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Abstract 

Background:  Bayesian Network (BN) modeling is a prominent methodology 
in computational systems biology. However, the incommensurability of datasets 
frequently encountered in life science domains gives rise to contextual dependence 
and numerical irregularities in the behavior of model selection criteria (such as MDL, 
Minimum Description Length) used in BN reconstruction. This renders model features, 
first and foremost dependency strengths, incomparable and difficult to interpret. In 
this study, we derive and evaluate a model selection principle that addresses these 
problems.

Results:  The objective of the study is attained by (i) approaching model evaluation 
as a misspecification problem, (ii) estimating the effect that sampling error has on the 
satisfiability of conditional independence criterion, as reflected by Mutual Information, 
and (iii) utilizing this error estimate to penalize uncertainty with the novel Minimum 
Uncertainty (MU) model selection principle. We validate our findings numerically 
and demonstrate the performance advantages of the MU criterion. Finally, we illustrate 
the advantages of the new model evaluation framework on real data examples.

Conclusions:  The new BN model selection principle successfully overcomes perfor-
mance irregularities observed with MDL, offers a superior average convergence rate 
in BN reconstruction, and improves the interpretability and universality of resulting 
BNs, thus enabling direct inter-BN comparisons and evaluations.
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Background
Probabilistic Bayesian Network (BN) modeling is a prominent tool in modern medical 
and life sciences. Apart from the standard array of data-analytic uses that are common 
to all probabilistic models, it has the advantage of capturing the complex structure of the 
web of relationships underlying the biological reality. When used for extraction of mean-
ing from data, BN modeling generates valid, data-driven, evidence-based, and directly 
interpretable hypotheses, adding mechanistic value (for both theoretical and applied 
research) to the more conventional numerical replication of phenomenology.
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BN-based dependency modeling has firmly established itself in computational biology 
and gained significant traction in secondary data analysis. Recent BN work runs the gamut 
of high-dimensional data analysis applications from pathway analysis [1, 2] to serology [3] 
to cell communications [4, 5] to connectomics [6] to genomics [7–11] to epigenomics [12, 
13] to transcriptomics [14]. Our prior BN application work ranged from flow cytometry 
[15] to chromatin interactions [16] to molecular evolution [17] to genetic epidemiology 
[18]; it is precisely this wide variety of biomedical domains and datasets that stimulated 
the present study, aiming at standardizing the BN evaluation across the different domains, 
datasets and modalities.

The specific problem that we address in this study arises in the context of analyzing BNs 
reconstructed from incommensurate data sources. Even if such BNs share an identical set 
of variables, comparing them is a non-trivial matter because certain structural features, 
although visually different, may belong to classes of equivalence, while structural similari-
ties may obscure subtle but important differences. The task becomes even more compli-
cated when assessing variable dependence strengths and their interplay with the rest of the 
network. As the results of structure recovery, edge insertions and edge strengths depend 
on a model score which quantifies a given model selection principle and typically offers 
only relative ordering of edges on an arbitrary scale. All of the technical details and possible 
irregularities of the realization of the model score are thus injected into the reconstructed 
model, which renders the interpretation of edges and their strengths difficult and non-port-
able in biological and biomedical settings. In our experience, this significantly impedes BN 
modeling adoption in the life sciences and in translational and clinical practice.

The outlined issue motivates designing a scoring criterion that could serve not only as 
an objective function for structure recovery, but as a measure of dependency strength on 
an absolute scale, enabling direct comparison of individual edges and structural features 
between networks, without parsing massive conditional probability tables and factoriza-
tions in search of explanations for local network behavior.

We will proceed by first considering possible modifications of a well-established Mini-
mum Description Length (MDL) criterion. Under certain conditions (large i.i.d. sample), 
it also coincides with another well-established criterion, Bayesian Information Criterion 
(BIC), with MDL/BIC being a de facto standard in the BN reconstruction context [19, 20]. 
Although the end results may vary from one criterion to another, the reasoning that follows 
is applicable to most model selection optimization principles (AIC, Akaike Information 
Criterion; BD, Bayesian Dirichlet, Chow-Liu etc.). The MDL criterion is rooted in coding 
theory, with the MDL principle aiming to find the model M with the shortest description 
that optimally encodes the data D. As such, it seeks to minimize MDL = L(D|M)+ L(M) , 
where L(M) is the description length of the model and L(D|H) is the description length of 
the data given the model. For BNs, this translates to the sum of the length required to repre-
sent the network and the length of the encoding/compression of the data achievable via the 
network. Learning a BN structure G∗ from the dataset D can be then be restated as

where the scoring criterion takes the following form [20]:

(1)G∗ = arg max
G

MDLD(G)
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The first term LLD(G) works out to be the log-likelihood of the structure G with respect 
to D. The second term − 1

2C(G) log(N ) is the description length of G with C(G) (or com-
plexity) usually taken to be proportional to the number of free parameters necessary to 
represent the factorization of the joint probability of G.

More specifically, for a dataset with sample size N containing n of ri-state random vari-
ables Xi whose parent sets πi have qi unique instantiations wij , with the event {πi = wij} 
appearing in the dataset Nij times, and the event Eijk = {Xi = xik} ∩ {πi = wij} appearing 
in the dataset Nijk times, MDL scoring functions can be stated as follows [20]:

where the first term is the log-likelihood LLD(G) which corresponds to the description 
length of the data given the model estimated from the dataset, and the second term is 
the description length of the network. The log-likelihood term is also related to condi-
tional entropy HD of individual nodes Xi of G and their parent node sets πi:

From this point on, we drop the subscript D and consider all relevant quantities as their 
numerical estimates computed with respect to D.

Another structure learning approach seeks the solution G∗ with the maximum poste-
rior probability

Under the assumption that the data prior P(D) is the same for all G the problem reduces 
to maximizing P(G, D) given by

where the parameters are as defined in (3) and θijk = P(Xi = xik |πi = wij) . Assuming the 
prior density f (�|G) is factorizable

leads to the Bayesian Dirichlet (BD) family of scoring functions. Assuming a uniform 
parameter prior f (θij1, . . . , θijri) = (ri − 1)! and performing the computation of P(G, D) 
in the log-space yields a BD family scoring function known as K2:

(2)MDLD(G) = LLD(G)−
1

2
C(G) log(N )

(3)MDLD(G) =

n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk log
Nijk

Nij
−

1

2

n
∑

i=1

(ri − 1)qi log(N )

(4)LLD(G) = −N
∑

i

HD(Xi|πi)

(5)G∗ = arg max
G

P(G|D)

(6)P(G,D) = P(G)

∫

�

n
∏

i=1

qi
∏

j=1

ri
∏

k=1

θ
Nijk

ijk f (�|G)d�

(7)f (�|G) =

n
∏

i=1

qi
∏

j=1

f (θij1, . . . , θijri)
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Both MDL and BD scores perform reasonably well in BN structure search, but they do 
exhibit certain limitations. For example, BD generally makes several assumptions about 
prior model distribution, tends to be computationally more demanding, and is irregu-
lar with respect to complexity [21]. MDL, on the other hand, requires no model prior 
considerations [22] and generally avoids the pitfalls seen with BD, but often under/
over-penalizes over particular ranges of parameters, as will be demonstrated later in this 
study. Moreover, it can even miss the true network by arriving at a false network with a 
lower score. In part, this behavior is attributable to the structure of the score itself. For 
MDL, the log-likelihood term is proportional to the sample size N, as can be seen in 
the Eq. (4), which means that for every new dataset this portion of the score is bound 
to a different scale unless the sample size remains constant. At the same time, the net-
work description length term is proportional to log(N ) , so its relative contribution to the 
total score varies at a different rate than that of the log-likelihood. This often leads to the 
situation where decisions in the local structure are due to a context-dependent interplay 
between the terms of the score, causing difficulties with interpretation and reducing the 
portability of the learned model features. Finally, neither method has any mechanism to 
account for data entry errors or sampling errors. Both will construct a model no matter 
how small the sample size of the data is. Both treat low-quality evidence as if it were rep-
resentationally accurate.

To illustrate with a common data analysis scenario example: given a specific dataset, 
a network obtained via subsampling would be numerically not comparable with the 
network obtained using the entire data, crippling the interpretation of the results.

The most obvious way to address this would be to do away with sample size depend-
ence. Conveniently, rescaling MDL by 1/N transforms the log-likelihood term into the 
sum of local conditional entropies

However, the network description length term becomes proportional to log(N )/N  . 
Therefore, changing the sample size by a factor α,while keeping the entropy of the data 
constant, changes the penalty by a factor of 1

α
(1+ log(α)/ log(N )) . Hence, changing the 

sample size is effectively equivalent to searching for a model of lower ( α > 1 ) or higher 
( α < 1 ) description length. But a model of fixed complexity should be able to generate 
data of any arbitrary sample size. Why should a fixed empirical entropy term be penal-
ized by an apparently different model description for different sample sizes when the 
model remains fixed? How can this be interpreted when studying the recovered struc-
tures obtained by subsampling or supersampling the same data? Why is it that although 
MDL penalizes smaller sample sizes, it will not forgo finding dependencies based on as 
little as 2 samples?

Clearly, this “naive” rescaling approach defers rather than resolves the sample size 
dependent scoring irregularity. After all, it is by design that the network description 

(8)K2(G) =

n
∑

i=1

qi
∑

j=1

ri
∑

k=1

ln
(ri − 1)!Nijk !

(Nij + ri − 1)!

(9)MDL(G) = −

n
∑

i=1

H(Xi|πi)−
1

2
C(G)

log(N )

N
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length term is neither proportional to the measure of data entropy nor bound to the 
same scale. The two terms are simply meant to measure the description lengths of two 
incommensurate things—the data and the model.

The trade-off irregularity seems to be an indication of a subtle misalignment 
between the competing objectives. Maximizing log-likelihood (or minimizing con-
ditional entropy), the consequence of the problem formulation, should not be the 
principal objective, even if it partially coincides with the goal of finding an optimal 
structure. This is apparent from the fact that the conditional entropy reaches mini-
mum when every sample gets its own class, or when the joint events of the parent 
variables are fine-grained enough to homogenize the conditioned variable, since for 
any pair π and π ′ of parent sets, π ⊂ π ′ implies H(X |π) ≥ H(X |π ′) . Hence, these 
optima clearly do not have to coincide with the entropy of the true solution. Even 
more importantly, the true solution should correspond to the correct conditional 
probability distribution, as opposed to the distribution with minimum entropy (maxi-
mum likelihood), regardless of its description efficiency. In this context, correctness 
has a specific meaning concerning the way the model specification is realized in the 
data. It can be understood in terms of the quality of model specification given the 
observational evidence or, in other words, model uncertainty due to sampling error 
and other sources of misspecification.

On the other hand, arguably the most important quality of MDL from the BN 
reconstruction perspective is that the conditional entropy minimization serves the 
purpose of finding locally dependent variables via the structure improvement crite-
rion of the form

which arises as the network search evaluates candidate structures against the current 
network configuration. In essence, it is a conditional independence test, in the sense that 
�H = 0 whenever X is independent of Y given its parent set π . It is worth noting that 
�H is also known as the Conditional Mutual Information (CMI), another information-
theoretic quantity that frequently arises in machine learning [20].

The above suggests that there is no need to be concerned about the justification of 
conditional entropy application and its value at the true solution to resolve the cor-
rect structure. It is sufficient to consistently maximize local dependence, controlling 
overfitting by a stringent independence test policy, and making sure that the appar-
ent dependencies that fall bellow the threshold of statistical certainty are classified as 
conditional independence. With all of this in mind, we will now re-derive the score to 
make all the terms contextually congruent and free of any irregularities.

We will formulate the model selection criterion implicitly via evaluation of the 
structure modification from G to G′ as

where the last term µ will perform the function of penalizing statistical uncertainty, 
reflecting the acceptable local independence policy. In the following sections, we will 

(10)�H = H(X |π)−H(X |π ,Y )

(11)�S(G,G′) =

n
∑

i=1

(H(Xi|πi)−H(Xi|π
′
i )− µ(Xi,π

′
i ))
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construct a suitable penalty term, grounding our reasoning in numerical satisfiability 
considerations, and investigate its performance.

Methods: numerical satisfiability and sampling resolution in independence 
criteria.
One of the difficulties in assessing independence lies in the fact that analytical criteria, 
such as, for example, separability of the joint probability, i.e. P(X ,Y ) = P(X)P(Y ) , can 
only be satisfied approximately in practice. The conditional independence statement 
such as P(X ,Y |Z) = P(X |Z)P(Y |Z) suffers from this difficulty even more. Yet, inde-
pendence is a key component of BN model specification. The limitations of its numerical 
realizability in the finite sample of observations is often the source of significant model 
misspecification that BN structure recovery applications struggle with. Here we will 
attempt to rectify this situation by investigating the degree to which finite sample resolu-
tion affects the numerical satisfiability of the independence criterion expressed in terms 
of the information-theoretic entropy, e.g. H(X)−H(X |Y ) = 0.

For a finite sample of size N the maximum likelihood estimate of the probability of 
the smallest observed event E is P(E) = 1/N  , i.e. the event must be represented by at 
least one sample in the data, and its empirical probability coincides with its maximum 
likelihood estimate. This estimate is also the smallest observable difference between the 
empirical probabilities of any two observed events.

In other words, any two probability estimates must differ by at least 1/N to be con-
sidered distinct. Further, for any two probability distributions to be distinct they must 
differ by at least 1/N over at least one event and its complement. Therefore, variation of 
conditional entropy evaluated for any two such minimally distinct probability distribu-
tions constitutes the minimum observable distinction in entropy. Conditional entropy 
variation that falls below this threshold corresponds to variation in distribution indistin-
guishable in the data.

Moreover, a finite sample is subject to sampling error unless the sample coincides 
with the whole population. For categorical or discretized data, in the simplest scenario, 
the sampling error can be attributed to the category variance of the multinomial dis-
tribution, giving rise to the uncertainty in probability estimates. Conversely, even when 
the probability estimates happen to coincide with the true distribution, it is generally 
impossible to unconditionally recognize this scenario due to non-uniqueness of the dis-
tribution that satisfies the observations. Non-uniqueness arises from the fact that all dis-
tributions in the immediate neighborhood of the true distribution can generate the same 
observations with some probability, but, more importantly, some members of this neigh-
borhood are indistinguishable at the given sampling resolution. It follows that the con-
ditional independence criterion can never be satisfied with certainty, for even under the 
ideal circumstances, there is an ambiguity in the exact distribution the criterion evalua-
tion actually corresponds to unless this distribution is known a priori. Finally, the sam-
pling error that arises in the estimation of conditional probability depends on the sample 
size of the conditioning event which implies that the conditional independence criterion 
has to be evaluated over estimates with varying degree of uncertainty.

To address this uncertainty in the most direct way we consider a distribution and 
its immediate neighborhood that corresponds to the small sample count variations in 



Page 7 of 26Gogoshin and Rodin ﻿BMC Bioinformatics          (2025) 26:100 	

categorical data. For the reasons outlined above, members of this neighborhood are 
indistinguishable in the data, so an upper bound for the corresponding variation in con-
ditional entropy can serve as a data-centric numerical satisfiabiliy filter for the condi-
tional independence criterion at a given sampling resolution.

Suppose that p is a member of (d − 1)-dimensional simplex S and h ∈ S is a small per-
turbation such that 

∑d
k=1 hk = 0 , so that p + h is again a member of the same simplex. 

Since entropy is an analytic function over the interior of S, it can be expressed by its Tay-
lor series in a neighborhood of p:

where R(p,h) =
∑∞

m=0 Rm(p,h) is the sum of the higher order terms. Let r = 1/N  be 
the smallest observable variation in event probability as estimated from data. Then the 
smallest observable perturbation h to any simplex member must have hn = r as its n-th 
component and hm = −r as its m-th component, with all other components being iden-
tically zero, e.g. h = (0, . . . , 0, r, 0, . . . , 0,−r, 0, . . . , 0) . This h corresponds to the pertur-
bation of the category counts where one category gains and another looses a sample. 
Evaluating the second term of the expansion for this h gives

because 
∑

k hk = 0 . Suppose the nontrivial components of p lie between r and 1− r , i.e. 
at the prescribed resolution every nonempty category contains at least one sample. Since 
the extreme values of log(pn/pm) are achieved whith either pn = r and pm = 1− r , or 
the other way around, the following inequality holds

In the same spirit, the third term of the expansion evaluates to

and for the same reason as above the following holds

The higher order terms Rm(p,h) of the expansion follow a pattern:

(12)H(p+ h) = H(p)+ ∇H(p) · h+ R(p,h)

(13)
∇H(p) · h =−

∑

k

hk(log(pk)+ 1)

=− r(log(pn)− log(pm)) = −r log(pn/pm)

(14)−r log((1− r)/r) ≤ ∇H(p) · h ≤ −r log(r/(1− r))

(15)R0(p,h) =
1

2
hT · D2H(p) · h = −

1

2

∑

k

h2k
pk

= −
r2

2
(1/pn + 1/pm)

(16)−
r2

2
(1/r + 1/r) ≤ R0(p,h) ≤ −

r2

2
(1/(1− r)+ 1/(1− r))

(17)
R1(p,h) =

1

3!

∑ ∂3H(p)

∂pi∂pj∂pk
hihjhk

= −
1

3!

∑ −h3i
p2i

=
1

3!
r3(1/p2n − 1/p2m)
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Since the even terms are strictly negative and the odd terms can be split into positive 
and negative parts, the residual R can be bounded above by

and bounded below by

where for notational convenience we set ξ = (2+ π2/24).
The conditional independence criterion can be expressed as follows:

In the near-conditional-independence scenario H(X |Y = yk) lies in the immediate 
neighborhood of H(X) and can be represented by the series expansion as above, leading 
to the expression

where the perturbation hk = (0, . . . , 0, rk , 0, . . . , 0,−rk , 0, . . . , 0) is now defined in terms 
of the smallest event variation rk = 1/Nk that corresponds to the observations condi-
tioned on the event (Y = yk) with the sample count Nk . Subsequent simplification leaves 
the expression containing only the terms proportional to hk:

(18)
R2(p,h) =

1

4!

∑ ∂4H(p)

∂pi∂pj∂pk∂pl
hihjhkhl

= −
1

4!

∑ 2h4i
p3i

= −
2r4

4!
(1/p3n + 1/p3m)

(19)R3(p,h) = −
1

5!

∑ −2 · 3 · h5i
p4i

=
3!r5

5!
(1/p4n − 1/p4m)

(20)R4(p,h) = −
1

6!

∑ 3! · 4 · h6i
p5i

= −
4!r6

6!
(1/p5n + 1/p5m)

(21)
R+ =

∞
∑

k=1

(2k−1)!·r2k+1

(2k+1)!·r2k
= r

∞
∑

k=1

1
(2k)(2k+1)

≤ r
∑

k
1

(2k)2
= r π

2

24

(22)
R
− =

∞
∑

k=0

−2 · k! · rk+2

(k + 2)! · rk+1
− R

+ = −2r

∞
∑

k=0

1

(k + 1)(k + 2)
− R

+

= −2r − R
+ ≥ −2r − r

π2

24
= −rξ

(23)�H = H(X)−H(X |Y ) = H(X)−
∑

k

P(Y = yk)H(X |Y = yk) = 0

(24)�H = H(X)−
∑

k

P(Y = yk)(H(X)+ ∇H(X) · hk + R(P(X),hk))

(25)�H = −
∑

k

P(Y = yk)(∇H(X) · hk + R(P(X),hk))
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Substituting the appropriate bounds for the individual terms of the expansion one can 
now obtain the bounds for the effect that the sampling error has on the independence 
criterion in the near-conditional-independence scenario. The lower bound is given by

where rk = 1/Nk and P(Y = yk) = Nk/N  are the maximum likelihood estimates. Noting 
that, in general, �H ≥ 0 , and that the obtained above lower bound is negative, i.e.

we can safely exclude the lower bound from consideration for now.
The upper bound is given by

and is satisfiable only when Nk ≥ 2 . This makes sense, because Nk < 2 is the sampling 
resolution territory.

For practical purposes we may actually prefer an upper bound that affords com-
putation without additional constraints on Nk other than that it is either positive or 
non-negative, as apears in the following:

where q is the number of states of the parent variable. We will not concern ourselves 
with obtaining tighter or more general bounds for now, although this approach clearly 
makes it possible.

Identical reasoning applies in a situation with several conditioning variables:

where the sample count Nij corresponds to the joint event with probability

(26)

�H ≥ −
∑

k

(−rk log(rk/(1− rk))− r2k/(1− rk)+ rkπ
2/24)P(Y = yk)

=
∑

k

(− log(Nk − 1)+ 1/(Nk − 1)− 1)/N

(27)
∑

k

(− log(Nk − 1)+ 1/(Nk − 1)− 1)/N ≤ 0

(28)

�H ≤ −
∑

k

(−rk log((1− rk)/rk)− rkξ)P(Y = yk)

=
∑

k

(log(Nk − 1)+ ξ)/N

(29)�H ≤
1

N

∑

Nk>1

(log(Nk)+ ξ) ≤
1

N

q
∑

k=1

log(Nk + 1)+ q
ξ

N

(30)

H(X |Y )−H(X |Y ,Z) =

=
∑

i,j

(

P(Y = yi)H(X |Y = yi)− P(Y = yi,Z = zj)H(X |Y = yi,Z = zj)
)

= −
∑

i,j

P(Y = yi,Z = zj)
(

∇H(X |Y = yi) · hij + R(P(X |Y = yi),hij)
)

≤
∑

ij

(log(Nij)+ ξ)/N

(31)P(Y = yi,Z = zj) = Nij/N .
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With these bounds the condition for insertion of an edge Xi ← Xj can be stated as the 
requirement that �S(Xi,Xj) > 0 , where

with the term penalizing uncertainty given by

where πi has qi states, Xj has rj states and Nk is the sample count associated with the k-th 
state of πi ∩ Xj . Similarly, the condition for deletion of an edge Xi ← Xj requires that 
�S(Xi,Xj) ≤ 0.

The partial ordering over the set of networks that coincides with this local edge 
insertion and removal criteria can be implemented via the following relation:

where

Further, since the whole conditioning variable set can naturally be considered a sin-
gle conditioning variable the same bound applies to H(X)−H(X |Y ,Z) , i.e. expanding 
H(X|Y, Z) around H(X) yields

Hence, evaluation strategy can be expanded to arbitrary parent configurations πi of Xi 
via

which compares the mutual information of the configuration with its uncertainty. The 
optimal parent set π∗

i  is subject to

which is equivalent to

Thus, if we let the scoring criterion for a network G be

(32)�S(Xi,Xj) = H(Xi|πi)−H(Xi|πi ∩ Xj)− µ(πi ∩ Xj)

(33)µ(πi ∩ Xj) =
1

N

qirj
∑

k=1

log(Nk + 1)+ qirj
ξ

N

(34)�S(G,G′) =

n
∑

i=1

�S(Xi,πi,π
′
i )

(35)�S(Xi,πi,π
′
i ) =







H(Xi|πi)−H(Xi|π
′
i )− µ(π ′

i ), if πi ⊂ π ′
i

H(Xi|πi)−H(Xi|π
′
i )+ µ(πi), if π ′

i ⊂ πi

H(Xi|πi)−H(Xi|π
′
i )+ µ(πi)− µ(π ′

i ), otherwise

(36)

H(X)−H(X |Y ,Z) = H(X)−
∑

i,j

P(Y = yi,Z = zj)H(X |Y = yi,Z = zj)

= −
∑

i,j

P(Y = yi,Z = zj)
(

∇H(X) · hij + R(P(X),hij)
)

≤ µ(Y ∩ Z)

(37)�S(Xi,πi) = H(Xi)−H(Xi|πi)− µ(πi)

(38)π∗
i = arg max

πi
�S(Xi,πi)

(39)π∗
i = arg min

πi
(H(Xi|πi)+ µ(πi))
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 where ξ = 2+ π2/24 , with the objective determined by

then for any two networks from the same equivalence class the structure with the small-
est overall uncertainty would have the score advantage. Since, all else being equal, this 
selection criterion would prioritize dependencies with the least uncertainty, the guiding 
model selection principle can be denominated as the principle of Minimum Uncertainty 
(MU).

The above implies that, unlike MDL, the derived criterion does not score members 
of Markov equivalence class the same. Simply put, Markov equivalence is an analytical 
property of the model where certain joint probability structures can be represented in 
more than one way. In general, it can be assessed with algebraic means and does not 
require the score to conform. For example, the lack of score-equivalence is the behav-
ior common in the BD family of scores. In our context, it is the desired behavior, since 
different realizations of the same equivalence class are not supported by the available 
observational evidence equally well.

Even though we have retained N in the penalty term, this fact no longer presents an 
issue. Now, the penalty scales with entropy, as it was derived directly from it, and the 
amount of uncertainty due to sampling error scales with the sample size. The penalty is 
also proportional to the empirical description length of the proposed parent set configu-
ration via its probability distribution estimate pk since log(Nk) = log(pk)+ log(N ) . This 
implies that the criterion still prefers the more parsimonious models, but it does so dif-
ferently and for a different reason than MDL, that reason being the smaller uncertainty.

Finally, under MU, the appearance, fixation, and strength of edges in the network can 
be interpreted in the more practical terms of representational accuracy and precision of 
the available evidence, instead of relying on the abstract criteria such as maximum likeli-
hood, maximum posterior probability, or maximum parsimony.

(40)
S(G) =

n
∑

i=1

(H(Xi|πi)+ µ(πi))

µ(πi) = 1
N

qi
∑

k=1

log(Nk + 1)+ qi
ξ
N

(41)G∗ = arg min
G

S(G)

Table 1  The data generated for 105 pairs of 8-state independent variables with N=1000

Five representative pairs are shown. The 1st column is the conditional entropy deviation �H = H(X)− H(X |Y) ; 2nd column 
is the corresponding uncertainty penalty, obtained in this work; 3rd column is the MDL complexity; 4th column is the 
update of the uncertainty penalized score; 5th column is the update of MDL

�H µ �c �S �MDL

0.02403642 0.05743832 0.16924000 − 0.03340190 − 0.14520358

0.01683616 0.05483424 0.16924000 − 0.03799808 − 0.15240385

0.03657420 0.05738811 0.16924000 − 0.02081391 − 0.13266580

0.02864827 0.05710318 0.16924000 − 0.02845492 − 0.14059174

0.02562050 0.05696398 0.16924000 − 0.03134347 − 0.14361950



Page 12 of 26Gogoshin and Rodin ﻿BMC Bioinformatics          (2025) 26:100 

Results
Numerical verification and the sensitivity profile

In this section, we will use pairs of independent variables (X, Y), obtained from a multi-
nomial distribution with a uniform Dirichlet prior, to investigate and verify numerically 
the behavior of the uncertainty penalty term µ obtained in the previous section. To do so 
we evaluate and tabulate the following quantities:

where �c is the effective MDL complexity penalty and µ is the uncertainty penalty, 
respectively. Since there are three options ranging from the tightest derived bound in 
Eq. (28) to the most relaxed bound in Eq. (29), we deliberately select the slightly tighter 
version of the bound from Eq. (29) for this pairwise testing, as this gives a better sense 
of the behavior of the other two. The uniform prior is selected for this investigation in 
order to include the greatest variety of the simplex members in the procedure, so that 
the criterion is tested across the widest range of parameters.

An example of the data obtained from a sequence of 105 8-state categorical pairs of 
independent variables with sample size N = 103 is shown in Table 1. For brevity, we only 
include the results for 5 pairs (this is sufficiently representative given that the statistical 
behavior across all pairwise comparisons is summarized in Table 2 below). The negative 
sign retained in the table arises due to the effect the penalty terms play in the evaluation 
of both More importantly, the negative sign is an indicator that the update should be 

(42)
�MDL = �H −�c with �c =

(r−1)(1−r) log(N )

2N

�S = �H − µ with µ = 1
N

∑

Nk>0 log(Nk)+ q ξ
N

Table 2  Statistical summary for 105 independent variable pairs with 8 categories and N=1000

�H µ �c �S �MDL

Mean 0.02480604 0.05363642 0.16924000 − 0.02883038 − 0.14443397

Median 0.02450248 0.05409550 0.16924000 − 0.02908602 − 0.14473752

σ 0.00503776 0.00237667 0.00000000 0.00520181 0.00503776

Max 0.04983589 0.05785563 0.16924000 − 0.00333894 − 0.11940411

Table 3  Statistical summary for 105 independent variable pairs with 4 categories and N=1000

�H µ �c �S �MDL

Mean 0.00457969 0.02989537 0.03108490 − 0.02531568 − 0.02650521

Median 0.00425591 0.03029054 0.03108490 − 0.02564577 − 0.02682899

σ 0.00214034 0.00153177 0.00000000 0.00258117 0.00214034

Max 0.01933179 0.03173017 0.03108490 − 0.01002770 − 0.01175311

Table 4  Statistical summary for 105 independent variable pairs with 2 categories and N = 1000

�H µ �c �S �MDL

Mean 0.00050636 0.01663084 0.00345388 − 0.01612448 − 0.00294752

Median 0.00023039 0.01696400 0.00345388 − 0.01647059 − 0.00322349

σ 0.00071399 0.00087238 0.00000000 0.00112515 0.00071399

Max 0.00953119 0.01725168 0.00345388 − 0.00693925 0.00607731
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rejected due to near-independence in the case of �S , and due to high storage require-
ments in the case of �MDL . As we will see further, the update rejection, equivalent to 
the detection of near-independence within the framework developed in this study, is not 
guaranteed for all independent variables, at least for the MDL score (see Table 4).

Table  2 summarizes the statistical behavior across the same sequence of 105 pairs. 
Note that the �c is constant, while �S reacts to the local properties of every pair of vari-
ables under consideration, and is a tighter bound for the deviation from independence, 
given by �H .

Table  3 summarizes the results of 105 pairwise comparisons of 4-state independent 
variables and N = 1000 . Note that the lower category count resulted in a decrease in the 
deviation from perfect independence, and that this effect is also accounted by the drop 
in both penalty terms, although at vastly different rates.

Table 4, on the other hand, indicates a failure of MDL to properly detect near-inde-
pendent pair, as can be seen in the last row of the �MDL column. Here, the pairwise 
comparisons are carried out for 2-state independent pairs with sample size N = 1000 , 
and MDL misclassifies 920 independent pairs out of 105 , approximately 1%.

Note that the failure of �MDL to identify independent variables is not mitigated by 
an order of magnitude increase in the sample size, i.e. N = 10000 , as can be observed 
in Table 5. But the total number of misclassifications of independent pairs falls to 227, 
which is approximately 0.23% . These results are consistent with the well-known obser-
vation that the MDL complexity term tends to under-penalize low category count vari-
able pairs, causing at times severe overfitting in the context of BN recovery from data. 

Table 5  Statistical summary for 105 independent variable pairs with 2 categories and N = 10000

�H µ �c �S �MDL

Mean 0.00004980 0.00212434 0.00046052 − 0.00207455 − 0.00041072

Median 0.00002275 0.00215681 0.00046052 − 0.00210780 − 0.00043777

σ 0.00007025 0.00008392 0.00000000 0.00010969 0.00007025

Max 0.00092597 0.00218569 0.00046052 − 0.00113677 0.00046545

Fig. 1  The behavior of the deviation from independence �H , the MDL penalty term �c , and the MU penalty 
µ for random binary independent variable pairs across varying sample size
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Observed sample size dependence in MDL’s ability to classify independent variables cor-
rectly, however, fails to explain why �c needs to be sensitive to sample size, given the 
relatively well-behaved, well-represented profile of conditional and joint events of the 
scenario presented here. Clearly, this undesirable under-penalizing property of MDL 
complexity term cannot be easily dismissed as the shortcoming of the data (see Fig. 1), 
particularly given the fact that �c depends only on N and reflects nothing else about the 
variable pairs in question.

To investigate this misclassification further we consider batches of 10,000 randomly 
generated pairs of binary variables for a range of sample sizes. For every batch, we 
extract the pair that gives the maximum value of �H and evaluate the corresponding 
values of �c and µ . These values are then plotted against the increasing sample size in 
Fig. 1. The MDL penalty term �c clearly fails to bound the deviation from independence 
�H across the whole range of sample sizes.

Fig. 2  The behavior of �H , �c , and µ for random binary independent variable pairs across the extended 
sample size range

Table 6  Statistical summary for 105 independent 4-state pairs with N = 10000.

�H µ �c �S �MDL

Mean 0.00045291 0.00391531 0.00414465 − 0.00346240 − 0.00369174

Median 0.00042035 0.00395117 0.00414465 − 0.00349716 − 0.00372430

σ 0.00021309 0.00014345 0.00000000 0.00025671 0.00021309

Max 0.00198022 0.00409401 0.00414465 − 0.00179072 − 0.00216443

Table 7  Statistical summary for 105 independent 8-state pairs with N = 10000

�H µ �c �S �MDL

Mean 0.00247550 0.00722180 0.02256533 − 0.00474630 − 0.02008983

Median 0.00244186 0.00725890 0.02256533 − 0.00478098 − 0.02012347

σ 0.00049640 0.00021950 0.00000000 0.00054044 0.00049640

Max 0.00532519 0.00762947 0.02256533 − 0.00136958 − 0.01724014
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In Fig.  2, the range of sample sizes is extended to 50,000 with a coarser increment 
to show that the misclassification rate of �c sees general improvement as N increases, 
although at N = 46, 000 the MDL penalty term once again fails to identify an independ-
ent pair. As expected, µ has no trouble in this range of parameters, and its stricter penal-
ization profile is justified by the general volatility exhibited by �H .

To continue, we return to our previous setup generating 105 independent pairs 
and consider the scenario with 4-state variables and N = 10000 . Table 6 reveals the 
behavior consistent with the expectations, where both updates identify near-inde-
pendent pairs equally well. In this range of data parameters the terms are very close in 
their magnitude, so it is not surprising that the behavior is almost identical.

In Table 7 (8-state pairs, N = 10000 ), the MDL penalty term is on average several 
times greater than µ . Both scores, however, perform equally well in this range of 
parameters, identifying all independent pairs correctly.

Table 8 reveals a misclassification on the part of �S , as can be seen in the last row of 
the �S column. Further investigation reveals approximately 2.6% of misclassified pairs 
and sample size dependence of the misclassification rate which is completely resolved 
by increasing the sample size by one order of magnitude (Table 9). This observation is 
fully consistent with the general understanding of the effect that limited sample size 
may have on conditional or joint events.

In the scenario presented here, a 16-state random variable can be expected to have 
unconditional events of the size P(X = xi) ≈ 0.0625 . Therefore, any joint event will 
necessarily be smaller, in the order of the square of the unconditional events due to 
independence, i.e.

This corresponds to only roughly 40 samples per joint event in the case of N = 104 , 
on average. Clearly, for such small probabilities the sample size should be larger to be 

(43)P(X = xi,Y = yj) = P(X = xi)P(Y = yj) ≈ 0.00390625

Table 8  Statistical summary for 105 pairs of 16-state independent variables with N = 10
4

�H µ �c �S �MDL

Mean 0.01140676 0.01327543 0.10361633 − 0.00186866 − 0.09220957

Median 0.01137637 0.01331589 0.10361633 − 0.00189549 − 0.09223996

σ 0.00109037 0.00032421 0.00000000 0.00110517 0.00109037

Max 0.01673620 0.01408294 0.10361633 0.00326571 − 0.08688013

Table 9  Statistical summary for 105 pairs of 16-state independent variables with N = 10
5

�H µ �c �S �MDL

Mean 0.00112990 0.00174350 0.01295204 − 0.00061361 − 0.01182214

Median 0.00112681 0.00174529 0.01295204 − 0.00061679 − 0.01182523

σ 0.00010648 0.00001485 0.00000000 0.00010760 0.00010648

Max 0.00166940 0.00177954 0.01295204 − 0.00006718 − 0.01128264
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adequately representative, otherwise the unaccounted-for effects of sampling error may 
dominate the landscape.

It is not surprising that MDL falters in these circumstances, given how much it 
over-penalizes �H  . This comes at the cost of specificity, i.e. MDL would clearly fail 
to classify dependent pairs as such for all values of �H  that would fall between, say, 
the values max�H  and �c presented in the table.

Table  9 reveals the ability of �S to recover its sensitivity under the condition of 
sufficient sample size. This is to be expected, since for N = 105 a joint event will cor-
respond to roughly 400 samples, on average. Note that while the MDL complexity 
term continues to over-penalize �H  significantly even when provided data of ample 
size, the sensitivity of µ attains a new degree of refinement.

Figure  3 recapitulates the misclassification analysis (that was performed for the 
binary variables above) for the batches of 10,000 random 16-state independent 

Fig. 3  The behavior of �H , �c , and µ for random 16-state independent variable pairs across varying sample 
sizes

Table 10  Statistical summary for 105 pairs of 4-state dependent variables with N = 500.

�H µ �c �S �MDL

Mean 0.19271026 0.05420177 0.05593147 0.13850849 0.13677878

Median 0.18099334 0.05503298 0.05593147 0.12654398 0.12506187

σ 0.09262760 0.00314580 0.00000000 0.09187512 0.0926276

Min 0.00424132 0.02682545 0.05593147 − 0.04577661 − 0.05169015

Max 0.80530262 0.05791574 0.05593147 0.74811968 0.74937114

Table 11  Statistical summary for 105 pairs of 4-state dependent variables with N = 1000.

�H µ �c �S �MDL

Mean 0.18806106 0.02989844 0.03108490 0.15816261 0.15697616

Median 0.17575283 0.03029128 0.03108490 0.14563280 0.14466793

σ 0.09149655 0.00152171 0.00000000 0.09110980 0.09149655

Min 0.00255473 0.01684509 0.03108490 − 0.02589762 − 0.02853017

Max 0.71917199 0.03172996 0.03108490 0.68759192 0.68808709
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variable pairs for every value of N. The figure shows consistently improving classifi-
cation precision of µ , with a somewhat elevated sensitivity profile for smaller sample 
sizes, as expected due to the unaccounted-for effect of sampling error. On the other 
hand, the excessive over-penalization imposed by �c , clearly visible in this figure, is 
difficult to justify, given the abundant sample size and very consistent behavior on 
the part of �H .

The specificity profile and a reconstruction example

With the following results, we will investigate the specificity profile of the new penalty 
term. We begin with a few characteristic dependent pair configurations that mimic typi-
cal discrete biomedical data. Table 10 demonstrates the results for the simulation with 
105 pairs of 4-state dependent variables. As can be seen from the negative values appear-
ing in the last two columns, there was a certain amount of misclassification. MDL mis-
labeled 3596 pairs, which is 3.596% of the total pairs tested. MU mislabeld 2945 pairs, 
which is 2.945% of the total.

Table 11 summarizes the results obtained with 105 pairs of 4-state dependent variables. 
As expected, doubling the sample size drops the misclassification rate for both criteria. 
MDL mislabeled 784 pairs, which is 0.784% of the total pairs tested. MU mislabeled 581 
pairs, which is 0.581% of the total.

Table 12 displays the simulation results with 105 pairs of 2-state dependent variables. 
Here, MDL mislabeled 19103 pairs, which is 19.103% of the total pairs tested, while MU 
misclassified 38913 pairs, which is 38.913% of the total. However, the number of pairs 
with values of �H below 0.00953119 (the maximum value found in Table 4), i.e. indis-
tinguishable from the range expected for independent pairs, is 30485 or 30.485% of the 
total. Moreover, 196 values were indistinguishable from zero, i.e. below machine pre-
cision. So, the increase in the mislabeling rate for both MU and MDL has to do with 
the overlap of the distributions of �H that correspond to dependent and independent 
pairs, respectively. MU filters out all pairs indistinguishable from independent at the 
cost of mislabeling only 8428 of  the identifiable dependent pairs, while MDL is firmly 
positioned inside the overlap, dismissing only about 23 of the pairs indistinguishable from 
independent.

There is no question that MU demonstrates very consistent behavior, avoiding mis-
labeling independent relationships across pairs under variable complexity and sample 
size. It is debatable whether MDL positioning the penalty term well inside the overlap 
between the distributions corresponding to dependent and independent pairs has merit. 
There may be circumstances where this level of sensitivity is desirable. But it would 

Table 12  Statistical summary for 105 pairs of 2-state dependent variables with N = 1000.

�H µ �c �S �MDL

Mean 0.07002421 0.01663055 0.00345388 0.05339366 0.06657033

Median 0.03059953 0.01696400 0.00345388 0.01395001 0.02714566

σ 0.09435551 0.00087401 0.00000000 0.09411839 0.09435551

Min 0.00000000 0.00931899 0.00345388 − 0.01725168 − 0.00345388

Max 0.68009428 0.01725168 0.00345388 0.66284260 0.67664040



Page 18 of 26Gogoshin and Rodin ﻿BMC Bioinformatics          (2025) 26:100 

certainly come at the cost of mistaking perturbations due to sampling error for real 
relationships. It is even more difficult to dismiss the observed under/over-penalization 
across varying data parameters.

This superior regularity of the MU criterion readily translates into better reconstruc-
tion convergence rates. To substantiate this point we consider a 6400 sample dataset gen-
erated by an artificial 8-node network with 3-state nodes 4 and repeatedly reconstruct 

Fig. 4  8-Node network of 3-state variables used for reconstruction

Fig. 5  8-Bin histograms of the number of iterations to convergence for MDL (left) and MU (right) criteria

Table 13  Statistical summary of the number of iterations needed by a stochastic hill-climbing 
search to recover the correct BN structure

Mean σ Median Min Max

MU iterations 13.29 14.02 8 2 154

MDL iterations 39.85 33.35 30 2 292
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the structure of the generating model from it. The number of iterations necessary for 
our stochastic hill-climbing search algorithm to converge to the correct BN structure 
is recorded. A total of 1024 runs of the reconstruction procedure is repeated for both 
the MU and the MDL principles respectively, producing two separate distributions of 
1024 samples each. Figure 5 depicts the corresponding 8-bin histograms, truncated to 
100 iterations for the sake of presentation. Additional statistical details for the complete 
results are provided in Table 13.

Note that an 8-node network has 212133402500 Markov equivalence classes [23]—
more than enough for a naive procedure to get lost in the search space. The choice of a 
small 8-node network here is motivated only by ability to collect enough statistics for the 
model selection criteria in a reasonable amount of time; the convergence experiments 
for larger networks would add little practical value to this study, since our primary objec-
tive is only to show the concrete improvements in the approach to model selection. The 
BN recovery process itself is not limited by the network size, but testing its performance 
on a wider selection of larger models is computationally challenging and will be a subject 
of a separate dedicated study, as one of our future research directions.

As can be seen in Fig. 5, the MU principle outperforms the MDL principle in the aver-
age rate of convergence, with roughly 97% (996/1024) of runs reaching the target struc-
tue within 50 iterations, as opposed to only about 72% (736/1024) for MDL.

The convergence advantage of MU over MDL might become even more pronounced 
under a wider range of statistical parameters which tends to disfavor MDL. All of the 
above ddemonstrate that not only does the uncertainty penalty term µ have an edge in 
interpretability, but that it is also far more balanced and consistent in its sensitivity pro-
file, a matter of direct relevance to practical performance in model selection.

Fig. 6  BN obtained from the full sample (9378 tRNAs) with the MDL criterion. Nodes in the network 
correspond to the tRNA positions, and edges — to the dependencies between the tRNA positions. The 
“boldness” of the edge is proportional to the dependency strength, also indicated by the number shown next 
to the edge. See text for further details
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Application to the structural biology of tRNA molecules: sample size invariance study

In a prior study [17], we used BN modeling (with conventional scoring criteria) to study 
and dissect the structure of intra-tRNA-molecule residue/position relationships across 
the three domains of life, with an eye toward identifying informative positions and sec-
tions of the tRNA molecule in different tRNA subclasses. In this study, we have reca-
pitulated this analysis with the current version of our BN modeling software BNOmics 
[18] using the “standard” MDL, and evaluated the resulting BN across different sample 
sizes using the standard MDL and the novel criterion, MU. The tRNA sequences and 
alignment were assembled as in [17] with slight modifications, amounting to 9378 tRNA 
sequences.

Figure 6 depicts the BN obtained from the full (9378 tRNAs) sample with the MDL 
criterion. The tRNA residues in the network were colored according to the tRNA mol-
ecule structural domains—red (acceptor stem), green (D-arm), blue (anticodon 131 
arm) and yellow (T-arm). The tRNA residue positions, shown inside the network node 
labels, followed the universally accepted tRNA position numbering standard [24]. Figure 
S1 depicts the same structure but scored, also with MDL, against a random subsam-
ple of 4689 tRNAs (50 percent of the full sample). Figure S2 depicts the same structure 
scored with the MU criterion against the full (9378 tRNAs) sample. Finally, Figure S3 
depicts the same structure scored with the MU criterion against a random subsample 
of 4689 tRNAs (50 percent of the full sample). It is clear that edge strengths obtained 
with the MDL scoring criterion strongly depend on sample size (Fig. 6 vs. Figure S1), just 
as expected. In contrast, the edge strengths obtained with the MU score are practically 
independent of sample size (Figure S2 vs Figure S3).

A “naive” alternative, described above in the introduction, would be to rescale MDL 
scores by 1/N, thereby eliminating sample size dependence in the likelihood term (con-
verting it to conditional entropy). However, this transformation fails to eliminate sample 
size dependence from the complexity term, demanding a separate interpretation for its 
contribution. The results of the “naive” rescaling can be observed in Figure S4 and Figure 
S5 which exhibit significant instability in the strengths of many weaker edges across the 
two sample sizes. For reference, Figures S6 and S7 show the scores as calculated by �H 
alone, i.e. with the penalty term omitted, where we can see a much more predictable and 
relatively stable behavior across the two considered sample sizes. Notably, a more stable 
score behavior is demonstrated in Figures  S2 and S3, suggesting that the MU penalty 
derived in this study is in congruence with �H .

Note that the effect of the penalty term on the score can be one of the primary deciding 
factors in network configuration preference, and play the role of a termination criterion 
for seeking dependencies. Since MDL penalizes the arity of parent variable bundles, i.e. 
complexity, one has to account for description efficiency when interrogating MDL score 
fluctuations. On the contrary, the MU score derived in this study seamlessly integrates 
its penalty term as an acceptable evaluation uncertainty. This allows the interpretation of 
score fluctuations directly in terms of satisfiability of the independence criterion.
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Application to variations in apolipoprotein E gene and plasma lipid and apolipoprotein E 

levels: sample stratification study

In this application, real data is used to illustrate the behavior og the MU criterion with 
respect to data stratification. This data can be found in the BNOmics project’s source 
code repository, and originates from the prior genetic epidemiology study of variations 
in the apolipoprotein E (APOE) gene and plasma lipid and APOE levels. The datasets 
contains 30 variables, 20 of which are SNPs (single nucleotide polymorphisms) in the 

Fig. 7  MDL-based reconstruction of the APOE network. See text for variable descriptions. Shaded nodes and 
blue edges define the Markov blanket of the target APOE variable. Otherwise, edge color gradient (black to 
dark to light ochre) corresponds to the edge strength, shown as the number next to the edge. Dotted lines 
designate the edges missing compared to the full-sample, unstratified network

Fig. 8  MDL-based reconstruction of the APOE network, stratified by race. See Fig. 7 for further details
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APOE gene (shown as the numbered nodes in the networks). The remaining 10 variables 
comprise lipid and lipoprotein measurements (CHOL, HDL, TRIG, APO_E, APO_A, 
APO_B) combined with basic epidemiological variables (AGE, GENDER, WEIGHT, 

Fig. 9  MU-based reconstruction of the APOE network. See Fig. 7 for further details

Fig. 10  MU-based reconstruction of the APOE network, stratified by race. See Fig. 7 for further details
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HEIGHT) ([18] and references therein). The data was stratified into African American 
(AA, 702 donors from Jackson, Mississippi) and European American (EA, 854 non-His-
panic white donors from Rochester, Minnesota) datasets.

For this study the two datasets were combined to create the unstratified superset. 
Non-SNP variables were discretized into a coarse 3-bin maximum-entropy representa-
tion. The same BN algorithm was applied to the unstratified dataset, and two “universal 
graph” network structures - one corresponding to the MDL, the other corresponding to 
the MU criteria - were reconstructed. The resulting structures were subsequently reeval-
uated, or “re-scored”, against the random 50% subsample datasets and the original strati-
fied AA and EA datasets.

Figures 7, 8, 9, and 10 illustrate the differences in the behavior of the MDL and the 
MU selection principles over resulting BN structures with highlighted (blue edges and 
shaded nodes in the networks) Markov blankets of the APO_E (plasma APOE level) var-
iable (shown as the red node in the networks). The typical overfitting attributable to the 
MDL penalty term at this discretization level manifests itself in relative insensitivity to 
the loss of power. There is a striking contrast between Fig. 7, where reevaluation of BN 
over the 50% subsample of the data leads to the loss of only 6 edges (marked with dot-
ted lines), and Fig. 9, with 13 weak edges deemed insignificant when the subsample is 
reevaluated with MU criterion. In general, MU-based analysis leads to much more cir-
cumscribed APOE Markov blankets. Furthermore, just as with the previous application 
example (tRNA structure), while edge strengths cannot be compared across the MDL-
derived networks, they are directly comparable across the MU networks, thus making 
comparing and contrasting similar but different BNs much easier. In this application 
example, by re-scoring the universal graph (Fig.  9a) against the stratified EA and AA 
datasets (Figs. 10a and b, respectively) we are able to directly compare EA and AA net-
works, concluding that SNP 3937 - APOE relationship goes away in the AA subset.

Importantly, because re-scoring is computationally trivial (compared to the BN struc-
ture recovery), the strategy of constructing the universal graph and then re-scoring it 
against the stratified subsets can be easily adapted to the time-series data, where the 
subsets represent sliding window snapshots, or time-slices, along the temporal axis. 
This approach enables tracing dynamic changes in the BN (with edge strengths increas-
ing or decreasing with time) and therefore presents an extremely computationally effi-
cient  alternative to the “true” dynamic Bayesian network (DBN) modeling.

In summary, the MU principle overcomes the limitations of the MDL principle in that 
it (i) naturally handles data of varying sample size, (ii) seamlessly integrates an adaptive 
penalty term commensurate with �H into edge scores, thereby simplifying interpreta-
tion, (iii) implicitly penalizes model complexity with higher regularity, and (iv) enables 
direct comparison between similar but different BNs.

Discussion and conclusions
Numerical verification of the effect that the resolution limit has on independence assess-
ment has shown that the uncertainty-driven reasoning, as outlined in this study, is a valid 
and effective framework for managing near-independence scenarios, directly applicable 
in the context of data-driven recovery of BNs. The preliminary tests of the MU princi-
ple in BN recovery display all the desired characteristics, i.e. computational performance 
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comparable to the MDL-driven method, but with consistently higher regularity across 
varying scales and scenarios, and better average convergence rates. Importantly, the 
edge strengths, obtained via the application of MU criterion, are directly interpretable 
in a way independent from the data source, allowing for direct comparison of the recov-
ered BNs not only in robustness/stability studies, but also under scenarios where differ-
ent data spans diverse sets of variables. That having been said, the consistently superior 
behavior of MU in situations where MDL typically tends to overfit or underfit suggests 
that with this relatively simple approach we can successfully address several problems 
intrinsic to the model selection criteria in general that go well beyond the interpretabil-
ity of the score.

We intend to further this work in the direction of developing a comprehensive power-
analytic methodology framework, with the aim to modify the scoring criterion to con-
sistently work on an absolute scale, reflecting classification rates. This will aid with 
quantifying proximity/similarity of similar but different networks. This study’s focus on 
the statistical behavior of the scoring criteria was in large part motivated by the need to 
overcome the computational limitations associated with the relative nature of informa-
tion-theoretic quantities in the assessment of variable dependencies in BNs. However, 
this statistical focus will also help with the broader integration and acceptance of BN 
modeling in the biomedical data analysis practice, where the interplay between the sam-
ple size considerations and the effect size is often the dominant driving factor behind 
both the study design and the evaluation of its results.

A number of our ongoing multidisciplinary secondary biomedical data analysis stud-
ies, including (i) comparative BN analyses of multidimensional fluorescence-activated 
cell sorting (FACS) and other immuno-oncology datasets [15], (ii) -omics of Alzheimer’s 
disease, (iii) BN modeling of G-protein/GPCR molecular dynamics simulation data, and 
(iv) BN-centered construction of gene regulatory networks from the scRNA-seq data, 
stimulated a significant portion of the work detailed in this communication. Indeed, 
rigorous dissection of the underlying BN fundamentals and mechanics is essential for 
robust construction, interpretation, and comparison of BNs in any biomedical data anal-
ysis setting. In the future, we intend to use the novel MU criterion to increase the rigor 
of our ongoing and prospective applied BN work, across many biomedical domains.

In summary, our experience in working with multimodal high-dimensional biomedical 
data led us to the conclusion that every BN analysis should, ideally, allow direct com-
parative, possibly cross-study, interrogation of structural and quantitative features of the 
reconstructed models. The technical advancement detailed in this study has the poten-
tial to alleviate many difficulties typically encountered when trying to gain biological and 
mechanistic insights from a series of BN models generated at the secondary data analy-
sis/network modeling stage of a typical data-driven research project.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​025-​06104-5.

Supplementary Material 1.

Acknowledgements
The authors are grateful to Sergio Branciamore, Arthur D. Riggs, Russell C. Rockne, Peter P. Lee, Nagarajan Vaidehi, 
Amanda J. Myers, Nadia Carlesso, Konstancja Urbaniak, Babgen Manookian and Elizaveta Mukhaleva for stimulating 
discussions about the application and interpretability of BNs in diverse biomedical contexts.

https://doi.org/10.1186/s12859-025-06104-5


Page 25 of 26Gogoshin and Rodin ﻿BMC Bioinformatics          (2025) 26:100 	

Author contributions
Grigoriy Gogoshin: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Software; Valida-
tion; Visualization; Writing - original draft. Andrei S. Rodin: Conceptualization; Funding acquisition; Investigation; Project 
administration; Supervision; Writing - original draft.

Funding
This work was supported by the NIH NLM R01LM013138 grant (to A.S.R.), NIH NLM R01LM013876 (to A.S.R.), NIH NCI Can-
cer Biology System Consortium U01CA232216 grant (to A.S.R.), NIH NLM R01LM013876 grant (to A.S.R), Dr. Susumu Ohno 
Chair in Theoretical Biology (held by A.S.R.), and Susumu Ohno Distinguished Investigator Fellowship (to G.G.).

Data availability
The principal results of the study were obtained via numerical simulations. The tRNA example data is described in [17] 
and is available directly from the authors. The APOE example data is described in [18] and is available directly from the 
authors, or as part of the BNOmics package, at https://​bitbu​cket.​org/​77D/​bnomi​cs.

Code availability
Relevant code and software are available directly from the authors, or as part of the BNOmics package, at https://​bitbu​
cket.​org/​77D/​bnomi​cs.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing financial interests.

Received: 21 September 2024   Accepted: 5 March 2025

References
	1.	 Wang Y, Li J, Huang D, Hao Y, Li B, Wang K, et al. Comparing Bayesian-based reconstruction strategies in topology-

based pathway enrichment analysis. Biomolecules. 2022;12(7):906.
	2.	 Sato N, Tamada Y, Yu G, Okuno Y. CBNplot: Bayesian network plots for enrichment analysis. Bioinformatics. 

2022;38(10):2959–60.
	3.	 Dickson BFR, Masson JJR, Mayfield HJ, Aye KS, Htwe KM, Roineau M, et al. Bayesian network analysis of lymphatic 

filariasis serology from Myanmar shows benefit of adding antibody testing to post-MDA surveillance. Trop Med 
Infect Dis. 2022;7(7):113.

	4.	 Gupta S, Vundavilli H, Osorio RSA, Itoh MN, Mohsen A, Datta A, et al. Integrative network modeling highlights the 
crucial roles of Rho-GDI signaling pathway in the progression of non-small cell lung cancer. IEEE J Biomed Health 
Inform. 2022;26(9):4785–93.

	5.	 Djk II, Fernandez A, Deng W, Razazan A, Latifizadeh H, Pirkey AC. Data-driven learning how oncogenic gene expres-
sion locally alters heterocellular networks. Nat Commun. 2022;13(1):1986.

	6.	 Zhao Y, Chen T, Cai J, Lichenstein S, Potenza MN, Yip SW. Bayesian network mediation analysis with application to 
the brain functional connectome. Stat Med. 2022;41(20):3991–4005.

	7.	 Tuo S, Li C, Liu F, Zhu Y, Chen T, Feng Z, et al. A novel multitasking ant colony optimization method for detecting 
multiorder SNP interactions. Interdiscip Sci Comput Life Sci. 2022;14:814–32.

	8.	 Wang Y, Gao X, Ru X, Sun P, Wang J. Identification of gene signatures for COAD using feature selection and Bayesian 
network approaches. Sci Rep. 2022;12(1):8761.

	9.	 Chen Z, Lu Y, Cao B, Zhang W, Edwards A, Zhang K. Driver gene detection through Bayesian network integration of 
mutation and expression profiles. Bioinformatics. 2022;38(10):2781–90.

	10.	 Cherny SS, Williams FMK, Livshits G. Genetic and environmental correlational structure among metabolic syndrome 
endophenotypes. Ann Hum Genet. 2022;86(5):225–36.

	11.	 Wang L, Audenaert P, Michoel T. High-dimensional Bayesian network inference from systems genetics data using 
genetic node ordering. Front Genet. 2019;10:1196.

	12.	 Rodriguez EAV, Pértille F, Guerrero-Bosagna C, Mitchell JBO, Jensen P, Smith VA. Practical application of a Bayesian 
network approach to poultry epigenetics and stress. BMC Bioinform. 2022;23(1):261.

	13.	 Liao H, Luo X, Huang Y, Yang X, Zheng Y, Qin X, et al. Mining the prognostic role of DNA methylation heterogeneity 
in lung adenocarcinoma. Dis Mark. 2022. https://​doi.​org/​10.​1155/​2022/​93893​72.

	14.	 Mortazavi A, Rashidi A, Ghaderi-Zefrehei M, Moradi P, Razmkabir M, Imumorin IG, et al. Constraint-based, score-
based and hybrid algorithms to construct Bayesian gene networks in the bovine transcriptome. Animals (Basel). 
2022;12(10):1305.

	15.	 Rodin AS, Gogoshin G, Hilliard S, Wang L, Egelston C, Rockne RC, et al. Dissecting response to cancer immunother-
apy by applying Bayesian network analysis to flow cytometry data. Int J Mol Sci. 2021;22:2316.

	16.	 Zhang X, Branciamore S, Gogoshin G, Rodin AS. Analysis of high-resolution 3D intrachromosomal interactions aided 
by Bayesian network modeling. Proc Natl Acad Sci USA. 2017;114:E10359–68.

https://bitbucket.org/77D/bnomics
https://bitbucket.org/77D/bnomics
https://bitbucket.org/77D/bnomics
https://doi.org/10.1155/2022/9389372


Page 26 of 26Gogoshin and Rodin ﻿BMC Bioinformatics          (2025) 26:100 

	17.	 Branciamore S, Gogoshin G, Di Giulio M, Rodin AS. Intrinsic properties of TRNA molecules as deciphered via Bayesian 
network and distribution divergence analysis. Life (Basel). 2018;8:E5.

	18.	 Gogoshin G, Boerwinkle E, Rodin AS. New algorithm and software (bnomics) for inferring and visualizing Bayesian 
networks from heterogeneous “big’’ biological and genetic data. J Comp Biol. 2017;24:340–56.

	19.	 de Campos C, Ji Q. Efficient structure learning of Bayesian networks using constraints. J Mach Learn Res. 
2011;12:663–89.

	20.	 de Campos LM. A scoring function for learning Bayesian networks based on mutual information and conditional 
independence tests. J Mach Learn Res. 2006;7:2149–87.

	21.	 Suzuki J. A theoretical analysis of the BDeu scores in Bayesian network structure learning (2016). arXiv:​1607.​04427 
[cs.LG].

	22.	 Suzuki J. A construction of Bayesian networks from databases based on an MDL principle (2013). arXiv:​1303.​1486 
[cs.AI].

	23.	 Gillispie SB, Perlman MD. Enumerating Markov equivalence classes of acyclic digraph models. arXiv.​ 2013;​arXiv:​1301.​
2272.

	24.	 Quigley G, Rich A. Structural domains of transfer RNA molecules. Science. 1976;194:796–806.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1607.04427
http://arxiv.org/abs/1303.1486
http://arxiv.org/abs/2013;arXiv:1301.2272
http://arxiv.org/abs/2013;arXiv:1301.2272

	Minimum uncertainty as Bayesian network model selection principle
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods: numerical satisfiability and sampling resolution in independence criteria.
	Results
	Numerical verification and the sensitivity profile
	The specificity profile and a reconstruction example
	Application to the structural biology of tRNA molecules: sample size invariance study
	Application to variations in apolipoprotein E gene and plasma lipid and apolipoprotein E levels: sample stratification study

	Discussion and conclusions
	Acknowledgements
	References


