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Abstract 

Background: Bioinformatics data analysis faces significant challenges. As data analysis 
often takes the form of pipelines or workflows, workflow managers (WfMs) have 
become essential. Data flow programming constitutes the preferred approach in WfMs, 
enabling parallel processes activated reactively based on input availability. While this 
paradigm typically follows a linear, acyclic progression, cyclic workflows are sometimes 
necessary in bioinformatics analyses. These cyclic workflows also present an oppor‑
tunity to explore workflow interactivity, a feature not widely implemented in existing 
WfMs.

Results: We propose DeBasher, a tool that adopts the flow‑based programming (FBP) 
paradigm, in which the workflow components are in control of their life cycle and can 
store state information, allowing the execution of complex workflows that include 
cycles. DeBasher also incorporates a powerful model of interactivity, where the user 
can alter the behavior of a running workflow. Additionally, DeBasher allows the user 
to define triggers so as to initiate the execution of a complete workflow or a part 
of it. The ability to execute processes with state and in control of their life cycle 
also has applications in dynamic scheduling tasks. Furthermore, DeBasher presents 
a series of extra features, including the combination of multiple workflows at runt‑
ime through a feature we have called runtime piping, switching to static scheduling 
to increase scalability, or implementing processes in multiple languages. DeBasher 
has been successfully used to process 131.7 TB of genomic data by means of a variant 
calling pipeline.

Conclusions: DeBasher is an FBP Bash extension that can be useful in a wide range 
of situations and in particular when implementing complex workflows, workflows 
with interactivity or triggers, or when a high scalability is required.
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Background
In the rapidly evolving field of bioinformatics, the analysis of complex biological data 
presents significant challenges. As the volume and variety of such data continue to 
expand, the development of more adaptable, scalable, and efficient computational tools 
has become essential for effective data management and analysis.

Often, the analyses to be carried out take the form of pipelines or workflows, where a 
set of processes work coordinatedly to analyze the data. In these scenarios, the optimal 
utilization of computational resources is paramount, a goal that is closely related to the 
ability to exploit process parallelism.

Whenever advanced support for pipeline execution is required, workflow managers 
(WfMs) can be used. A WfM is software to automate the execution of various processes 
within a predefined sequence. The data flow programming paradigm has become the 
norm in bioinformatics WfMs as opposed to the traditional control flow approach. Data 
flow programming focuses on the movement of data through a series of computational 
components, where the execution of operations is driven by the availability of data. In 
this paradigm, components are activated as soon as their input data becomes available, 
leading to a model where process execution is inherently parallel and reactive.

In the standard data flow approach, execution is typically linear and can be effectively 
represented by a directed acyclic graph (DAG). In this model, each node in the graph 
represents a specific computational component, while the edges between nodes signify 
the flow of data from one component to the next. The acyclic nature of the graph ensures 
that data flows in a single direction, preventing any circular dependencies and allowing 
for a linear progression of tasks.

Many WfMs have been proposed so far, particularly in the field of bioinformatics [1]. 
Popular examples include Nextflow  [2], Snakemake  [3], Galaxy  [4], Cromwell  [5] or 
Toil [6], which have become essential for handling the increasingly complex data analy-
ses required in modern bioinformatics. These tools follow the standard data flow para-
digm mentioned above, ensuring a clear and structured way to manage computational 
tasks.

While the standard data flow paradigm is effective for many bioinformatics workflows, 
there are certain scenarios where the ability to execute cycles within a workflow would 
be required. These workflows may involve iterative processes, such as optimization 
loops, convergence checks, or repeated analyses that refine results based on intermedi-
ate outcomes. In these cases, the strict acyclic nature of traditional workflow managers 
can be a limitation, as they are designed to prevent any form of circular dependencies.

The execution of arbitrary cycles has been previously identified in [7] as an important 
workflow pattern that can arise in the context of workflow execution. It is also possible 
to find examples illustrating the necessity of executing cycles within the bioinformatics 
literature. For instance, in [8], an iterative workflow for assembling genomic datasets is 
provided. Another example is given in [9], where it is identified the necessity of execut-
ing an adaptive and iterative approach when sequencing viral genomes.

There have been efforts to incorporate the execution of cycles into the traditional data 
flow approach, further illustrating the validity of this workflow pattern. One interesting 
example would be the recurse experimental feature incorporated in Nextflow, which 
according to the existing documentation, allows to iterate the execution of a component 
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or entire workflow a certain number of times, using the output generated in a particular 
iteration as the input of the next one. However, the proposed execution model would 
have severe constraints: i) the input and output type definitions should be identical for 
the component or workflow, ii) the number of cycles to be executed should be known in 
advance or depend on some condition of the output and iii) it is not clear how the com-
ponents can store internal state information if that was necessary, due to the fact that 
at each iteration, the component or workflow is executed from the start, with the input 
as the only difference. The popular Snakemake WfM also incoporates a recursion fea-
ture that is non-experimental and more mature, but the proposed solution still keeps the 
third limitation mentioned above related to the ability to maintain internal state infor-
mation. As far as we know, the most advanced tool that supports the execution of cycles 
would be Cylc  [10]. This tool adapts the standard dataflow paradigm for its use in the 
execution of workflows with cycles. Although it is a very successful and advanced tool, it 
also simplifies the execution of workflows with cycles by not allowing processes to store 
state information.

The ability to execute workflows with cycles opens the door to exploring a feature that 
until now has not received much attention in previously existing WfMs: the possibil-
ity for the user to interact with a running workflow, altering its behavior. In a workflow 
based on the standard dataflow paradigm, the input parameters are known at the start 
of execution, making unnecessary any adjustment beyond re-executing the workflow. 
However, the situation changes when the workflow incorporates cycles. The aforemen-
tioned Cylc tool incorporates a feature that bears some relation to interaction, triggers. 
A trigger is an event defined by the user that initiates the execution of a workflow or a 
part of it. However, in this article we will consider that interaction exists when the work-
flow is running, and changes occur in its behavior that are caused by an external source. 
To the best of our knowledge, Cylc would not incorporate the possibility of interacting 
with a workflow.

One way to overcome the limitations of the standard data flow paradigm to execute 
complex workflows involving cycles would be to adopt a different data flow aproach 
called flow-based programming (FBP) [11]. In FBP, applications are defined as networks 
of interconnected components exchanging data, where each component functions as an 
independent module with well-defined inputs and outputs. FBP is able to work with lin-
ear workflows composed of components that are activated reactively, in the exact same 
way as the standard data flow approach does. However, it also incorporates a completely 
different working mode where the components run from the very beginning of program 
execution and are in control of their own life cycle. Such components communicate with 
others by sending information packets through connections, which are conceptually 
similar to UNIX pipes.

This ability of the processes to control their own lifecycle allows the execution of com-
plex workflows that incorporate cycles. Additionally, the processes can include state 
information if necessary, further increasing the expressiveness that can be achieved.

Stateful processes that control their lifecycle can also have advantages in dynamic 
scheduling tasks. Dynamic scheduling is a fundamental part of many WfMs, as it 
allows the processes to be determined at runtime, increasing flexibility. However, 
since most WfMs adopt the standard data flow approach, the execution must evolve 
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linearly, making certain tasks difficult, such as controlling the progression of a 
series of processes from another process. In contrast, a process that adopts the FBP 
approach could use this information to handle errors and retries, balance the work-
load or optimize performance measures.

To the best of our knowledge, there has been only one attempt to apply FBP to 
implement bioinformatic workflows: SciPipe  [12]. SciPipe is a very interesting tool 
that allows the execution of workflows based on processes that run Bash commands 
(alternatively, the Go programming language can also be used). However, in SciPipe, 
the processes do not control their lifecycle; instead, they are executed reactively 
when they receive a complete set of input parameters. Additionally, it is not possi-
ble for the processes to store state information. Consequently, SciPipe implements a 
restricted model of FBP in which some of its most distinguishing features are absent.

In this article, we present DeBasher. A tool that fully adopts the FBP approach, 
allowing the execution of complex workflows, including workflows with cycles, 
where processes retain state information. The tool also allows this execution to be 
interactive or activated by means of user-defined triggers. As mentioned above, the 
fact that processes maintain state and are in control of their life cycle can also have 
advantages in dynamic scheduling tasks. Additionally, as will be explained in the 
following sections, DeBasher incorporates a series of extra features. Among these, 
we highlight the ability of combining multiple subworkflows at runtime without the 
need to recompile the entire workflow, an ability we have termed runtime piping. 
Another feature of DeBasher is the possibility to choose between dynamic and static 
scheduling as appropriate given the characteristics of the program to be executed. 
Choosing static scheduling can be useful to significantly increase scalability. On the 
other hand, DeBasher is language agnostic, which allows implementing the compo-
nents that shape the programs through different programming languages.

DeBasher uses Bash as its native language. This decision has been strongly moti-
vated by the fact that the tool is oriented towards the execution of UNIX-type com-
mands, including both pre-existing commands and those implemented by the user 
through the tool, whether written in Bash or other languages using the language 
agnosticity feature. Finally, another motivation for using Bash as the native language 
lies in the good support it offers for one of the fundamental elements handled by 
DeBasher, UNIX FIFOs.

Implementation
This section outlines the implementation of DeBasher and provides detailed guid-
ance on how it can be utilized to develop programs. To illustrate its application, the 
section shows how to implement a DeBasher program and also references various 
code examples included in the supplementary materials. Several of these examples 
are centered around a specific program known as the Telegram problem, which will 
be discussed in the next section. Most of the DeBasher code listed in the supplemen-
tary materials is written in Bash because it is the tool’s native language, however, 
DeBasher is language agnostic.
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The Telegram problem

The Telegram problem is used in [11] to illustrate how FBP programs are designed. We 
explain it here because it is used within the article to illustrate concepts about DeBasher. 
More specifically, the Telegram problem involves creating a program that takes input 
lines of text and produces output lines with maximum word count, ensuring that each 
line’s character count remains under a specified limit. Words must remain intact without 
splitting, and it is assumed that no word exceeds the line’s length.

The original implementation of the Telegram problem from an FBP perspective was 
proposed in [11]. In particular, the author mentions the necessity of defining four pro-
cesses, which are depicted in Fig. 1. Those processes are the following:

• rseq: this process takes a file as input and reads it line by line, sending the file con-
tent to the decomposer process.

• decomposer: this process takes the lines of the input file and fragments them into 
words that are sent to the recomposer process.

• recomposer: the recomposer process takes as input the stream of words com-
posing the input file provided by the decomposer process and the character limit 
per each line and generates a stream of text lines whose length is below the character 
limit. This stream is sent to the wseq process.

• wseq: finally, the wseq process takes the stream of text generated by the recom-
poser process and writes it to a file.

One important feature of the processes depicted in Fig.  1, is that they are executed 
concurrently. The reason why is because they use connections allowing to send data 
streams. Data stream communication is a hallmark of FBP, as will be explained in the 
next section.

Flow‑based Programming

DeBasher extends Bash by following the FBP paradigm. FBP combines two well known 
approaches:

• Dataflow programming: represents programs as directed graphs, showing data flow 
between operations. These operations are linked by defined inputs and outputs and 
execute as soon as all inputs are available.

• Component-based software engineering (CBSE): constructs software using modular, 
loosely-connected components. It prioritizes separation of concerns (SoC), a design 
principle that divides a program into sections, each handling a specific aspect of 
functionality. The primary goal of SoC is to enhance code modularity.

Fig. 1 Diagram of the original implementation of the Telegram problem from an FBP perspective
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FBP structures a program as a network of independent processes. These processes com-
municate through connections, sending and receiving information packets (IPs) via 
named input and output ports. IPs, the basic units of data, carry the necessary data for 
computation along these connections.

In FBP, all processes start execution simultaneously and are in control of their life 
cycle. As a consequence of this, FBP processes can be stateful if needed, as opposed to 
the stateless steps executed in the standard dataflow approach. Alternatively, processes 
can be replaced by job steps if needed, which are executed reactively when their input 
data is available. While processes communicate by means of IPs, job steps use files, 
aligning more with a standard dataflow programming paradigm.

One key feature of FBP is that system design is split into two layers: the graph layer, 
which defines network configuration, and the component layer, which dictates data 
transformations. The component layer is typically textual, while the graph layer is visual, 
allowing FBP to naturally incorporate visual programming elements.

DeBasher allows to define FBP processes as commands receiving named options 
(equivalent to FBP ports). Due to the fact that DeBasher is language agnostic, such 
commands can be implemented in different languages. When the commands are 
implemented in Bash, Bash functions are defined. To implement commands in other lan-
guages, DeBasher uses here documents (HereDocs). Regarding the options, those start-
ing with prefixes -out or --out define output ports, and the rest define input ports. To 
improve modularity, FBP processes can be grouped in modules implemented by means 
of Bash files.

A DeBasher program is a network of interconnected processes or job steps, configured 
by Bash functions or HereDocs. DeBasher uses UNIX named pipes (FIFOs) and regu-
lar UNIX files to communicate processes and job steps, respectively. Each module can 
define its program using processes and network configurations from itself or external 
modules, and can reuse programs from other modules.

One advantage of using pipes to communicate processes is that the processes can 
run simultaneously, increasing program efficiency. By contrast, the communication by 
regular files that characterize the standard dataflow paradigm necessarily results in the 
sequential execution of processes.

Another advantage of FBP is the ability to execute arbitrarily complex programs, 
including those having cycles. This would be a direct consequence of the above men-
tioned fact that FBP processes are in control of their lifecycle.

Finally, DeBasher itself is implemented using Bash and Python.

Implementing a DeBasher program

In this section we will illustrate how to implement a DeBasher program, using the Tel-
egram problem described in The Telegram problem as an example.

The first required step is to create the modules involved. Each module is associated to 
a file. In this case, we will only need one module, that will be stored in the debasher_
telegram.sh file.
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After the modules have been defined, we implement the processes intervening in the pro-
gram. In our case, we will need to implement four processes called rseq, decomposer, 
recomposer and wseq. For each one, we should define a Bash function with the same 
name. The Bash function should read the input and output options at the start, and then 
incorporate the logic associated to the process.

For instance, the decomposer process should take as input the output of the rseq 
process, consisting in a text file sent line by line, fragment the lines into words and send 
the result to the output connection. Assuming that the input to the process is provided by 
means of the -inf option, and the output by means of the -outf option, the implementa-
tion of the decomposer process would be as follows:

where the read_opt_value_from_func_args function is used to read the val-
ues for the options.

Once the four processes have been implemented, we can document those options for 
each process that should be provided by the user through the command line. Option docu-
mentation is later used by DeBasher to generate a help message for the program. In our 
program, the decomposer process does not receive any user option, but the rseq process 
receives the input file that should be processed. Assuming that the name of the option is -f, 
this can be achieved by means of the following function (the function name is obtained by 
concatenating the process name with the suffix _explain_cmdline_opts):

where the explain_cmdline_req_opt function defines the type of the value 
associated to the option as well as the option description.

After documenting the command line options, we can proceed to add the code that will 
specify the particular options that the process receives. This step, when completed for all of 
the processes, can be seen as defining the program network. For this purpose, we should 
specify how the inputs and outputs of each process are connected to the rest. Again, this is 
achieved by defining functions for the different processes. For the decomposer process, 
we should connect its input to the output of the rseq process. Also it should define a 
FIFO to send the output to the recomposer process. For this purpose, the following func-
tion is defined (the name of the function is composed by appending the suffix _define_
opts to the name of the process):
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where the define_opt_from_proc_out function connects an option of the pro-
cess being defined with an option of another process. The define_fifo_opt allows 
to define a FIFO and associate it to a process option. The options are added to the 
optlist variable. At the end of the function, the save_opt_list function is used to 
save the complete list of options for the process.

Finally, we define the program by adding all the processes that should participate. To 
achieve this, again we define a function (its name is obtained by concatenating the mod-
ule name, debasher_telegram, with the suffix _program):

where the add_debasher_process function adds a process to the program. The 
function also allows to provide information about the computational and time require-
ments for each process.

It is worth highlighting that, due to the visual nature of FBP, the steps for documenting 
command-line options and defining the process interconnection network could be car-
ried out through a graphical interface.

For additional implementation examples, Supplementary note 1 provides the Debasher 
version of “Hello World!”. Supplementary note 3 provides a Bash implementation of the 
above described Telegram problem and supplementary note 4 shows different ways in 
which such problem can be implemented with DeBasher. The complete implementation 
of the Telegram problem with four processes discussed above can be found in Supple-
mentary note 4.1.

Executing a DeBasher program

DeBasher incorporates specialized tools to work with programs. One of such tools is 
debasher_exec, that is used for program execution. Figure 2 depicts a generic pro-
gram and the directory tree that is obtained after executing it by means of debasher_
exec. More specifically, the program is composed of one module, module_a, and two 
processes, process_a and process_b. The module uses the add_debasher_mod-
ule function to add or include another module, module_b. On the other hand, the 
directory tree generated includes output directories for both processes, process_a 
and process_b, a directory storing execution information, __exec__, a direc-
tory containing the process FIFOs defined (if any), __fifos__, and a directory storing 
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graphs associated to the program, __graphs__. The generated graphs include pro-
cess graphs, displaying how the process network is configured, or dependency graphs, 
illustrating how the execution of a particular process depends on the execution of other 
ones. Supplementary materials contain many examples of both kinds of graphs gener-
ated by DeBasher.

DeBasher incorporates other tools to work with programs. For instance, debasher_
status can be used to figure out the execution status (pending, completed, failed, etc.) 
of the different processes that compose a given program. Another important tool would 
be debasher_stop, useful to stop a program being executed. Additional information 
about these tools and other ones can be found in the DeBasher home page.

Exposure of process FIFOs

One attractive feature of DeBasher is its ability to handle user-defined triggers and inter-
activity, as it will be shown in User-defined triggers and interactive programs. The key 
element allowing the implementation of such feature is the exposure of process FIFOs to 
the user. Before a DeBasher program starts execution, FIFOs are created and stored in a 
particular folder of the output directory (see Fig. 2). This allows the user to easily inter-
act with the program by sending to or receiving information from the FIFOs.

The exposed FIFOs can also be used to enable runtime piping, another DeBasher fea-
ture that will be explained in Runtime piping.

Object‑oriented programming

It has been noted that FBP and object-oriented programming (OOP) share parallels in 
key concepts like encapsulation and polymorphism  [11]. DeBasher goes beyond those 
parallelisms introducing some OOP concepts of its own. Specifically, it fully charac-
terizes program behavior by introducing two abstract classes, namely, the module and 
the process classes. User-defined modules and processes can be seen as subclasses and 
module- or process-related functions as methods. Methods are implemented as Bash 
functions or HereDocs (to enable language agnosticity), named by adding the method 
name as a suffix to the module or process name (HereDocs add an extra suffix to identify 
the language, e.g. py for Python). For example, in supplementary note  1, the module 

Fig. 2 Execution of a generic DeBasher program using debasher_exec. As a result, a directory tree is 
generated
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debasher_hello_world is defined. To implement its program method, we define 
the debasher_hello_world_program Bash function.

In order to satisfy program requirements, it is even possible to redefine particular 
methods. One fundamental example of this would be the redefinition of the define_
opts method for processes, which constitutes one possible mechanism used by 
DeBasher to configure the program network, or in other words, to enable external defi-
nition of connections (see more about this below).

External and distributed definition of connections

An essential element of FBP is the external definition of connections between pro-
cesses  [11], configuring the program’s network. These connections are defined outside 
the process implementation (e.g. in a main function), constituting an example of SoC 
and serving as a basic FBP reuse mechanism.

DeBasher goes beyond standard external definition of connections by allowing to 
define such connections in a distributed manner. Specifically, how a particular process 
is connected to the rest becomes a property of such process, further improving SoC 
and thus, code reuse. For this aim, DeBasher allows to define two alternative process 
methods: define_opts or generate_opts. One good example of how this strategy 
is useful for code reuse is the implementation of the Telegram problem with two pro-
cesses shown in supplementary note 4.2. Two interesting variants of this program can be 
obtained by only changing the define_opts method of the processes (see supplemen-
tary notes 4.3 and 4.4).

Additionally, supplementary note 7 shows how the interconnection pattern of a pro-
gram with two processes can be reconfigured by only redefining a method for one of 
them. Moreover, given a process, not only are its connections defined within a method 
of that process, but also whether the process executes loops or arrays. Supplementary 
note 6 shows an example of this.

Imperative process execution

Dataflow process coordination may become too restrictive in certain situations. 
DeBasher allows to revert to purely imperative process execution when needed. Since 
processes are implemented as parameterized Bash functions, it is possible to call them 
within the code of another process, enabling the execution of specific control flow logic 
and, at the same time, maximizing code reuse and modularity. To illustrate this, an 
imperative implementation of the Telegram problem is given in supplementary note 4.5.

Static and dynamic process scheduling

DeBasher provides two process scheduling modalities: static and dynamic. Both modali-
ties have their advantages and disadvantages, and can be used depending on the require-
ments of the particular scenario. Static process scheduling is simpler since all the 
computations to be executed should be known beforehand. In contrast, with dynamic 
scheduling, the required computations can also be determined at runtime. Thus, 
dynamic scheduling is more flexible, but it is also more complex to implement and may 
require more computational work from the scheduler during program execution.
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DeBasher’s static process scheduling strategy is based on early definition of process 
dependencies, and is more suited to execute job steps in a standard dataflow program-
ming approach. The scheduling work can be carried out by a built-in scheduler incorpo-
rated in DeBasher. The built-in scheduler decides which processes can start execution or 
should wait at a given time. Assignment of computational resources in this context can 
be seen as an instance of the well known knapsack problem, for which efficient imple-
mentations are available.

Static process execution can also be carried out using external schedulers, such as 
Slurm1. This is particularly efficient, since under these circumstances, all processes are 
launched at the start of program execution and process coordination is achieved by 
specifying process dependencies that were resolved earlier. In this way, DeBasher utilizes 
the full capabilities of the external scheduler.

On the other hand, Debasher also implements dynamic process scheduling by means 
of its built-in scheduler. This scheduling modality would be appropriate for both job 
steps and FBP processes. Within each job step or FBP process, the built-in scheduler 
is able to execute an arbitrary number of computations, both locally or in external high 
performance computing (HPC) infrastructure.

Results
Despite being designed to execute general-purpose programs, DeBasher is well-suited 
for executing workflows, including essential features such as: (1) parallel process execu-
tion with data dependency handling; (2) automatic error handling; (3) result reproduc-
ibility through containers or package managers; (4) generation of dependency graphs; 
and (5) compatibility with high performance clusters or cloud infrastructure.

However, DeBasher incorporates some non-standard characteristics that are described 
below. Additionally, in Sample bioinformatics workflow, we show an example of a bio-
informatics workflow implemented with DeBasher that was applied over a very large 
dataset.

Language agnosticism

Taking advantage of the fact that DeBasher is language agnostic, it is easy to implement 
the “Hello World!” program in other languages. Currently, DeBasher provides support 
for four languages: Python, R, Perl and Groovy. Figure  S3 shows the required code. 
Moreover, it would be straightforward to extend DeBasher to any other language.

One interesting advantage of the language agnostic capabilities of DeBasher lies in the 
fact that they are based on HereDocs. In particular, the use of HereDocs allows to define 
code in any language without the necessity of escaping any characters or making any 
other modification.

Data streaming

The ability to handle data streams is a foundational aspect of FBP, and DeBasher imple-
ments it using UNIX FIFOs. There are many examples in the supplementary materials 

1 https:// slurm. sched md. com

https://slurm.schedmd.com
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illustrating how data streams are used in DeBasher programs. One example would be the 
implementation of the above mentioned Telegram problem (see supplementary note 3).

Arbitrary cycles with stateful processes

DeBasher incorporates the ability to execute programs with arbitrary cycles, due to the 
fact that FBP allows to define processes that are in control of their lifecycle. Moreover, 
such processes can be stateful. Figure 3 shows one example of a program where two pro-
cesses, master and worker are cyclically connected. The program simulates a master-
worker situation, where master requests worker to carry out computations, with the 
peculiarity that worker maintains state information. This state information will deter-
mine the type of computation that will be carried out.

More specifically, master uses a pipeline to send a numeric value to worker (involv-
ing port OUT for master and port IN for worker), and worker transforms the value, 
accumulates the result in an internal variable, and uses another pipeline to return the 
transformed value to master (involving port OUT for worker and port IN for mas-
ter). The computation carried out by worker is very simple, it will add one to the 
value if the current cummulative value is below or equal to a threshold given by the user 
(INTHRESHOLD port), or two otherwise. The cycle is repeated until master receives a 
value greater than another one given as input parameter (INN port). At the beginning of 
execution, master also receives the initial number for doing the calculations (INVALUE 
port). Before terminating, worker prints the cummulative value to the standard output. 
Figure S32 shows the code of the processes.

Dynamic scheduling with stateful processes

DeBasher is able to allocate computations dynamically. Starting from the program with 
cycles explained in the previous section, the computations carried out by the worker 
process can be executed taking advantage of the specific support provided by DeBasher. 
DeBasher can, for instance, handle the execution of the computation by means of HPC 
infrastructure. Figure 4 shows a graphical example of this, where the worker process 
replaces the previous local computations by HPC infrastructure computations. The code 
that is required to implement the example is shown in Figure S33. Again, one interesting 
feature of the implemented code is that the processes can be stateful, allowing to imple-
ment arbitrarily complex logic.

Fig. 3 Example of a program with cycles, simulating a master‑worker process organization

Fig. 4 Example of a program with cycles performing dynamic scheduling
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User‑defined triggers and interactive programs

Until this point, connections have been used to communicate two processes. However, 
with DeBasher, connections can be used to link a process to the outside for input or 
output. This is possible because DeBasher exposes the FIFOs intervening in a given pro-
gram, as it was explained in Exposure of process FIFOs. Communicating a process to 
the outside has two interesting utilities: user-defined triggers and user interaction with a 
program.

User-defined triggers allows the user to define events that produce an action or a set of 
actions. One example could be an event that results in the execution of a whole workflow 
because new data to be processed has become available. Another example could be an 
event used to execute a workflow periodically. Going back to the master-worker exam-
ple, the INVALUE option defining the initial value used by the master process could 
be replaced by a FIFO connecting the process with the output of a command scheduled 
periodically by means of the UNIX cron daemon.

On the other hand, user interaction is enabled when the user can alter the behavior 
of a program being executed. Using again the previous master-worker example, one 
interaction example would be the ability to redefine the input threshold for the worker, 
so that the user can provide specific values. For this purpose, the INTHRESHOLD port 
would be connected to the outside by means of a FIFO.

Figure  5 shows a diagram for the master-worker example introducing triggers and 
interactivity. The INVALUE port has been renamed to INTRIGGER and receives as input 
the output of a script called generate_value.sh periodically executed by means of 
cron (we assume that the name of the FIFO is master_trigger). On the other hand, 
the INTHRESHOLD port for the worker now allows the user to modify the input thresh-
old at each execution, without the necessity of restarting the program (it is assumed that 
the corresponding FIFO is called worker_threshold). Figure  S35 shows the new 
code for the processes.

Runtime piping

There is one additional utility of connecting a process to the outside using FIFOs: a 
mechanism to combine DeBasher programs that we will call runtime piping. Runtime 
piping can be seen as the equivalent in a workflow execution scenario to the concept of 
dynamic linking in a conventional program execution scenario. In particular, runtime 
piping allows the user to connect two or more workflows currently being executed. This 

Fig. 5 Example of a program incorporating a trigger and interactivity
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would constitute a step beyond in terms of extensibility, since there is no need to rebuild 
an entire workflow when a particular component or subworkflow is changed.

The simplest example of runtime piping would be connecting the output of a program 
to the input of another one. Let us suppose we have a simple program with one process, 
counter, that receives a number as input (port INN) and generates a count from zero 
to that number as output (port OUT). Additionally, we have another program with one 
process, stream_echo, that just receives a stream as input (port IN) and prints it to 
the standard output. Figure  6 shows how the two programs can be connected with a 
simple tail command assuming that the output FIFO of the counter process is called 
counter_out and the input FIFO of the stream_echo process is called stream_
echo_in. The code of both processes is discussed in supplementary note 11.

It is worthy of note that runtime piping is not limited to connecting programs seri-
ally. The output of a program could be connected to a particular module of another one, 
altering its behavior. Figure 7 shows an example of this, where the counter process is 
used to provide the threshold received by the worker process in the above described 
master-worker example.

Choosing static scheduling for increased scalability

Dynamic scheduling provides the highest flexibility when implementing and execut-
ing workflows. However, there are situations where such flexibility is not required and 
resorting to static scheduling can constitute a valuable option to reduce scheduling over-
head and increase predictability of resource usage (due to the fact that all processes to 
be scheduled are known in advance). This results in increased scalability with respect to 
dynamic scheduling.

To test the advantages of the static scheduling modality implemented in DeBasher, 
we decided to adopt the same methodology used in [13] to study scalability, where the 

Fig. 6 Example of connecting the output of a program to the input of another one

Fig. 7 Example of using the output of a program to alter the behavior of another one
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performance of a set of WfMs is evaluated when executing an increasing number of 
small processes. It is important to highlight that, although the proposed experimenta-
tion setting constitutes an idealized execution scenario, it is still closely related to real 
use cases when executing bioinformatics workflows. This is discussed in more detail 
in Discussion.

More specifically, we compared DeBasher with three workflow languages incor-
porating dynamic scheduling: Nextflow, Common Workflow Language2 (CWL) and 
Workflow Description Language3 (WDL), in line with the experimentation carried out 
in  [13]. The comparison was made by executing an increasing number of instances of 
a one-step program (host_process) or a two-step program (host_workflow). The 
host_process program runs a single process named host1, which executes the 
hostname UNIX command. The host_workflow program runs both host1 and 
host2 processes, with host1 running first, followed by host2, which also executes 
the hostname command. We refer to a single execution of process host1 or host2 as 
a workflow task. The experiments were executed in an AWS Slurm ParallelCluster with 
1 head node and 32 computing nodes. Each node had 2 CPUs and 4GB of RAM. We 
used Toil (v7.0.0) as execution engine for CWL, and Cromwell (v87) for WDL. Nextflow 
(v24.04) comes with its own engine.

Fig. 8 Scalability experiments for CWL, WDL, Nextflow and DeBasher

2 https:// www. commo nwl. org/ speci ficat ion/
3 https:// openw dl. org/ spec/

https://www.commonwl.org/specification/
https://openwdl.org/spec/
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Figure 8a shows how the runtime of host_workflow evolved as the number of work-
flow tasks increased, from 10 to 10K. Cromwell and Toil could not finish execution for 
1K and 10K tasks, respectively. Both tools were significantly slower than DeBasher. Nex-
tflow was able to complete execution in all cases but was slower than DeBasher. Notably, 
when executing 10K tasks, DeBasher achieved a 45% runtime reduction with respect to 
Nextflow. Moreover, it should be noted that Nextflow needed to submit one Slurm job 
per task, causing important overhead. Figures 8b and  8c measured the host_work-
flow’s CPU and memory requirements, respectively, for DeBasher and Nextflow when 
executing 10K tasks. As it can be seen, Nextflow consumed substantial resources during 
the whole workflow execution (around 1 CPU and 500MB of RAM), while DeBasher 
requirements where virtually zero.

DeBasher outperforms Nextflow due to its static process scheduling approach. It 
resolves process dependencies at the start and submits all necessary Slurm jobs imme-
diately. In the experiments, only two jobs were needed (one for host1 and one for 
host2) because DeBasher can launch Slurm arrays. Interestingly, version 24 of Nex-
tflow now supports Slurm arrays, allowing to fragment the execution of a set of tasks 
in fixed-size arrays. Figure  8d shows the runtime for executing host_workflow with 
10K tasks based on the number of submitted Slurm array jobs. DeBasher required only 
two arrays and was in all cases faster than Nextflow, whose array count depended on 
the array size. Curiously, Nextflow’s execution time decreased starting from array size 
1 until 100, but increased for higher ones, forcing the user to make a trade-off between 
runtime and number of submitted jobs. For unclear reasons, higher array sizes made 
task execution slower. This explains why increasing the array size reduces runtime only 
up to a point: Nextflow can submit more tasks at once, but the computational cost for 
each task rises.

When using Nextflow arrays, and due to the fact that array execution is managed by 
the Slurm scheduler, it is anticipated that Nextflow’s CPU and memory requirements 
will decrease as the array size increases. This is because fewer jobs need to be submit-
ted to the scheduler. However, this may not be the case, since Nextflow does not follow 
a static scheduling approach, but a dynamic one, where the majority of the scheduling 
work is carried out by Nextflow itself. We executed new experiments to clarify this.

Figure  9 shows the evolution of Nextflow’s CPU and memory requirements when 
executing the host_workflow program with 10K tasks using arrays of size 100, 1 000 
and 5 000. As it can be seen, Nextflow required a non-negligible amount of RAM (up 
to 600MB) no matter the size of the array. Regarding the CPU usage, it is observed for 
all cases a 100% CPU consumption for a certain time period from the very beginning of 
the execution, followed by an intermittent CPU consumption pattern. This suggests that 
Nextflow is active during the whole program execution, even when the number of arrays 
to be executed is small. This is particularly interesting for the experiment with an array 
size equal to 5 000, where only 2 Slurm arrays needed to be executed.

Furthermore, examining the overhead incurred by Nextflow and DeBasher in man-
aging process dependencies is of particular interest. For this purpose, we compared 
the time cost of executing the same number of workflow tasks for host_process 
and host_workflow. Results show that DeBasher introduced virtually no overhead, 
whereas that of Nextflow was noticeable (see supplementary note 12.2.1).
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Finally, the ability of Nextflow and DeBasher to distribute tasks across cluster nodes 
was assessed by analyzing the output of the hostname command. The deviation 
from the ideal distribution (equal processes per node) was quantified. Results indicate 
that DeBasher outperformed Nextflow for all the array sizes tested (see supplemen-
tary note 12.2.2).

Sample bioinformatics workflow

To conclude this section, we show a sample bioinformatics workflow for variant call-
ing implemented with DeBasher. Figure S43 shows a process graph incorporating all 
the processes involved in the implemented workflow, including their input and output 
options, as well as how the processes are connected. Additionally, Figure S44 shows a 

Fig. 9 Evolution of Nextflow’s CPU and memory requirements when executing the host_workflow 
program with 10K tasks for different values of the array size
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dependency graph, determining when each process can start execution. Both graphs 
were automatically generated with DeBasher.

The bioinformatics workflow that was implemented is useful to analyze genome 
sequencing normal-tumor pairs using a wide range of tools, automating the whole 
process, including sample downloading. Below we show a list of the variant calling 
tools that were executed within the workflow:

• Manta: a method to discover structural variants and indels from next generation 
sequencing data [14].

• Strelka2: an open-source small-variant-calling method for research and clinical 
germline and somatic sequencing applications [15].

• FACETS: a tool to analyze allele-specific copy number analysis from next genera-
tion sequencing (NGS) data [16].

• CNVkit: a tool for genome-wide copy number detection and visualization from 
targeted DNA sequencing [17].

• LUMPY: a probabilistic framework for structural variant discovery [18].
• SVTyper: performs breakpoint genotyping of structural variants (SVs) using whole 

genome sequencing data [19].
• DELLY: a structural variant discovery method that integrates short insert paired-

ends, long-range mate-pairs and split-read alignments to accurately delineate 
genomic rearrangements at single-nucleotide resolution [20].

• MSIsensor-pro: a multinomial distribution model to quantify polymerase slip-
pages for each tumor sample and a discriminative site selection method to enable 
microsatellite instability detection without matched normal samples [21].

The bioinformatics workflow described above was run over two whole genome 
sequencing cancer datasets: the melanoma dataset MELA-AU (dataset ID: 
EGAD00001003388; 183 individuals) and the esophagus dataset ESAD-UK (dataset 
ID: EGAD00001003580; 303 individuals). Both datasets are available at https:// ega- 
archi ve. org/. The MELA-AU and ESAD-UK datasets contain 54.5 TB and 77.2 TB of 
data, respectively, resulting in a total of 131.7 TB of data that were successfully ana-
lyzed using DeBasher by means of the tools mentioned above.

For workflow execution, an HPC system consisting of three nodes was used. One 
node was equipped with two Intel Xeon E5-2697 CPUs, while the other two featured 
two Intel Xeon Gold 6148 CPUs each. The first node had 256 GB of RAM, whereas 
the second and third nodes each had 384 GB. The implemented pipeline utilized 
DeBasher’s static scheduling functionality, as dynamic scheduling was not required.

From the whole set of results obtained by DeBasher for MELA-AU and ESAD-UK, 
those generated with Strelka2 and FACETS were used to write a scientific study [22].

Computational cost measures of the workflow are not available, due to the fact that 
its execution was focused on generating results reported in [22], rather than measur-
ing the efficiency of DeBasher. Other difficulties also played a role, including the fact 
that the HPC system was not exclusively available for the experiment, or that the stor-
age space available on the HPC system only allowed a limited number of samples to 
be processed simultaneously due to their large size (over 100 GB each). Nevertheless, 

https://ega-archive.org/
https://ega-archive.org/
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the execution of the workflow proved to be extremely robust, with errors occurring 
only with a few isolated samples, and it was possible to automate the entire analysis 
process, including the downloading of the samples.

Discussion
In this section we discuss the previously shown results and compare the main features of 
DeBasher with those of well established tools.

Table  1 shows a feature comparison for DeBasher and a set of well known WfMs, 
including CWL, WDL, Nextflow, Snakemake, Scipipe and Cylc.

DeBasher incorporates three distinctive features that are uncommon in other WfMs. 
First, it adopts a well-developed interactive execution model for workflows. This capa-
bility has been previously identified as increasingly important in the development of 
WfMs [23]. Second, DeBasher also offers a feature that we have called runtime piping 
(see Runtime piping). Runtime piping allows for arbitrarily connecting different work-
flows at runtime, favoring code extensibility. In conventional WfMs, this can only be 
done by recompiling all the code through subworkflows. Third, DeBasher is the only 

Table 1 Comparison of WfMs

1CWL implemented with Toil
2WDL implemented with Cromwell
3Built‑in support to execute code in multiple languages, meaning that the workflow language provides built‑in syntax and 
features that facilitate the direct execution of tasks in different languages, making it more seamless and transparent. This 
contrasts with more basic integration mechanisms, where manual invocation (e.g., calling an external script or using shell 
commands) is required
4Support for Common Workflow Language
5According to the documentation, the feature is under development
6This feature is currently classified as experimental in the tool’s documentation
7The ability of the system to work with triggers arbitrarily defined by the user (more standard triggers, such as workflow or 
step reexecution due to changes in source code or input parameters, that require the user to explicitly invoke the WfM are 
not considered here)

CWL1 WDL2 Nextflow Snakemake Scipipe Cylc DeBasher

Platform CWL WDL Groovy Python Go Cylc Bash

Built‑in multilanguage3 Bash Bash Any Bash Bash Bash Any

CWL4 Yes NA No No No No No

Workflow modules Yes Yes Yes Yes Yes Yes Yes

GUI Yes Yes Yes Yes No Yes No

Graph rendering Yes Yes Yes Yes Yes Yes Yes

Reproducibility Yes Yes Yes Yes No No Yes

Batch schedulers Yes Yes Yes Yes Restricted5 Yes Yes

Distributed clusters Yes Yes Yes Yes No Yes No

Cloud Yes Yes Yes Yes No Yes Yes

Data streams Yes No No Yes Yes No Yes

Stateful processes No No No No No No Yes

Static scheduling No No No No No No Yes

Dynamic scheduling Stateless Stateless Stateless Stateless Stateless Stateless Stateful

Support for cycles No No Exper6 Stateless Stateless Stateless Stateful

User‑defined triggers7 No No No No No Stateless Stateful

Interactive workflows No No No No No No Yes

Runtime piping No No No No No No Yes
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tool among those included in the feature comparison that allows working with stateful 
processes.

Workflow interactivity has received little attention when implementing WfMs in the 
field of bioinformatics, as it can be observed in Table 1. Outside this context, one WfM 
example incorporating interactivity would be the Jupyter-workflow (Jw) system  [24], 
where Python notebooks are adapted for workflow definition and execution, using the 
code cell as the unit of computation, and maintaining the ability of interactively exe-
cuting code. However, this approach would drastically differ from the one adopted in 
DeBasher, since Jw only allows interactive execution in a sequential manner, that is, code 
cells should be executed one by one, reducing the ability of the system to exploit paral-
lelism. In contrast, DeBasher does not make this assumption, enabling interactivity at an 
arbitrary number of workflow sections simultaneously, without necessarilly stopping the 
concurrent execution of other ones.

On the other hand, the ability of DeBasher to work with stateful processes is espe-
cially appropriate for implementing complex workflows, in particular those contain-
ing cycles, as in this situation, maintaining information about previous iterations when 
executing a new one has important advantages. Specifically, state information can be 
useful for purposes such as managing dependencies between iterations, controlling the 
cycle termination condition, error handling or managing intermediate data. Among the 
tools analyzed, Nextflow only provides experimental support for cycles. Such support 
is more developed in Snakemake, but none of these tools can handle stateful processes. 
SciPipe also theoretically allows cycles with stateless processes, but its documentation 
does not  mention anything about it. Finally, although not listed in Table  1, CWL has 
been contributed an extension that supports cycles [25]. Such an extension is not part of 
the CWL v1.2 standard, but apparently there are plans to incorporate it for CWL v1.3.4

The only tool among those included in the feature comparison that provides advanced 
support for cycles would be Cylc. Despite this, Cylc does not allow processes to have 
state. This leads to a simpler execution model but introduces significant limitations. 
Stateless processes are forced to resort to certain techniques to achieve results similar 
to those obtained through stateful processes, decreasing their expressiveness and effi-
ciency. A good example of this would be the need to incorporate state information in 
the form of input parameters for the processes. Typically, the maintenance of such state 
information will require the use of external storage resources. This problem is particu-
larly challenging in those scenarios where a shared filesystem or direct I/O between 
compute nodes is not available. Under these circumstances, state maintenance may 
require advanced external systems such as distributed databases or message queues, 
resulting in increased latency, higher network bandwidth usage, and the need for seri-
alization and deserialization. Scalability can also become problematic due to bottlenecks 
in external storage systems and challenges in partitioning state across nodes. Fault toler-
ance and consistency are also harder to achieve, as maintaining durable and synchro-
nized state across distributed processes is complex without shared resources. Finally, 

4 https:// github. com/ common- workfl ow- langu age/ cwl- v1.3

https://github.com/common-workflow-language/cwl-v1.3
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code maintenance and debugging under the circumstances discussed is also more dif-
ficult, as the state is external and dynamic, requiring careful monitoring.

In contrast, DeBasher’s FBP processes, being in control of their life cycle and therefore 
capable of maintaining state information, would not have any of these limitations.

In addition to the WfMs analyzed in Table  1, there are other approaches for incor-
porating cycles and stateful processes during workflow execution. Although these 
approaches would be less popular in the bioinformatics field, they are worth mentioning. 
The Autosubmit WfM [26] allows to repeat multiple times a stateless job. ecFlow5 is a 
WfM used at the European Centre for Medium-Range Weather Forecast (ECMWF) that 
defines workflows as a collection of stateless tasks that can be repeated. dispel4py [27] 
is a Python WfM that has been recently extended to support stateful computations [28]. 
However, dispel4py has a limited ability to handle cycles, due to the fact that it works 
with workflows in the form of DAGs. As a result, process state is primarily relevant only 
when the same workflow is executed multiple times with different inputs. Additionally, 
in the distributed and concurrent systems literature, stateful processes have been incor-
porated into the so-called actor model, where the fundamental unit of computation is 
the actor. In this model, an actor encapsulates state and behavior, interacting with other 
actors through message passing. One example of an actor model framework support-
ing stateful processes would be Ray [29], focused on artificial intelligence applications. 
However, the actor model is a control-driven framework, as opposed to the data-driven 
approaches that have become popular in the field of bioinformatics. In the actor model, 
data flow is not explicitly defined, instead it emerges from message-passing interactions 
between actors. Also the concurrency is no longer managed implicitly through data 
availability. These factors, stemming from the adoption of a control-driven approach, 
may make the actor model feel less natural when implementing bioinformatics pipelines.

DeBasher also incorporates a powerful model to handle user-defined triggers. To the 
best of our knowledge, from the tools being analyzed, Cylc would be the only tool that 
explicitly incorporates triggers into its execution model. However, Cylc triggers would 
be more restricted than those of DeBasher, due to the inability to keep process state.

An additional noteworthy feature of DeBasher is its language-agnostic nature, pro-
viding built-in support for the execution of tasks written in multiple programming lan-
guages. No matter whether the code is written in Bash or in other languages, it is treated 
as the implementation of a process that is automatically incorporated into the abstrac-
tion provided by DeBasher. As a result, users can incorporate diverse code directly into 
the workflow with no extra effort. From the other WfMs studied, only Nextflow incorpo-
rates built-in support for multiple languages (by means of its so-called script section). 
However, DeBasher would present an advantage over Nextflow in this area. In particular, 
since the feature is based on Bash HereDocs, it is not necessary to use escaped charac-
ters in the code, making the implementation process easier and more natural.

On the other hand, DeBasher is strongly based on the use of data streams to provide its 
distinctive features. However, due to the usefulness of data streams in various scenarios, 

5 https:// github. com/ ecmwf/ ecflow

https://github.com/ecmwf/ecflow
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there are other tools that already incorporate this feature, such as CWL implemented 
through Toil, Snakemake, or SciPipe.

DeBasher implements dynamic scheduling techniques, as do the rest of the ana-
lyzed tools. However, the use of stateful processes that are in control of their lifetime 
can provide advantages when a particular job should schedule other jobs. Such advan-
tages include tracking the execution of tasks in real time, tracking available resources 
and using this information for load balancing, executing long-running or event-driven 
workflows where the decisions should be made incrementally, improved handling of job 
failures and retries, adaptive scheduling based on performance metrics, more flexible 
and customizable scheduling policies, etc.

Additionally, DeBasher is the only tool that allows adopting a static scheduling 
approach. In  situations where the workflow to be executed is composed of tasks that 
are predictable, independent and uniform in resource requirements, the alternative of 
static scheduling can be interesting due to the low resource consumption and high scal-
ability it allows to achieve, particularly when combined with external schedulers such 
as SLURM. The low resource consumption can be an advantage because jobs usually 
have to be launched from a head node, which typically has limited capacity. In this sce-
nario, DeBasher’s static scheduling would launch all processes from the start, requiring 
hardly any subsequent intervention, allowing better resource allocation by SLURM and 
without CPU and memory requirements on the head node affecting other users. These 
advantages have been demonstrated in the scalability experiment reported in Choosing 
static scheduling for increased scalability, in which DeBasher was the only tool along 
with Nextflow that allowed executing a workflow composed of 10K tasks, with DeBasher 
also presenting a virtually zero consumption of computational resources both in CPU 
and memory.

It is important to highlight here that, contrary to what it may seem, the scalability 
experiment performed represents a highly valid use case of a WfM within a bioinformat-
ics analysis context. WfMs are not only used to execute a few very long processes, but 
may also be necessary to execute a large number of small processes. In fact, the exist-
ence of this use case was what motivated the introduction of SLURM arrays in Next-
flow. This can be verified by reading the discussion associated with the feature in the 
tool’s repository.6 Additionally, the use case considered aligns closely with the so-called 
embarrassingly parallel problems, a broad category of problems where the static sched-
uling capability of a WfM can be advantageous compared to dynamic scheduling. Practi-
cal examples of such problems, which have been addressed using distributed computing 
infrastructure, include the Folding@home [30], SETI@home [31], or Rosetta@home [32] 
projects, as well as Monte Carlo simulations, which are widely used in fields like finance, 
physics, and engineering.

DeBasher currently presents two main limitations. First, it lacks a graphical interface 
unlike the majority of the tools analyzed. However, this would be a temporary limitation, 
since, as explained in Flow-based Programming, the FBP paradigm is visual by nature, 
and thanks to the fact that the code defining the interconnection pattern of processes is 

6 https:// github. com/ nextfl ow- io/ nextfl ow/ issues/ 1477

https://github.com/nextflow-io/nextflow/issues/1477
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completely separated from the rest of the code (see External and distributed definition of 
connections), it should be very easy to incorporate such an interface. Second, DeBasher 
incorporates a limited capacity for interoperation with HPC infrastructures, not allow-
ing tasks to be executed in distributed systems. However, extending this ability should 
not be difficult based on the current capabilities of the tool, constituting one of the main 
lines of future work that are contemplated along with the development of the graphical 
interface mentioned above.

Conclusions
DeBasher adopts the FBP paradigm to enable the implementation of complex work-
flows that can incorporate cycles. In contrast to other tools, the processes that com-
pose a given workflow can retain state information, resulting in increased expresiveness. 
The greater ability to implement workflows with cycles opens the possibility of explor-
ing a WfM feature that have previously received little attention: workflow interactivity. 
DeBasher leverages process connections implemented as UNIX FIFOs to provide a pow-
erful interactivity model where the user can alter the behavior of a workflow at runtime. 
UNIX FIFOs can also be used to implement user-defined triggers, that cause the execu-
tion of a workflow or a part of it. Additionally, DeBasher offers enhanced extensibility 
through its ability to combine multiple workflows being executed. We refer to this ability 
as runtime piping. FBP processes, being in control of their life cycle, are also potentially 
useful for dynamic scheduling tasks. On the other hand, DeBasher offers interesting fea-
tures not related to the execution of complex workflows, such as the ability to adopt a 
static scheduling approach for increased scalability or the capability to implement pro-
cesses in any programming language, due to the fact that DeBasher is language agnos-
tic. Finally, DeBasher has been sucessfully used to process 131.7 TB of genomic data by 
means of a variant calling pipeline.
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