 
Xeroderma pigmentosum group E, who developed early-onset melanoma [29]. These 
applications demonstrate that the decision tree not only accurately classifies VUS but 
also identifies variants in underrepresented populations.

The use and evaluation of the available nucleotide variant pathogenicity tools can be 
a challenging task. If the user intends to compare their variant pathogenicity results, 
they must search for information on different websites, which typically do not provide 
any guidance for conflicting results. Similarly, building a machine-learning-based 
pathogenicity prediction tool requires advanced computational skills, a sufficiently large 
database, and well-curated input data to produce reliable models. Thus, creating a user-
friendly application that presents the results of diverse prediction algorithms in one 
place would be highly convenient for clinicians and researchers, who often use varied 
online programs and databases for nucleotide variant information to support their 
clinical decisions [15, 30].

In this article, we present DTreePred, an online viewer for assessing the pathogenicity 
of nucleotide variants. Users can consult predictions generated by a machine learning-
based pathogenicity model, including a decision tree algorithm and 15 machine learning 
classifiers recently proposed by our group [25], in addition to classical predictors. The 
target audience comprises researchers and healthcare professionals directly involved 
in clinical practice, seeking thorough analysis and interpretation of results, especially 
those applicable to populations underrepresented in public clinical databases. We hope 
this viewer will help improve knowledge and reduce uncertainties about pathogenic 
nucleotide variants.

Implementation
ClinVar

ClinVar is a repository created to facilitate the evaluation of nucleotide variants and 
their associations with phenotypes in a simplified manner [26]. It was established by 
combining data from various research teams across the globe to examine and validate 
the feasibility of reaching a consensus on variant analysis outcomes [31]. Its latest version 
(2024–12-08, available at https://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​clinv​ar/) was acquired and 
preprocessed as reported in [25], and the application uses it to provide information 
about the input nucleotide variant passed by the user.

Nucleotide variant annotation and NDamage

Nucleotide variants were annotated for pathogenicity via the dbNSFP database 
[32] (version 4.8a, available at https://​sites.​google.​com/​site/​jpopg​en/​dbNSFP/). 
Pathogenicity data for nucleotide variants were annotated from twenty-one classical 
predictor tools (see Supplementary Table  1) and treated as classification variables 
by the application. This process also obtained allelic frequency information from the 
Exome Aggregation Consortium (ExAC) database [33] and the 1000Genomes database 
[34]. The pathogenicity algorithmic predictions were measured as NDamage, a metric 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/
https://sites.google.com/site/jpopgen/dbNSFP/
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that quantifies the number of classical predictors indicating the nucleotide variants’s 
pathogenicity.

Development of DTreePred

The application implements a decision tree algorithm proposed in [25]. It uses allele 
frequency data (from ExAC and 1000Genomes) and results from 21 classic predictor 
tools (see Supplementary Table 1) to determine the final pathogenicity classification. The 
results are categorized during the annotation phase to generate a meta-prediction, which 
is subsequently presented as an output by the application, referred to as DTreePred.

Machine learning score

The nucleotide variants of the database ClinVar from the period between 2017 and 2019 
were employed to train fifteen pathogenicity classification models, each corresponding 
to one of the following algorithms: AdaBoost, Bagging, Extra Trees, Random Forest, 
Logistic Regression, Bernoulli Naive Bayes, Gaussian Naive Bayes, Decision Tree, 
K-Nearest Neighbors, Multilayer Perceptron, Support Vector Machines (Linear Kernel), 
Nu-Support Vector Machines, Support Vector Machines, Linear Discriminant Analysis, 
and Quadratic Discriminant Analysis. These machine learning algorithms’ predictions 
are presented as an output by the application, referred to as Machine Learning Score. 
The machine learning algorithms implementation used the Scikit-learn framework [35] 
and the in-house scripts for model training written in Python version 3.10 [36].

In this study, the machine learning algorithms implemented represent five distinct 
classification strategies. These approaches were designed to capture various data 
characteristics, with the goal of enhancing the robustness and accuracy of predictions. 
The strategies include:

•	 Ensemble methods: SKLearn Decision Tree, Extreme Gradient Boosting, Ada Boost, 
Bagging, Random Forest, and Extra Trees, which combine multiple decision trees to 
improve precision.

•	 Proximity-based models: K Nearest Neighbors, which classifies data based on 
Euclidean distances and sample neighborhoods.

•	 Hyperplane separation: Linear Discriminant Analysis, Linear SVMs (with RBF and 
Linear kernels), Nu-SVC, and Quadratic Discriminant Analysis, which classify 
samples by dividing the data representation space with hyperplanes.

•	 Optimization-based models: Logistic Regression and Multilayer Perceptron (a 
neural network with one hidden layer of 100 neurons), which optimize specific 
mathematical functions to allocate samples to their respective classes.

•	 Bayesian probabilistic approaches: Bernoulli Naive Bayes and Gaussian Naive Bayes, 
which use conditional probabilities for predictions.

The algorithms were trained and validated using the 10-fold Cross-Validation method. 
In this approach, the data were divided into 10 subsets; in each iteration, one subset 
was used for testing, while the remaining nine were used for training. This procedure 
was repeated for all possible combinations, ensuring a robust evaluation of model 
performance. Finally, to avoid potential biases, we identified human paralogous genes 
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using the BioMart [37] tool from Ensembl and removed them from the training dataset. 
A total of 6,363 paralogous genes were selected and used to filter the dataset previously 
published in [25], resulting in a reduction of approximately 25% in its original size.

The variety of implemented approaches allows for a thorough evaluation of both 
pathogenic and neutral mutations by leveraging diverse data patterns. Ensemble 
methods, for example, excel at capturing complex interactions between variables, while 
probabilistic models provide confidence estimates critical for clinical interpretation. 
Employing multiple strategies is essential for minimizing biases and enhancing the 
reliability of predictions in clinical evaluations.

For DTreePred, the integration of different approaches converging on the same 
pathogenicity classification strengthens the robustness of the results. To this end, we 
established a meta-prediction threshold, requiring at least six distinct pathogenicity 
classifications for the Machine Learning Score variable to categorize a mutation as 
pathogenic. This threshold ensures that the classification reflects input from at least two 
different classification strategies among the five utilized.

The algorithm implementations, along with the training, validation, and test datasets 
described in this study, were previously published in [25] and employed in the current 
implementation of DTreePred.

Application programming interface (back‑end)

The Spring Boot extension (https://​spring.​io/​proje​cts/​spring-​boot) is used to implement 
the back-end of the system application and is the only component that communicates 
directly with the application interface. It is responsible for communicating with the 
dbNSFP database to obtain results from classical predictors [32], which are indexed 
via the Tabix system [38]. Indexing allows for efficient retrieval of data files related 
to genomic variants. The API also communicates with a secondary API developed 
in Flask [39] to obtain prediction results from machine learning algorithms. The 

Fig. 1  Development and use of DTreePred. ClinVar and dbNSFP data, as well as clinical and genomic data, 
are collected, processed, and annotated. Users can text input SNVs or upload SNVs in a tab-separated or Excel 
file for real-time exploration and interpretation

https://spring.io/projects/spring-boot
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Java + Spring Boot REST API handles communication with the application and manages 
user and prediction management tasks. Figure  1 illustrates the API communication 
architecture.

Interface (front‑end)

The mobile application interface was implemented using Flutter version 2.2.1 [40] and 
Dart version 2.13.1, which are available at https://​dart.​dev/, to provide an intuitive 
and user-friendly interface. The design of the interface followed the practices manual 
provided by Pragmatic Flutter [41], and the architecture followed the business logic 
components (BLoC) standard [42].

Filters

The DTreePred application incorporates a set of filters to enhance variant analysis 
and interpretation. These filters include NDmage and Machine Learning Score, 
which assess the pathogenicity of variants based on multiple predictors and machine 
learning algorithms. In addition to these scores, DTreePred leverages a curated list of 
gene groups from various sources, providing context-specific insights. These gene 
groups enrich variant analysis by offering a context-specific perspective, facilitating 
a more comprehensive understanding of the potential pathogenicity and relevance 
of the nucleotide variants analyzed. These include eleven lists related to DNA repair 
(237 genes), DNA replication (243 genes), oncogenes (71 genes), tumor suppressors 
(242 genes), KEGG pathways (145 and 36 genes), hallmark cancer genes (1557 genes), 
hereditary cancer genes (59 genes), and high-functional impact germline polymorphisms 
(Supplementary Table 2).

General results
DTreePred is a mobile application designed to predict pathogenic nucleotide variants 
and reconcile predictor discrepancies. We tested DTreePred in an integrity test with 200 
variants from ClinVar[26], 172 variants from Leiden Open Variation Database(LOVD, 

Table 1  Features Comparison of Variant Viewers

*Only for 72 h

Features dbNSFP VEP Web PROVEAN CADD SNPnexus FAVOR DTreePred

Presents the results of classic 
predictors

✓ ✓ ✓ ✓ ✓ ✓ ✓

Stores the inquiries requested by 
users

✓ * ✓

Human reference genome, 
version GRCh38—hg38

✓ ✓ ✓ ✓ ✓ ✓

Human reference genome, 
version GRCh37—hg19

✓ ✓ ✓ ✓ ✓ ✓

Presents predictions based on ML 
algorithms

✓

Provide decision-making 
guidance for conflicting data

✓

Presents a native application for 
mobile devices

✓

Mobile responsive ✓ ✓ ✓

https://dart.dev/
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available at Leiden Open Variation Database https://​datab​ases.​lovd.​nl/​shared/​varia​nts) 
[43], whose classification was already known, 557 variants from previously published 
deep mutational scanning (DMS) experiments [44] and also in a case study composed 
of a cohort of a population from Rio Grande do Norte, Brazil. Developed to be user 
friendly, it enables healthcare professionals and researchers to efficiently access a final 
recommendation on the pathogenicity of a given genetic nucleotide variant. Figure  1 
illustrates the development process, features, and workflow. The app is accessible at the 
following link: https://​bioin​fo.​imd.​ufrn.​br/​dtree​pred/.

Upload/Input of genetic loci and data requests for SNVs for clinical interpretation 

and genetic reports

DTreePred’s intuitive interface allows users to request predictions and analyze 
nucleotide variants. After the user registers or logs in (Fig. 2A), the user will enter the 
prediction screen. If there are no previous predictions, the user begins by clicking the 
‘ + ’ button (Fig. 2B). To initiate a prediction request, users must enter information such 
as chromosome number, position, reference allele, and alternate allele of the genetic 
nucleotide variant (Fig.  2C). By providing these parameters, DTreePred verifies the 
validity of the chromosome and position. The request is submitted to the back-end 
server, processed, and redirected to the results page at the front end.

Guide for decision‑making

The query results are displayed on a screen with all prediction requests (Fig. 3A). The 
first highlighted information is the DTreePred result, which indicates whether the 
nucleotide variant classification is pathogenic or neutral. The screen provides the 
number of classical predictors (NDamage: out of 21) and machine learning algorithms 

Fig. 2  DTreePred initial screens. A App home screen. B Prediction display screen without results. If there are 
no predictions, the user begins by clicking the ‘ + ’ button. C Submission screen. The user must provide either 
the genomic coordinates (chromosome number, position, reference, and alternate alleles) or a Variant Call 
Format (VCF file) containing the variants (https://​samto​ols.​github.​io/​hts-​specs/​VCFv4.5.​pdf )

https://databases.lovd.nl/shared/variants
https://bioinfo.imd.ufrn.br/dtreepred/
https://samtools.github.io/hts-specs/VCFv4.5.pdf
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(Machine Learning Score: out of 15) that reported pathogenic nucleotide variants, 
emphasizing the consensus among them. Additionally, if the nucleotide variant is 
present in the ClinVar database, its classification status is also displayed, providing 
valuable insights from a widely recognized and curated database of genetic variations 
(Fig. 3A). If it is not practicable to perform the prediction, an error message is exhibited.

These visual elements of DTreePred allow a better assessment of pathogenic 
nucleotide variants by incorporating multiple methods, predictors, and public data from 
established databases, generating information of greater accuracy and clinical relevance. 
It is essential to highlight that the ML algorithms have already demonstrated significant 

Fig. 3  DTreePred result screens. A Overall result, presenting DTreePred displayed as ‘N’ (neutral) or ‘P’ 
(pathogenic), and the number of classical predictors (NDamage) and ML algorithms (Machine Learning 
Score) that predict a pathogenic variant. If the variant is present in ClinVar, it is also displayed. B Advanced 
search screen to customize the query results. The user can filter the results by prediction scores, gene list, 
or final prediction. C Results from each of the 21 classical predictors. D Results from each of the 15 ML 
algorithms
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accuracy compared with classical predictors [25]. Furthermore, these algorithms operate 
independently and offer a unique and valuable assessment that is not implemented in 
other tools.

Additional features and analyses provide advanced insights

To facilitate the analysis and improve visualization, we implemented filters to display a 
specific subset of the requested nucleotide variants (Fig. 3B). In the application, users 
can select the following options: (i) Machine Learning Score and NDamage: define a 
minimum score for the respective filters; (ii) List of Genes: chooses a predefined list of 
genes (Supplementary Table 2) or upload a customized list from a file; (iii) DTreePred: 
choose the type of decision tree algorithm results displayed on the application (neutral 
or pathogenic).

The user can check the results of each of the classical predictors on Ndamage (Fig. 3C) 
or machine learning algorithms on Machine Learning Scores (Fig.  3D) by clicking on 
their scores. These screens provide a comprehensive view of the assessment of each 
variant pathogenicity predictor, allowing users to evaluate individual predictions.

Comparison of Variant Viewers

The current pathogenicity predictor tools fulfill the functions of variant prediction and 
visualization. However, there are various technological limitations, spanning from the 
absence of adaptability for mobile devices to the lack of incorporation of new prediction 
techniques. The DTreePred implements and enhances new features compared with 
various online variant visualization systems, including dbNSFP [32], VEP [45], 
PROVEAN [46], CADD [47], SNPnexus [48–52] and FAVOR [53]. It offers several 
functionalities and improvements, such as presenting the results of classic predictors, 
storing user queries, mobile responsiveness, providing a native mobile application, 
making predictions based on machine learning algorithms, and offering guidance 
for decision-making on conflicting data. In Table  1, we present a comparison of the 
functionalities between DTreePred and online variant viewer systems.

Integrality test

We evaluated the performance of three prediction results from the application 
(DTreePred, NDamage, and Machine Learning Score) using 200 nucleotide variants 
with known pathogenicity (100 pathogenic and 100 neutral) sourced from the ClinVar 
database and not present in the training dataset of the ML algorithms. The confusion 
matrix presented in Table  2 provides a comprehensive view of each predictor’s 
performance concerning the expected classes (pathogenic and neutral) and the 
predicted classes. The decision tree output (DTreePred) demonstrated robust capability 
in identifying variants with potential negative impacts (99% sensitivity) as well as 
neutral variants (97% sensitivity). The NDamage classifiers exhibited solid proficiency 
in detecting variants with the possibility of deleterious effects; however, they displayed 
lower effectiveness for neutral variants (87% success rate for pathogenic variants, 77% 
for neutral variants). ML algorithms demonstrated balanced performance across both 
classes (95% success rate for pathogenic variants, 90% for neutral variants).
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Additionally, to address concerns about potential circular annotation issues within 
ClinVar, we extended the benchmarking to include an independent dataset derived from 
the Leiden Open Variation Database (LOVD, version 3). Variants were filtered based 
on ACMG classification criteria, excluding synonymous variants, variants of uncertain 
significance (VUS), and those annotated as heterozygous, homozygous, or "different". 
The results, summarized in Supplementary Table  3, indicate that the DTreePred 
achieved 94.77% precision (163 correctly classified out of 172 variants available), 
corroborating its robustness across diverse datasets.

Finally, to address potential annotation issues and biases arising from manual 
curation, we conducted a benchmarking analysis using a dataset derived from previously 
published deep mutational scanning (DMS) experiments. As a baseline, we utilized the 
supplementary data available in the article https://​doi.​org/​10.​15252/​msb.​20199​380 [44]. 
In a second step, to perform double-checking with datasets that were not manually 
annotated, we also included data from AlphaMissense [54] in our comparison.

We chose to focus on data related to the BRCA1 gene due to its high relevance in 
cancer research, in addition to having DMS experiments from two distinct studies [55, 
56]. For accuracy calculations, we used the growth rate-based assay [55] as a reference, 
as it demonstrated superior performance compared to other assays.

Variants with DMS values less than zero were classified as pathogenic, while variants 
without DMS data in the growth rate-based assay were considered neutral. For these 
variants without DMS data, we applied an additional filter to exclude those with 
significant discrepancies in pathogenicity status — specifically, variants labeled as 
neutral in the original dataset but with more than 10 classical predictors indicating 
pathogenicity.

The results, summarized in Table 3 and Supplementary Table 4, show that DTreePred 
achieved the highest accuracy among all evaluated predictors, confirming its robustness 
across different datasets. Specifically, DTreePred reached an accuracy of 96.95% for 
the DMS dataset (540 correctly classified out of 557 variants) and 96.72% for the 
AlphaMissense dataset (530 correctly classified out of 548 variants).

Table 2  Confusion matrices of the classification performance of the predictors on 200 recent 
variants (pathogenic and neutral) deposited in ClinVar

*Precision: True positive (pathogenic)/(true positive (pathogenic) + false positive (pathogenic))

**Recall: True positive (pathogenic)/(true positive (pathogenic) + false negative (neutral))

Expected class

Pathogenic Neutral

DTreePred (Precision* and Recall**: 97.06% and 99.00%)

Predicted class Pathogenic 99 3

Neutral 1 97

NDamage (Precision* and Recall**: 79.09% and 87.00%)

Predicted class Pathogenic 87 23

Neutral 13 77

ML (Precision* and Recall**: 90.48% and 95.00%)

Predicted class Pathogenic 95 10

Neutral 5 90

https://doi.org/10.15252/msb.20199380
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When compared to other meta-predictors, such as MetaSVM, Envision, and REVEL, 
DTreePred outperformed them in both datasets. For the DMS dataset, MetaSVM 
achieved an accuracy of 93.72%, Envision 93.36%, and REVEL 92.82%, which are all lower 
than DTreePred’s performance. A similar trend was observed in the AlphaMissense 
dataset, with MetaSVM and REVEL showing accuracies of 92.70% and 92.88%, 
respectively, while Envision slightly improved to 94.16%, yet still below DTreePred.

Traditional variant effect predictors, such as CADD, MutationTaster, PolyPhen, and 
SIFT, exhibited varied performance levels. Among these, CADD demonstrated relatively 
high accuracy, particularly in the AlphaMissense dataset (95.44%), though still slightly 
below DTreePred in this specific comparison.

Lower-performing predictors included FATHMM, PROVEAN, and SIFT, with 
accuracies ranging from 64.81 to 70.74% in the DMS dataset and 60.58 to 67.70% in 
the AlphaMissense dataset. These results highlight the limitations of older algorithms, 
especially when handling diverse and complex variant datasets.

Interestingly, the Machine Learning Score without homologs and with homologs 
models showed moderate accuracy improvements when homologs were excluded, 
suggesting that paralog filtering may enhance model performance.

Overall, these findings demonstrate that DTreePred not only achieves high accuracy 
but also exhibits strong generalizability across datasets with different annotation 
sources, solidifying its potential as a robust tool for variant classification.

A case study

We used our application, DTreePred, to reclassify the variants identified by exome 
sequencing in a study that included 13 young patients (diagnosed under 40 years old) 
diagnosed with gastric cancer (GC) from the Northeast region of Brazil [57]. Initially, 
these patients had negative genetic tests for clinically pathogenic variants (PVs). We 
categorized the variants considering their impact on specific metabolic pathways 
associated with DNA repair and DNA replication (RepRep), DNA repair (DnaRep), 
tumor suppressor genes (Suppressors), protooncogenes (Onco), the CDH1 KEGG 
pathway (N258_257_61), gastric cancer KEGG (h18 and ko05226), and the list of 
genes for hereditary cancer from the NCCN (Hereditary_CanGenes). Genetic lists are 
available in the filter section of DTreePred.

The effectiveness of utilizing pathogenicity predictors in clinical settings hinges on 
accurately identifying and interpreting potentially pathogenic genetic variants. This 
comprehension is pivotal for guiding treatment decisions, clinical recommendations, 
and genetic investigations among other family members of the patient. In the present 
case study, DTreePred played a crucial role, as over 95% of the variants identified in the 
oncogenes and tumor suppressor genes lists were classified in the ClinVar database as 
conflicting data (C), variants of uncertain significance (U), or not found (NF). DTreePred 
managed to classify all these variants as Neutral or Pathogenic (Fig. 4).

We also analyzed the distribution of genetic effects for variants in oncogenes 
and tumor suppressor genes. The DTreePred classification proved promising in 
differentiating patients with long or short overall survival. Patients in stages III or IV 
presented more pathogenic variants than those in stages II or III (Fig. 5A). The number 
of pathogenic variants in those genes correlated with advanced tumor stages without 
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observed associations in other pathways (DTreePred Gene Lists). More importantly, 
Kaplan‒Meier curves revealed a significant association (log-rank test p-value: 0.0447) 
between overall survival and the number of pathogenic variants in oncogenes and tumor 
suppressor genes (Fig. 5B). These results highlight the clinical impact of these nucleotide 
variants on disease progression and patient overall survival.

This example highlights the potential of DTreePred in clinical and scientific routines. 
It’s essential to emphasize that without this tool, this study would not have attained 
such outcomes; over 95% of the variants were classified as conflicting data, VUS, or not 
found in the ClinVar database. Additionally, approximately 50% of the variants were 

Fig. 4  Pathogenic classification with ClinVar, classical predictions (NDamage), ML algorithms (Machine 
Learning Score), and DTreePred. In ClinVar, the variant can be classified as neutral (N), pathogenic (P), 
conflicting data (C), VUS (U), or not found (NF). The color shows the number of patients carrying the variants; 
I/II or III/IV stages. The predictors and machine learning algorithms predict only nonsynonymous single 
nucleotide variants (nsSNVs). Out of the 44 variants, 42 had no information in ClinVar

Fig. 5  Clinical impact of > 5 PVs. A Distribution of the PVs among GC patients with stage I/II or III/IV (p 
value = 0.00575). B Kaplan‒Meier curves showing the associations between overall survival and the number 
of PVs in protooncogenes and tumor suppressor genes (log-rank test p value)
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categorized as conflicting or missing data in the tools listed in Table  1, as illustrated 
in Supplementary Fig.  1. The pathogenicity classification provided by DTreePred, 
leveraging Decision Tree models and machine learning algorithms, played a pivotal role 
in conducting a more detailed analysis of the dataset presented in this study.

Discussion
Precision medicine, also known as personalized medicine, is an innovative approach 
that integrates clinical, genetic, molecular, and environmental information to 
customize the diagnosis, treatment, and prevention of diseases. A distinguishing 
characteristic of precision medicine is the ability to identify and interpret genetic 
variants associated with specific diseases. This represents a significant advancement 
in clinical practice, enabling the development of highly personalized treatment 
strategies tailored to individual genetic characteristics, leading to more efficient 
treatments with fewer side effects. Furthermore, precision medicine advances disease 
prevention by identifying individuals at greater genetic risk and implementing 
personalized preventive measures [58].

However, precision medicine faces several significant challenges, and one of the 
most critical challenges is the accurate interpretation and validation of identified 
genetic variants. In a thought-provoking comment paper [7], the authors state that 
"VUSs can cause intense uncertainty for patients and are a vexing challenge for 
oncologists", emphasizing the clinical consequences of misclassification, such as 
unnecessary treatments or missed diagnoses. These consequences are related to 3 major 
circumstances. First, a VUS can be identified in a gene known to confer an inherited 
predisposition to a cancer, generating implications for family members in determining 
who should undergo screening. Second, if the VUS is located in a gene associated with 
a potentially beneficial targeted therapy, it could influence treatment decisions. Lastly, if 
the VUS turns out to be a driver mutation, there is a risk of overlooking an underlying 
biological mechanism.

Therefore, the complexity of genetic information and the absence of uniform standards 
for variant interpretation can interfere with obtaining accurate and clinically meaningful 
results [18]. Furthermore, the limited availability of high-quality genomic data, especially 
in underrepresented populations, poses a challenge to the more effective implementation 
of precision medicine. The lack of genetic diversity in genomic databases can lead to 
disparities in access to personalized care and the efficacy of treatments across different 
population groups [59]. We looked at a case study in which 44 different nucleotides were 
found in oncogenes and suppressor genes. In the ClinVar database, only two of them 
were clearly classified, leaving the other 42 (approximately 95%) as uncertain.

Despite these difficulties, recent advancements in genomic technology and 
bioinformatics are propelling ongoing progress in precision medicine. Novel tools and 
methodologies are emerging to enhance the interpretation of genetic variants, promote 
diversity within genomic databases, and streamline the integration of genomic data 
into clinical workflows [60]. The methodologies for variant classification have evolved 
to encompass a diverse array of data sources, ranging from genomic sequencing data 
and functional assays to population-level information. By integrating multiple data 
types, methodologies, and predictors, a more comprehensive assessment of variant 
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pathogenicity becomes possible, thereby enhancing the accuracy and reliability of 
predictions.

Both classical predictors and machine learning algorithms play pivotal roles in 
variant classification. Classical predictors rely on established rules and heuristics to 
categorize variants on the basis of known patterns [61]; however, with a higher than 
expected frequency, these predictors yield contradictory information regarding variant 
pathogenicity. In such instances, meta-predictors, which amalgamate the outcomes 
of multiple predictors, can help pinpoint the correct classification, especially when 
the individual predictor results appear discordant [62]. ML algorithms leverage vast 
genomic datasets to discern intricate patterns and relationships, thereby bolstering 
prediction accuracy and robustness [63]. Integrated tools that harness these strategies 
hold tremendous promise in clinical settings.

The effective integration of genomic data into clinical practice is another significant 
challenge. Healthcare professionals require adequate tools and resources to interpret 
and apply genetic information in a clinical setting. DTreePred, introduced in this paper, 
provides comprehensive features tailored to users’ needs and consolidates multiple 
predictions in one place. Notably, the mobile responsiveness of DTreePred further 
enhances its application in different environments. In practice, a cross-platform 
application like DTreePred provides significant advantages in clinical settings. For 
instance, healthcare professionals can seamlessly access the tool on any device—be it a 
smartphone, tablet, or desktop—ensuring flexibility and convenience. This adaptability 
enables clinicians to perform variant analysis on the go, whether in a hospital, 
clinic, or even a remote location, without being constrained by specific operating 
systems or devices. Furthermore, its compatibility facilitates smooth integration into 
diverse healthcare workflows, supporting real-time decision-making and advancing 
personalized medicine.

With a focus on user usability and specific visualization functions, DTreePred 
implements new methodologies and integrates tools from various sources to construct 
three scoring systems: Machine Learning Score, NDamage, and DTreePred. It enables 
users to consult predictions from recently proposed algorithms in [25], in addition to 
classical predictors, ML algorithms, and the ClinVar database. The tool’s role as a guide 
in decision-making stands out, particularly when the data present contradictions. The 
Machine Learning Score, incorporates 15 machine learning algorithms; NDamage, 21 
classical predictors; and DTreePred, with its decision tree encompassing prediction 
data and population frequency data, represents an essential tool for precise and 
comprehensive analysis of variant pathogenicity, offering valuable insights for healthcare 
professionals and researchers.

We evaluated the performance of the three prediction algorithms using 200 
nucleotide variants with known pathogenicity sourced from the ClinVar database. 
The comprehensive analysis presented in Table  2, through the confusion matrix, 
indicated that DTreePred outperformed the ML algorithms and NDamage. Notably, the 
rs78838117 (chr11:2,909,210 G > A) variant, initially classified as neutral by the decision 
tree but reported as pathogenic in ClinVar (Supplementary Table  5), underscores 
the complexity of variant interpretation. The high allele frequency in ExAC and 1000 
Genomes raises questions about the reliability of the prediction of the ClinVar database, 
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highlighting the importance of considering factors such as allele frequency, population 
specificity, and predictive characteristics of machine learning models.

To further assess the performance of DTreePred, we conducted a comparative analysis 
using variants curated in the LOVD database, applying stringent filters to ensure high-
quality benchmarking. The results showed a precision of 94.77%, with 163 out of 172 
variants correctly classified. Additionally, to evaluate performance against manually 
uncurated data, we also conducted a comparison using DMS data. The results showed 
an accuracy of 96%, with 540 out of 557 variants correctly classified (Supplementary 
Table 4). This outcome aligns with the performance observed for ClinVar variants and 
underscores the tool’s capacity to generalize effectively across datasets curated under 
distinct methodologies.

DTreePred also offers a distinct advantage by providing users access to predictions 
from machine learning algorithms and simultaneous access to multiple predictors in 
a centralized hub (Fig. 3 and Table 1). Visualizing the construction of each prediction 
result point-to-point enables users to make different decisions on the basis of their 
proficiency. Mobile responsiveness also stands out compared to free online viewers, such 
as the dbNSFP database viewer [32]. While other free viewers have several advantages, 
such as the Ensembl Variant Effect Predictor [45], which offers interactive annotation, 
and the PROVEAN web server [46], which provides rapid analysis of protein variants, 
none of these tools delivers predictions on the basis of models of machine learning such 
as DTreePred.

Other tools, such as SNPnexus [48] and FAVOR [53], offer comprehensive annotation 
capabilities and are valuable resources; however, they lack decision-making guidance 
when predictor results conflict. This limitation can create challenges for users, especially 
in cases where variant classification is ambiguous. In contrast, DTreePred not only 
centralizes predictions from multiple models but also provides insights into the 
decision-making process, equipping users with the ability to resolve conflicts between 
predictors in a systematic and informed manner.

Understanding the strengths and limitations of these tools allows researchers to select 
the most appropriate solution for their needs, ensuring reliable and meaningful insights 
from genomic data.

The simplicity of the application amplifies its usability for various clinical professionals, 
positioning it as a decision-making guide. This is illustrated by a case study involving 
13 patients with gastric cancer in the Northeast region of Brazil, featuring the practical 
application of DTreePred. By categorizing variants on the basis of specific metabolic 
pathways and gene lists, the tool assists in genetic investigations, especially when 
traditional genetic tests are negative. This study showed the effectiveness of DTreePred 
in classifying variants compared to ClinVar and classical predictors (Fig. 4).

This example also highlights the potential impact of the tool on clinical and scientific 
routines. The correlation between the number of pathogenic variants and overall 
patient survival (Fig. 5) points out the clinical relevance of DTreePred’s predictions. If 
DTreePred is used at the time of diagnosis, it would allow the cohort to benefit from 
genetic counseling or precision medicine. These results underscore the importance of 
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studying underrepresented populations in which genetic variants are lacking in public 
databases. Families meeting clinical criteria could benefit from a more precise evaluation 
of the pathogenicity of rare variants, which are usually classified as VUS or conflicting 
data. By focusing on these new strategies, we can obtain valuable insights into the 
genetic landscape of related diseases and develop more comprehensive strategies for 
diagnosis, prevention, and treatment, showing that the adoption of new tools, such as 
DTreePred, can change this scenario.

While DTreePred demonstrates robust performance and provides valuable insights 
into variant classification, there remains significant potential for further enhancement. 
Key areas for improvement include expanding its scope to analyze variants in regulatory 
regions, supporting multiple genome versions, and integrating new features and variables 
into its machine learning models to improve predictive accuracy and adaptability. Also, 
incorporating feedback mechanisms would allow the application to learn from user 
inputs and updated datasets, further refining its predictions over time. By addressing 
these areas, DTreePred has the potential to evolve into a more comprehensive and 
versatile resource for genomic analysis.

Conclusions
DTreePred represents a significant advancement in the field of precision medicine by 
addressing one of the core challenges: accurate interpretation of nucleotide variants. 
Through the integration of machine learning algorithms, classical predictors, and 
population-level data, this cross-platform mobile application provides healthcare 
professionals and researchers with a powerful tool for assessing variant pathogenicity. 
The results of our evaluation demonstrate that DTreePred delivers enhanced accuracy 
and reliability, outperforming other predictive models in the classification of genetic 
variants. Its user-friendly interface, mobile responsiveness, and ability to consolidate 
multiple prediction sources in a centralized hub make it a valuable addition to clinical 
workflows, especially in environments where quick and reliable decision-making is 
essential.

The importance of DTreePred extends beyond its technical capabilities. In the 
context of underrepresented populations, where genetic data is often scarce, 
DTreePred has the potential to bridge gaps in variant interpretation and enable more 
equitable access to precision medicine. The practical application of the tool in a case 
study involving gastric cancer patients from Brazil further underscores its clinical 
relevance, demonstrating how it can inform genetic counseling and potentially 
improve patient outcomes. By making advanced bioinformatics accessible, DTreePred 
not only supports the ongoing evolution of personalized medicine but also highlights 
the critical need for innovative tools that can adapt to the diverse and complex nature 
of human genetics.

In conclusion, DTreePred is a pivotal step forward in the integration of genomic 
data into healthcare, offering a comprehensive and accessible solution for variant 
classification that holds promise for transforming both research and clinical practice.
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