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Abstract 

Background: The Anatomical Therapeutic Chemical (ATC) classification system, 
proposed and maintained by the World Health Organization, is among the most widely 
used drug classification schemes. Recently, it has become a key research focus in drug 
repositioning. Computational models often pair drugs with ATC codes to explore 
drug-ATC code associations. However, the limited information available for ATC codes 
constrains these models, leaving significant room for improvement.

Results: This study presents an inference method to identify highly related target 
proteins, structural features, and side effects for each ATC code, constructing compre-
hensive biological profiles. Association networks for target proteins, structural features, 
and side effects are established, and a random walk with restart algorithm is applied 
to these networks to extract raw associations. A permutation test is then conducted 
to exclude false positives, yielding robust biological profiles for ATC codes. These pro-
files are used to construct new ATC code kernels, which are integrated with ATC code 
kernels from the existing model PDATC-NCPMKL. The recommendation matrix is sub-
sequently generated using the procedures of PDATC-NCPMKL. Cross-validation results 
demonstrate that the new model achieves AUROC and AUPR values exceeding 0.96.

Conclusion: The proposed model outperforms PDATC-NCPMKL and other previous 
models. Analysis of the contributions of the newly added ATC code kernels con-
firms the value of biological profiles in enhancing the prediction of drug-ATC code 
associations.

Keywords: Anatomical therapeutic chemical code, Drug repositioning, Biological 
profiles, Random walk with restart, Network consistency projection

Introduction
Drug development activities are characterized by high risk, substantial financial 
investment, and an extended research and development (R&D) cycle [1]. Despite sig-
nificant investments, the success rate of drug development programs remains low 
[2]. Recently, drug repositioning has emerged as a prominent area of focus due to its 
potential to accelerate the process of discovering “new drugs,” which highlights the 
novel effects of existing medications [3]. Existing drugs have undergone extensive 
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clinical toxicological testing, resulting in relatively lower investment and risk when 
compared to newly designed drugs. However, identifying the new effects of existing 
drugs is challenging. Traditional methods primarily rely on the expertise of health-
care professionals, which is often insufficient given the vast array of available drugs. 
Thus, designing effective computational methods has become a promising and popu-
lar alternative in recent years [1, 3, 4].

The Anatomical Therapeutic Chemical (ATC) classification system, developed and 
maintained by the World Health Organization (WHO), serves as a globally standard-
ized drug classification framework that is crucial for international drug use research 
[5]. This system comprises five levels, with the first level containing fourteen distinct 
classes, whereas additional classes are identified in subsequent levels. A detailed strat-
ification of ATC codes is available in Additional file 1. Each drug within this system 
is assigned at least one ATC code, which consists of letters or numbers correspond-
ing to the first through fifth levels. These designations indicate the essential proper-
ties of the drugs at various levels. When the ATC codes of a drug or chemical are 
determined across different levels, they provide insights into its potential therapeu-
tic and pharmacological effects, which can be substantiated through rigorous experi-
mentation. Consequently, research related to this classification system has emerged 
as a significant area of interest in drug repositioning. As highlighted, computational 
methods have gained popularity in drug repositioning in recent years. Several compu-
tational approaches have been proposed for the ATC classification system. Based on 
the classification models established in prior studies, these computational methods 
can be broadly categorized into two groups. The first group focuses solely on the first 
level of ATC codes, which includes fourteen letters. In this context, the letters rep-
resent classes, and the drugs are treated as samples. Since multiple drugs can belong 
to more than one class, studies within this category have designed multi-label classi-
fiers to categorize drugs into these fourteen classes [6–22]. Accurate representations 
of drugs are critical for the effectiveness of these classifiers. Early classifiers primarily 
relied on structural similarities, drug interactions, and drug ontology to develop their 
classification models. Subsequently, advanced feature extraction and enhancement 
techniques—including network embedding algorithms, graph transformer networks, 
graph convolutional networks, and convolutional neural networks—were employed 
to generate more informative drug features. However, a notable limitation of the 
aforementioned studies is their inability to fully identify the complete ATC codes for 
the drugs in question. To address this limitation, some studies have treated drug-ATC 
code pairs as samples, effectively converting the task of predicting drug ATC codes 
into the identification of drug-ATC code associations [23–27]. These studies consti-
tute the second category of research. The primary challenge faced by these studies lies 
in the need to thoroughly and accurately evaluate ATC codes. The previous studies 
have utilized the letters and numbers within ATC codes, the drugs associated with 
each ATC code, or the hierarchical structure of the ATC code tree to assess the asso-
ciations between ATC codes. However, this limited information does not fully reflect 
the essential characteristics of the ATC codes, leaving significant room for improve-
ment. Furthermore, other studies have approached the drug ATC classification sys-
tem differently, employing network propagation methods to uncover the associations 
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between drugs and ATC codes [28–30]. Nonetheless, the learning capabilities of these 
methods are somewhat restricted, as they lack a systematic training process.

This study focused on identifying associations between drugs and ATC codes. As pre-
viously mentioned, existing research struggles to accurately assess these associations due 
to limited information on ATC codes. To address this limitation, an inference method 
was developed in this study to identify related target proteins, structural features, and 
side effects for each ATC code. This method employed the Random Walk with Restart 
(RWR) algorithm [31, 32] and applied it to networks that included drugs, ATC codes, 
and the associated target proteins/structural features/side effects. A permutation test 
was performed subsequently to control for false positives. The resulting target proteins, 
structural features, and side effects of the ATC codes, termed biological profiles, were 
used to construct new ATC code kernels. These new kernels were integrated with the 
existing ATC code kernels from our previous model, PDATC-NCPMKL [27], to create 
a unified ATC code kernel. Following the same procedures as in PDATC-NCPMKL, an 
updated model named PDATC-NCPMKL-updated was established. The cross-valida-
tion results demonstrated the model’s high performance, outperforming PDATC-NCP-
MKL and other preceding models. The contribution of the newly constructed ATC code 
kernels to the model’s development was analyzed, confirming the beneficial role of the 
biological profiles of ATC codes in predicting drug-ATC code associations.

Materials and methods
Data on drug‑ATC code association

This study utilized drug-ATC code associations previously collected in a past study [27]. 
Specifically, these associations were retrieved from DrugBank (https:// go. drugb ank. 
com/) [33, 34], a public database that compiles comprehensive and reliable drug data. 
A total of 2930 drugs (with ECFP fingerprint) and their ATC codes at the second, third, 
and fourth levels of the drug ATC classification system were included. Corresponding to 
the ATC codes of these drugs, a total of 2930 drugs were paired with ATC codes across 
three levels, resulting in three distinct drug-ATC code association groups. In detail, for 
the ATC codes at the second level, there were 3619 drug-ATC code associations cov-
ering 86 ATC codes. For the ATC codes at the third level, 3886 drug-ATC code asso-
ciations were established for 231 ATC codes. Regarding the fourth level, 720 ATC codes 
were involved, which accounted for 4133 drug-ATC code associations. For each of the 
three levels, a dataset was constructed using the aforementioned drug-ATC code associ-
ations as positive samples, whereas randomly paired drugs and ATC codes were consid-
ered negative samples, with equal numbers of positive and negative samples. The three 
datasets were denoted as DA2 , DA3 , and DA4 , where the subscript indicates the levels of 
ATC codes. Furthermore, the drug-ATC code associations at the (i)-th level can be rep-
resented by an association adjacency matrix, denoted as Fi. The value of Fi(j,k) is set to 1 
if and only if the (j)-th drug and the (k)-th ATC code form an association.

This study initially inferred the biological profiles of ATC codes and utilized them to 
construct a model for predicting drug-ATC code associations. In building reliable bio-
logical profiles of ATC codes, additional drug-ATC code associations were included, 
including drugs that do not have ECFP fingerprint. This approach enhances the reli-
ability of the biological profiles of ATC codes. These associations were obtained from 

https://go.drugbank.com/
https://go.drugbank.com/
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DrugBank. Table 1 provides the counts of drugs, ATC codes, and drug-ATC code asso-
ciations at the second, third, and fourth levels, specifically 4128, 4400, and 4666 asso-
ciations, respectively. This data covers 90, 245, and 784 ATC codes across 3,396 drugs. 
Among these 3,396 drugs, 2,934 were small molecules (2930 drugs with ECFP finger-
prints, remaining four drugs without ECFP fingerprints), remaining 462 were protein 
drugs. Above three drug-ATC code association  groups constituted three datasets, 
denoted by DAT

2  , DAT
3  , and DAT

4 .

Inference of ATC codes’ biological profiles

In this study, the prediction of ATC codes for drugs was based on identifying drug-ATC 
code associations. ATC codes represent the core components of all samples, making it 
crucial to integrate their essential information when constructing the prediction model. 
However, the existing information on ATC codes is quite limited. To address this, a com-
putational method was developed to infer the biological profiles of ATC codes, which 
would be utilized in constructing the model for predicting drug-ATC code associations. 
Specifically, associations between ATC codes and target proteins, structural features, or 
drug side effects were inferred. The entire procedure is illustrated in Fig. 1.

Association data for inferring ATC codes’ biological profiles

In addition to the drug-ATC code associations described in Section  “Data on 
drug-ATC code association” (datasets DAT

2  , DAT
3  , and DAT

4  ), additional data on 

Table 1 Details of drug-ATC code associations at the second, third and fourth levels for inferring 
biological profiles of ATC codes

Level Number of ATC codes Number of drugs Number of 
associations

Second 90 3396 4128

Third 245 3396 4400

Fourth 784 3396 4666

Fig. 1 Procedures for inferring biological profiles of ATC codes. Six different association types are employed 
to construct target protein-related, fingerprint-related, and side effect-related association networks. The 
random walk with restart algorithm is adopted to infer related target proteins, structural features, and side 
effects for each ATC code, followed by a permutation test to control false positives. The final biological profiles 
of ATC codes include highly related target proteins, structural features, and side effects
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drug-target protein associations, drug-structural feature associations, drug-side 
effect associations, drug-drug associations, and target protein-target protein asso-
ciations were also incorporated, as detailed below.

Drug-target protein association The target proteins for all drugs were sourced 
from DrugBank [33, 34]. After limiting the focus to 3396 drugs, a total of 10,091 
drug-target protein associations were identified. These associations included 2048 
drugs and 2435 target proteins.

Drug-structural feature association Drugs can typically be represented using the 
Simplified Molecular Input Line Entry System (SMILES) format [35]. In this study, 
the SMILES strings for 2934 of the 3396 drugs were collected from DrugBank and 
subsequently input into RDKit (http:// www. rdkit. org/), an open-source cheminfor-
matics and machine learning toolkit, to derive their ECFP fingerprints [36]. This 
process yielded 122,374 drug-structural feature associations, covering 1024 struc-
tural features. Above associations involved 2930 drugs as not all 2934 drugs have 
structural features.

Drug-side effect association This type of association was sourced from SIDER 
(http:// sidee ffects. embl. de, version 4.1) [37]. The file “meddra_all_se.tsv” was down-
loaded, containing the side effects for all listed drugs. After narrowing the selection 
to the intersection of 3396 drugs and 1430 drugs in SIDER, 937 drugs were obtained. 
A total of 113,474 drug-side effect associations for 937 drugs were identified, includ-
ing 5464 distinct side effects.

Drug-drug association STITCH (http:// stitc h4. embl. de/) [38, 39] is a public data-
base that compiles various information regarding chemical substances, includ-
ing chemical-chemical interactions, chemical-protein interactions, and chemical 
SMILES strings. Drug-drug associations were extracted from the file “chemical_
chemical.links.detailed.v4.0.tsv” within this database. This file contains numerous 
chemical-chemical interactions, represented by PubChem IDs. Furthermore, each 
interaction is quantified by a confidence score, referred to as “Combined_score”, 
which ranges from 1 to 999. The chemical-chemical interactions for the 3396 drugs 
led to the extraction of 133,772 drug-drug associations, and the corresponding con-
fidence scores for these associations were also obtained. For drugs d1 and d2, the 
confidence score of the association between them is denoted as CSd(d1, d2).

Target protein-target protein association STRING (https:// cn. string- db. org/) [40] 
is a public database that gathers information on known and predicted protein–pro-
tein interactions. These interactions illustrate both direct (physical) and indirect 
(functional) associations between proteins. The file “9606.protein.links.detailed.
v12.0.txt” includes a vast array of protein–protein interactions, with proteins repre-
sented by Ensembl IDs. Like chemical-chemical interactions, each protein–protein 
interaction is assigned a confidence score, also termed “Combined_score”, ranging 
from 1 to 999. The extracted protein–protein interactions involved 2435 target pro-
teins, resulting in 1746 target protein-target protein associations. The confidence 
scores for these associations were utilized in this study. To denote the confidence 
score of the association between proteins p1 and p2, we use the notation CSp(p1, p2).

The details of the aforementioned five association types are summarized in 
Table 2.

http://www.rdkit.org/
http://sideeffects.embl.de
http://stitch4.embl.de/
https://cn.string-db.org/
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Association network construction

Based on the aforementioned associations, several association networks were con-
structed to infer the  target proteins, structural features, and side effects associated 
with each ATC code. The following notations are introduced: Let n represent the num-
ber of drugs, which together form a drug set D =

{

d1, d2, . . . , dn
}

 . The number of ATC 
codes at the i-th level is denoted by mi, with the set Ai =

{

ai1, a
i
2, . . . , a

i
mi

}

 containing 
these ATC codes. Let p be the number of target proteins within the target protein set 
T =

{

t1, t2, . . . , tp
}

 . The number of structural features is indicated by r, and the cor-
responding set of these structural features is represented by F =

{

f1, f2, . . . , fr
}

 . Let q 
denote the number of side effects, with the set S =

{

s1, s2, . . . , sq
}

 including these side 
effects. Three groups of association networks were constructed for target proteins, 
structural features, and side effects, each group comprising three association networks 
corresponding to the three ATC code levels. The construction procedures are outlined 
as follows.

Target protein-related association networks For ATC codes at the second, third, and 
fourth levels, a target protein-related association network was constructed for each 
level. Each network was established in a similar manner, defining drugs, target proteins, 
and ATC codes at the respective level as nodes—collectively known as the node set 
V i
TP = D ∪ T ∪ Ai . The edges within this network were determined based on drug-ATC 

code, drug-target protein, drug-drug, and target protein-target protein associations. 
Additionally, each edge was assigned a weight. For an edge corresponding to a drug-
drug association, the weight was defined as CSd(d1,d2)1000  , where CSd(d1, d2) is the confidence 
score of the drug-drug association. For edges corresponding to target protein-target 
protein associations, the weight was defined as CSp(p1,p2)1000  , where CSp(p1, p2) is the con-
fidence score for that association. The weights for the remaining edges were set to one. 
For ease of reference, the association networks in this group are denoted by Ni

TP , where 
i ∈ {2, 3, 4} represents the ATC code level. Detailed information regarding three target 
protein-related networks is provided in Table 3. A brief illustration of one target protein-
related network is displayed in Fig. 2A.

Fingerprint-related association networks Likewise, three fingerprint-related asso-
ciation networks were constructed, corresponding to three ATC code levels, using a 
similar setup. These networks included drugs, structural features from the ECFP finger-
print, and ATC codes at the second, third, or fourth levels as nodes, forming the node 
set V i

FP = D ∪ F ∪ Ai . The edges represented drug-ATC code, drug-structural feature, 
and drug-drug associations, and each was assigned a weight. The weight of an edge 

Table 2 Details of five association types

Association type Number of objects Number of 
associations

Drug-target protein 2048 drugs, 2435 target proteins 10,091

Drug-structural feature 2930 drugs, 1024 structural features 122,374

Drug-side effect 937 drugs, 5464 side effects 113,474

Drug-drug 3396 drugs 133,772

Target protein-target protein 2435 target proteins 1746
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representing a drug-drug association was defined as CSd(d1,d2)1000  , where CSd(d1, d2) denotes 
the confidence score of the association. For other edges, weights were set to one. These 
networks were denoted by Ni

FP , where i ∈ {2, 3, 4} corresponds to the ATC code level. 
Detailed information on the three fingerprint-related networks is provided in Table 4, 
whereas a brief illustration of one target protein-related network is shown in Fig. 2B.

Side effect-related association networks The final network group comprised three net-
works corresponding to three ATC code levels. These networks included drugs, ATC 
codes at the second, third, or fourth levels, and side effects as nodes, forming the node 
set V i

SE = D ∪ S ∪ Ai . Edges represented drug-ATC code, drug-drug, and drug-side 
effect associations, and each was assigned a weight. For edges representing drug-drug 
associations, weights were defined as in the previously described networks. All other 
edges were assigned a weight of one. These networks were denoted by Ni

SE , where 

Table 3 Details of target protein-related association networks

ATC code 
level

Number of nodes Number of edges

Drugs ATC 
codes

Target 
proteins

Total Drug‑
Drug

Drug‑ATC 
code

Drug‑
target 
protein

Target 
protein‑
target 
protein

Total

Second 3396 90 2435 5921 133,772 4128 10,091 1746 149,737

Third 3396 245 2435 6076 133,772 4400 10,091 1746 150,009

Fourth 3396 784 2435 6615 133,772 4666 10,091 1746 150,275

Fig. 2 An illustration on the network in each group. A Target protein-related association network; B 
Fingerprint-related association network; C Side effect-related association network
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i ∈ {2, 3, 4} indicates the ATC code level. Detailed information on three side effect-
related networks is provided in Table  5, and a brief illustration of one target protein-
related network is shown in Fig. 2C.

Random walk with restart algorithm

The constructed networks connect ATC codes to three elements (target proteins, 
structural features, and side effects), utilizing drugs as intermediaries. The latent asso-
ciations between ATC codes and these three elements can be extracted using appro-
priate network algorithms. In this study, the RWR algorithm [31, 32] was employed to 
extract such associations. The RWR algorithm has extensive applications in identifying 
disease-related genes [41–44]. Given a network N, the RWR algorithm simulates a ran-
dom walker starting from one or more nodes and moves through the network to propa-
gate probabilities from seed nodes to other nodes. If there are m seed nodes, the initial 
probability assigned to each seed node is defined as 1/m. The probabilities of all other 
nodes are initially set to zero. These probabilities are represented in a probability vector, 
denoted as P0. The RWR algorithm iteratively updates the probability vector as follows:

where A is the column-wise normalized adjacency matrix of network N and r is the 
restarting probability, which was set to 0.7 in this study. If the probability vectors Pt and 
Pt+1 are close enough, which is measured by �Pt+1 − Pt�L1 < 10−10 , the updating pro-
cedure stops. Pt+1 is picked up as the outcome of RWR algorithm. Based on this prob-
ability vector, each node, excluding the seed nodes, is assigned a probability that reflects 
the association between that node and the seed nodes. A higher probability indicates a 
stronger association.

(1)Pt+1 = (1− r)ATPt + rP0,

Table 4 Details of fingerprint-related association networks

ATC code 
level

Number of nodes Number of edges

Drugs ATC codes Structural 
features

Total Drug‑Drug Drug‑ATC 
code

Drug‑
structural 
feature

Total

Second 3396 90 1024 4510 133,772 4128 122,374 260,274

Third 3396 245 1024 4665 133,772 4400 122,374 260,546

Fourth 3396 784 1024 5204 133,772 4666 122,374 260,812

Table 5 Details of side effect-related association networks

ATC code 
level

Number of nodes Number of edges

Drugs ATC codes Side effects Total Drug‑Drug Drug‑ATC 
code

Drug‑side 
effect

Total

Second 3396 90 5464 8950 133,772 4128 113,474 251,374

Third 3396 245 5464 9105 133,772 4400 113,474 251,646

Fourth 3396 784 5464 9644 133,772 4666 113,474 251,912
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In this study, the RWR algorithm was implemented for each network as detailed in 
Section “Association network construction”. For each ATC code, the node corresponding 
to that ATC code, along with the drug nodes labeled by it, were selected as seed nodes. 
Utilizing these seed nodes within the RWR algorithm assists in identifying relevant tar-
get proteins, structural features, and side effects associated with the corresponding ATC 
code.

Permutation test

Although the RWR algorithm is effective in uncovering hidden linkages within the net-
work, its accuracy is not guaranteed. The resulting probability vector can be influenced 
by the network’s structure. Certain nodes within the network, such as cut vertices, are 
more likely to receive high probabilities, regardless of the selected seed nodes, due to the 
necessity of multiple paths passing through them. However, these nodes may not always 
have significant relevance to the seed nodes. To mitigate the impact of this factor, a per-
mutation test was devised.

For ATC code ail , where i represented the ATC code level, k drugs were labeled by 
this ATC code. The RWR algorithm with ail and these k drugs as seed nodes was exe-
cuted on the networks Ni

TP , Ni
FP , and Ni

SE . Each target protein tj, structural feature fj 
and side effect sj was assigned a probability, denoted by P(tj), P(fj), and P(sj), respectively. 
The permutation test first randomly constructed 500 node sets, each of which con-
tained one ATC code node and same number of drug nodes, which were denoted by 
D1,D2, . . . ,D500 . Then, nodes in each randomly produced node set were fed into RWR 
algorithm as seed nodes. After that, the target protein tj, structural feature fj and side 
effect sj were also assigned a probability under each randomly produced node set. They 
were denoted by PDk

(tj) , PDk
(fj) , and PDk

(sj) , where 1 ≤ k ≤ 500. The significance of P(tj) 
was evaluated by comparing it and PDk

(tj) (k = 1, 2, . . . , 500) , which was measured by

If P − value(tj) was small, P(tj) was significantly larger than the probabilities on ran-
domly produced node sets. In this case, target protein tj was deemed highly related to 
ATC code ail . Here, 0.05 was selected as the threshold as it is always the cutoff of statisti-
cal significance. Accordingly, the highly related target proteins of ATC code ail can be 
obtained, which constituted the set TP

(

ail
)

 . The highly related structural features and 
side effects of ATC code ail can be accessed in the same manner. They constituted the 
highly related structural feature set FP

(

ail
)

 and highly related side effect set SE
(

ail
)

.

ATC code kernel construction

In Section  “Inference of ATC codes’ biological profiles”, a computational method was 
developed to infer the highly related target proteins, structural features, and side effects 
for each ATC code. Based on these findings, the ATC code kernels were constructed. 
For ATC code ail , the one-hot scheme was applied to TP

(

ail
)

 , FP
(

ail
)

 , and SE
(

ail
)

 for gen-
erating the feature representations of ail , formulated by VTP

(

ail
)

 , VFP

(

ail
)

 , and VSE

(

ail
)

 . 
For three above ATC code representations, the following five kernel functions were 
employed to construct the kernels of ATC codes.

(2)P − value(tj) =

∣

∣{Dk : PDk
(tj) > P(tj), 1 ≤ k ≤ 500}

∣

∣

500
,
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where γ was the Gaussian kernel bandwidth (it was set to 1 in this study), u, v ∈ {0, 1} , 
f(u)/f(v) was the observed frequency of value u in VTP

(

aij

)

/VTP

(

aik
)

 , VFP

(

aij

)

/VFP

(

aik
)

 , or 

VSE

(

aij

)

/VSE

(

aik
)

 , f(u,v) denoted the observed relative frequency of (u,v) in VTP

(

aij

)

 and 

VTP

(

aik
)

 , VFP

(

aij

)

 and VFP

(

aik
)

 , or VSE

(

aij

)

 and VSE

(

aik
)

 , Naij
/Naik

 was a set containing the 

components with value 1 in VTP

(

aij

)

/VTP

(

aik
)

 , VFP

(

aij

)

/VFP

(

aik
)

 , or VSE

(

aij

)

/VSE

(

aik
)

 . 

Accordingly, five kernels were obtained for each representation of ATC codes and totally 
15 kernels were accessed, which are listed in Table 6.

The five ATC code kernels derived from the same feature representation were fused by 
the multiple kernel learning algorithm provided in [27]. Three ATC code kernels were 
generated, denoted by Ki,∗

TP,a , K
i,∗
FP,a , and Ki,∗

SE,a.

PDATC‑NCPMKL‑updated for the prediction of drug’s ATC code

In reference [27], Chen et  al. proposed a recommendation model for predicting drug 
ATC codes, which constructed various drug and ATC code kernels. However, the exist-
ing ATC code kernels may not fully capture the associations due to limited informa-
tion available for ATC codes. To address this limitation, a computational method was 
designed to infer related target proteins, structural features, and side effects of ATC 
codes, thereby providing additional data for the construction of ATC code kernels, as 
discussed in Section “ATC code kernel construction”. Consequently, the PDATC-NCP-
MKL model was updated by integrating the newly constructed ATC code kernels. The 
procedures of this updated model are illustrated in Fig. 3, and it is referred to as PDATC-
NCPMKL-updated for clarity.

Five drug kernels ( Ki,∗
TP,d , Ki,∗

FP,d , Ki
IN ,d , Ki,∗

F ,d , and Ki,∗
SE,d ) were constructed in PDATC-

NCPMKL, which were derived from drug target proteins, structural features (ECFP fin-
gerprint), interactions, ATC codes, side effects. Their brief introduction is provided in 
Additional file  2. They were also retained in our model and fused in the same way in 
PDATC-NCPMKL. The integrated drug kernel was denoted by Ki

d , where i was the ATC 
code level. On the other hand, three ATC code kernels were built in PDATC-NCPMKL. 
They were Ki,∗

F ,a , K
i
SPro , and Ki

SM , which were derived from drug-ATC code associations, 
ATC code tree (see Eq.  (2) in Wang et al.’s study [24]), and numbers or letters in ATC 
codes (see Eq. (2) in Zhao et al.’s study [26]), respectively. Their brief introduction is also 
available in Additional file 2. In this study, three additional ATC code kernels were con-
structed: Ki,∗

TP,a , K
i,∗
FP,a , and Ki,∗

SE,a . They were fused with the ATC code kernels in PDATC-
NCPMKL as follows:

Ki
a =

Ki,∗
F ,a+Ki

SPro+Ki
SM+Ki,∗

TP,a+Ki,∗
FP,a+Ki,∗

SE,a

6  , (6).

Table 6 Details of ATC code kernels at the i-th level

Kernel function Target protein Fingerprint Side effect

GIP K
i
GIP−TP,a

K
i
GIP−FP,a

K
i
GIP−SE ,a

Corr K
i
Corr−TP,a

K
i
Corr−FP,a

K
i
Corr−SE ,a

COS K
i

COS−TP,a
K
i

COS−FP,a
K
i

COS−SE ,a

MI K
i

MI−TP,a
K
i

MI−FP,a
K
i

MI−SE ,a

Jaccardscore K
i

Jaccard−TP,a
K
i

Jaccard−FP,a
K
i

Jaccard−SE ,a
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After that, the association adjacency matrix Fi was processed by the Weighted K Near-
est Known Neighbors (WKNKN) [45], producing a generalized adjacency matrix Fi . 
Finally, the network consistency projection was applied to Fi , Ki

d , and Ki
a for generating 

the recommendation matrix.

Performance evaluation

Cross-validation is a widely recognized method for assessing the performance of pre-
dictive models [46]. In this methodology, samples (specifically, drug-ATC code pairs in 
this study) are randomly and equally divided into several subsets. Each subset is subse-
quently designated as the test set whereas the remaining subsets form the training set. 
The model built on the training set is employed to predict the samples in the test set, and 
the average performance across all test sets is typically calculated to evaluate the model. 
Generally, samples are divided into five or ten subsets. This study performed ten-fold 
cross-validation to evaluate the performance of the models.

The results of the cross-validation were quantified using AUROC and AUPR to assess 
model performance [47–50]. AUROC represents the area under the ROC curve. To 
generate a ROC curve, various thresholds for identifying positive samples are initially 
selected. For each threshold, the cross-validation results are classified as true positive 
(TP), false negative (FN), false positive (FP), and true negative (TN). The true positive 
rate and false positive rate are calculated as follows:














True positive rate =
TP

TP + FN

False positive rate =
FP

FP + TN

 . (7).

Once a set of true positive rates and false positive rates across different thresholds 
is established, the ROC curve is plotted with the true positive rate on the Y-axis and 

Fig. 3 Procedures of the PDATC-NCPMKL-updated. This model is an updated version of PDATC-NCPMKL. 
Based on the biological profiles of ATC codes, include highly related target proteins, structural features, side 
effects, three new ATC code kernels ( K i,∗

TP,a
 , K i,∗

FP,a
 , and K i,∗

SE ,a
 ) are built. These new ATC code kernels are fused with 

those in PDATC-NCPMKL to yield novel unified ATC code kernel. The recommendation matrix is produced 
with the same following procedures of PDATC-NCPMKL. Please refer to Additional file 2 for drug kernels ( K i,∗

TP,d
 , 

K
i,∗
FP,d

 , K i
IN,d

 , K i,∗
F ,d

 , and K i,∗
SE ,d

 ) and ATC code kernels ( K i,∗
F ,a , K

i
SPro

 , and K i
SM

 ) in PDATC-NCPMKL
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the false positive rate on the X-axis. Similarly, AUPR represents the area under the 
Precision-Recall (PR) curve and is also calculated using several thresholds for deter-
mining positive samples. In this context, recall (equivalent to the true positive rate) 
and precision at a specific threshold are computed. The formula for calculating preci-
sion is expressed as:
Precision = TP

TP+FP . (8).
Likewise, after obtaining a set of recall and precision values at varying thresholds, 

the PR curve is plotted with precision on the Y-axis and recall on the X-axis. The 
AUROC and AUPR values range between 0 and 1. A higher value indicates better 
model performance.

Results and discussion
Biological profiles of ATC codes

To address the challenge of limited information regarding ATC codes, a computa-
tional method was developed to identify closely related target proteins, structural 
features, and side effects associated with each ATC code. This method sequentially 
employed the RWR algorithm and permutation tests. Based on the identified highly 
related target proteins, structural features, and side effects of the ATC codes, asso-
ciations were constructed for ATC code-target protein, ATC code-structural feature, 
and ATC code-side effect, as detailed in Additional files 3, 4, 5. Table 7 provides sta-
tistics on these associations, revealing 9987, 15,871, and 32,628 associations between 
ATC codes at the second, third, and fourth levels, respectively, and their respective 
target proteins. It is noteworthy that not all ATC codes were associated with highly 
related target proteins. Figure 4 further depicts the distribution of ATC codes across 
the three levels based on their corresponding target proteins. Most ATC codes were 
associated with fewer than 100 target proteins, and the quantity of ATC codes exhib-
ited a decreasing trend as the number of highly related target proteins increased. This 
finding is logical, reinforcing the reliability of the results. Similar observations regard-
ing ATC code-structural feature and ATC code-side effect associations can be drawn 
from Table 7 and Fig. 4. Overall, the biological profiles of ATC codes presented in this 
study appear to be robust and may serve as valuable resources for investigating drug-
ATC code associations and addressing other drug-related inquiries.

Table 7 Statistics of biological profiles of ATC codes

Object ATC code level Number of ATC 
codes

Number of objects Number of 
associations

Target protein Second 88 2340 9987

Third 229 2414 15,871

Fourth 726 2431 32,628

Fingerprint Second 85 1020 8703

Third 230 1024 14,661

Fourth 715 1024 29,414

Side effect Second 85 5186 14,751

Third 224 5390 29,575

Fourth 649 5463 75,525
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Performance of PDATC‑NCPMKL‑updated

In this study, the previous model PDATC-NCPMKL was enhanced by incorporating 
newly discovered biological profiles of ATC codes. For consistency, the parameters in 
PDATC-NCPMKL were retained. Specifically, the weight parameter w in WKNKN, 
which influences the weights of different neighbors, was set to 0.9. The updated model, 
PDATC-NCPMKL-updated, was evaluated through ten-fold cross-validation. The ROC 
and PR curves are presented in Fig.  5, alongside the AUROC and AUPR values. The 
AUROC values for the second, third, and fourth levels were found to be 0.9617, 0.9688, 
and 0.9733, respectively. Meanwhile, the AUPR values for the three ATC code levels were 
0.9661, 0.9711, and 0.9751. All values exceeded 0.96, indicating the high performance of 

Fig. 4 Bar chart to show the distribution of ATC codes at three levels based on numbers of their highly 
related target proteins, structural features, and side effects. A Bar chart for ATC codes at the second level; B 
Bar chart for ATC codes at the third level; C Bar chart for ATC codes at the fourth level. The number above 
each bar represents the number of ATC codes having corresponding number of highly related entities. For 
example, 56 in (A) suggests that there are 56 ATC codes at the second level having 1–100 highly related 
target proteins

Fig. 5 ROC and PR curves to show the performance of PDATC-NCPMKL-updated. A ROC curves; B 
PR curves. The AUROC and AUPR values are all higher than 0.96, suggesting the high performance of 
PDATC-NCPMKL-updated
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the PDATC-NCPMKL-updated model. Furthermore, the model’s performance progres-
sively improved with increasing ATC code levels.

Ablation tests on ATC code kernels

The model PDATC-NCPMKL-updated was developed by incorporating new ATC code 
kernels derived from the recently established biological profiles of ATC codes. This 
model comprises six ATC code kernels, necessitating an analysis of their individual con-
tributions. To achieve this, each ATC code kernel was sequentially removed, resulting 
in the creation of six distinct models—each constructed by omitting a single ATC code 
kernel. These models underwent evaluation using ten-fold cross-validation, and the 
resulting AUROC and AUPR values are presented in Table 8.

Firstly, when comparing the performance of PDATC-NCPMKL-updated as discussed 
in Section  “Performance of PDATC-NCPMKL-updated”, it is evident that each of the 
aforementioned models produced lower AUROC and AUPR values, indicating that they 
were less effective than PDATC-NCPMKL-updated. Since these models were devised by 
removing one ATC code kernel from the original model, each ATC code kernel con-
tributed positively to the performance of PDATC-NCPMKL-updated, including the new 
ATC code kernels developed in this research. This further demonstrates that the newly 
created biological profiles of ATC codes are valuable for predicting drug-ATC code asso-
ciations. Secondly, a detailed examination of the AUROC and AUPR values in Table 8 
reveals that the contributions of the six ATC code kernels varied. Notably, the removal 
of a specific kernel Ki

SM led to a significant decline in both AUROC and AUPR values. 
Consequently, according to Table  8, it was determined that kernel Ki

SM was the most 
critical. This finding aligns with results from the previous study [27]. In contrast, the 
models generated by removing any of the other five ATC code kernels exhibited simi-
lar AUROC and AUPR values, suggesting that these kernels contributed equally to the 
overall performance of PDATC-NCPMKL-updated. This highlights the significance of 
the newly constructed ATC code kernels as being on par with the existing ones.

From these tests, the relative contributions of each ATC code kernel were assessed. 
Each model utilizing one of the six ATC code kernels was constructed with drug ker-
nels identical to those in PDATC-NCPMKL-updated and subjected to ten-fold cross-
validation. This approach facilitates a more direct assessment of the importance of 
each ATC code kernel. The cross-validation results are summarized in Table  9. It 

Table 8 Performance of the models by removing one ATC code kernel

# Refer to Additional file 2 for the brief introduction of three ATC code kernels

Removed 
ATC code 
kernel

Information used for constructing 
ATC code kernel

Second level Third level Fourth level

AUROC AUPR AUROC AUPR AUROC AUPR

K
i,∗
TP,a

Related target proteins of ATC codes 0.9591 0.9640 0.9668 0.9696 0.9694 0.9713

K
i,∗
SE ,a

Related side effects of ATC codes 0.9593 0.9641 0.9668 0.9695 0.9695 0.9714

K
i,∗
FP,a

Related structural features of ATC codes 0.9588 0.9634 0.9660 0.9687 0.9685 0.9709

K
i,∗
F ,a

# Known drug-ATC code associations 0.9592 0.9643 0.9648 0.9681 0.9719 0.9724

K
i
SPro

# ATC code tree [24] 0.9598 0.9643 0.9680 0.9706 0.9719 0.9723

K
i
SM

# Numbers or letters in ATC codes [26] 0.9243 0.9451 0.9535 0.9591 0.9679 0.9676
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can be seen that models using ATC code kernels Ki,∗
TP,a , Ki,∗

SE,a , Ki,∗
FP,a , and Ki

SM were 
evidently superior to those using other two ATC kernels ( Ki,∗

F ,a and Ki
SPro ). The mod-

els using ATC code kernels Ki,∗
TP,a , Ki,∗

SE,a , and Ki,∗
FP,a even yielded better performance 

than the model using ATC code kernel Ki
SM at some levels. Thus, it can be concluded 

that the biological profiles of ATC codes were helpful to predict drug-ATC code 
associations.

Based on the test results in Tables  8, 9, Ki,∗
TP,a , Ki,∗

SE,a , Ki,∗
FP,a , and Ki

SM were more 
important than Ki,∗

F ,a and Ki
SPro for predicting drug-ATC code associations, proving the 

helpfulness of biological profiles of ATC codes reported in this study.

Performance of the model on different drug‑ATC code association groups

This study first inferred the highly related target proteins, structural features, and side 
effects associated with each ATC code. This information was then integrated into a 
previously established model to construct a more robust analytical framework. The 
three factors—target proteins, structural features, and side effects—were found to be 
closely related to drugs. It is pertinent to explore whether the quantity of related tar-
get proteins, structural features, or associated side effects of drugs and ATC codes 
influences the performance of the model. To investigate this, all drugs were ranked in 
descending order based on the number of related target proteins. Subsequently, the 
drugs were equally divided into two groups: the high group and the low group, with 
the high group containing more related target proteins than the low group. A similar 
procedure was applied to ATC codes, resulting in two groups (high and low) based 
on their associated target proteins. The high group for ATC codes also contained a 
greater number of target proteins compared to the low group. Using the group classi-
fications of drugs and ATC codes, drug-ATC code associations were categorized into 
four distinct groups: high-high, high-low, low–high, and low-low. For example, the 
drug-ATC code associations using drugs and ATC codes all in high group constituted 
the high-high group. For the cross-validation results, we computed the AUROC and 
AUPR for each of the four drug-ATC code association groups, as detailed in Table 10. 
The results indicate that the model exhibited nearly equal performance across all four 
groups at each ATC code level, suggesting limited sensitivity to this factor. This also 

Table 9 Performance of the models using one ATC code kernel

# Refer to Additional file 2 for the brief introduction of three ATC code kernels

ATC code kernel Information used for constructing 
ATC code kernel

Second level Third level Fourth level

AUROC AUPR AUROC AUPR AUROC AUPR

K
i,∗
TP,a

Related target proteins of ATC codes 0.9212 0.9438 0.9518 0.9576 0.9595 0.9626

K
i,∗
SE ,a

Related side effects of ATC codes 0.9208 0.9436 0.9424 0.9509 0.9553 0.9616

K
i,∗
FP,a

Related structural features of ATC 
codes

0.9191 0.9421 0.9565 0.9618 0.9596 0.9618

K
i,∗
F ,a

# Known drug-ATC code associations 0.9258 0.9457 0.9251 0.9402 0.9156 0.9322

K
i
SPro

# ATC code tree [24] 0.7479 0.8133 0.8346 0.8725 0.8592 0.8932

K
i
SM

# Numbers or letters in ATC codes [26] 0.9374 0.9447 0.9484 0.9537 0.9511 0.9573
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confirms the stability of the updated model, PDATC-NCPMKL-updated. Addition-
ally, similar tests were conducted for structural features and side effects, and their 
corresponding AUROC and AUPR values are also presented in Table  10, leading to 
the same conclusion.

Comparison with previous models

As indicated in Section  “Introduction”, several models have been proposed to predict 
drug-ATC code associations, including NetPredATC [24], SPACE [25], RNPredATC 
[26], and PDATC-NCPMKL [27]. Figure 6 presents the AUROC and AUPR values for 
these models. For ease of comparison, the AUROC and AUPR values for PDATC-NCP-
MKL-updated model are also included in this figure. The analysis reveals that the per-
formance of the earlier models (NetPredATC and SPACE) was relatively poor, with their 
AUROC values at three levels struggling to exceed 0.9 (Fig.  6A). A similar conclusion 
can be drawn regarding their AUPR values (Fig. 6B). In contrast, the more recent models 
(RNPredATC and PDATC-NCPMKL) demonstrated significantly better performance, 
with all AUROC and AUPR values exceeding 0.9, and reaching as high as 0.95; how-
ever, they did not exceed 0.97. The PDATC-NCPMKL-updated model achieved even 
higher performance, with all AUROC and AUPR values exceeding 0.96, some exceeding 

Table 10 Performance of PDATC-NCPMKL-updated on different drug-ATC code association groups

Object Drug group ATC code group Second level Third level Fourth level

AUROC AUPR AUROC AUPR AUROC AUPR

Target protein High High 0.9629 0.9669 0.9729 0.9743 0.9718 0.9724

High Low 0.9631 0.9665 0.9627 0.9657 0.9725 0.9717

Low High 0.9636 0.9688 0.9655 0.9692 0.9694 0.9708

Low Low 0.9611 0.9665 0.9631 0.9659 0.9733 0.9732

Fingerprint High High 0.9633 0.9674 0.9663 0.9685 0.9722 0.9739

High Low 0.9670 0.9706 0.9636 0.9680 0.9704 0.9701

Low High 0.9574 0.9623 0.9709 0.9723 0.9736 0.9744

Low Low 0.9605 0.9660 0.9590 0.9646 0.9699 0.9710

Side effect High High 0.9624 0.9677 0.9693 0.9710 0.9744 0.9741

High Low 0.9513 0.9534 0.9797 0.9821 0.9759 0.9750

Low High 0.9629 0.9668 0.9664 0.9676 0.9679 0.9682

Low Low 0.9577 0.9627 0.9689 0.9725 0.9625 0.9638

Fig. 6 Bar chart to compare the performance of various models for the prediction of drug-ATC code 
associations. A Bar chart for AUROC; B Bar chart for AUPR. The new model PDATC-NCPMKL-updated yields the 
best performance



Page 18 of 22Chen et al. BMC Bioinformatics           (2025) 26:86 

0.97. Clearly, the PDATC-NCPMKL-updated model outperformed both RNPredATC 
and PDATC-NCPMKL, whereas also significantly exceeding NetPredATC and SPACE. 
Furthermore, a paired Student’s t-test was performed comparing PDATC-NCPMKL-
updated and PDATC-NCPMKL. The resulting P-values are detailed in Table  11. All 
P-values were found to be below the 0.05 confidence level, indicating significant dif-
ferences in performance between PDATC-NCPMKL-updated and PDATC-NCP-
MKL. Statistically, PDATC-NCPMKL-updated exhibited a significant advantage over 
PDATC-NCPMKL.

The updated model serves as an enhancement of the previous PDATC-NCPMKL 
model. By incorporating the biological profiles of ATC codes, the ATC code kernels used 
in PDATC-NCPMKL-updated provide much more informative data compared to those 
utilized in PDATC-NCPMKL. This increased informativeness is the primary reason for 
the superiority of PDATC-NCPMKL-updated over PDATC-NCPMKL. In contrast, the 
three earlier models employed significantly less information regarding drugs and ATC 
codes, which hindered their ability to adequately evaluate or represent these entities, 
resulting in lower performance compared to PDATC-NCPMKL-updated.

Performance of the model only with fingerprint‑related kernels

This study enhances an existing drug-ATC code association prediction model by incor-
porating biological profiles of ATC codes. As a result, the updated PDATC-NCPMKL 
model requires several specific properties of both drugs and ATC codes, which may 
restrict its applicability. If certain properties of either drugs or ATC codes are unavail-
able, the PDATC-NCPMKL-updated model may not provide reliable prediction results. 
Drug fingerprints, which represent the essential structures of drugs, are commonly 
used for this purpose. Some earlier methods were developed using only the structural 
information of drugs [13, 22, 24, 26]. It is noteworthy to evaluate our model using solely 
fingerprint-related kernels. In the PDATC-NCPMKL-updated model, both the drug 
kernel Ki,∗

FP,d and the ATC code Ki,∗
FP,a were derived from the drugs’ ECFP fingerprint. 

The model, utilizing these two kernels along with the association adjacency matrix Fi, 
was constructed and assessed through ten-fold cross-validation. The test results are 
presented in Table 12. The findings indicate that the model’s performance exhibited an 
upward trend with increasing ATC code levels. When compared to the performance of 

Table 11 Paired student’s t-test results of PDATC-NCPMKL-updated and PDATC-NCPMKL

Measurement Second level Third level Fourth level

AUROC 4.227 ×  10−4 1.522 ×  10−4 1.414 ×  10−5

AUPR 3.815 ×  10−4 1.584 ×  10−3 5.817 ×  10−6

Table 12 Performance of the model only with fingerprint-related kernels

ATC code level AUROC AUPR

Second level 0.8922 0.9207

Third level 0.9390 0.9502

Fourth level 0.9624 0.9685
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the PDATC-NCPMKL-updated model (Section  “Performance of PDATC-NCPMKL-
updated” and Fig. 5), the differences in AUROC and AUPR at the second level ranged 
from approximately 4% to 7%. This gap decreased to about 2% to 3% at the third level 
and further narrowed to around 1% at the fourth level. This suggests that whereas the 
model using only fingerprint-related kernels was less effective than the PDATC-NCP-
MKL-updated model, it nonetheless demonstrates a broader application scope.

To validate this performance, two prior models (NetPredATC [24] and RNPredATC 
[26])—which relied solely on drug structural information and were designed for predict-
ing drug-ATC code associations—were chosen for comparison. A bar chart illustrat-
ing the AUROC and AUPR of the three models is shown in Fig. 7. The results indicate 
that the model employing only fingerprint-related kernels outperformed NetPredATC. 
In comparison to RNPredATC, the model with fingerprint-related kernels exhibited 
slightly lower performance at the second level, approximately equal performance at the 
third level, and superior performance at the fourth level. Thus, the model utilizing only 
fingerprint-related kernels proves to be competitive with earlier models, indicating its 
potential as a beneficial tool for predicting drug-ATC code associations.

Limitations and applications of PDATC‑NCPMKL‑updated

The PDATC-NCPMKL-updated model incorporates several properties of drugs and 
ATC codes. Although this approach enhances its performance, it also introduces cer-
tain limitations. The requirement for multiple properties during model execution may 
restrict its applicability. For example, if the target proteins or side effects of a drug are 
unavailable, the PDATC-NCPMKL-updated model may not produce reliable predictions 
for associations involving that drug. In future, we aim to address this limitation in our 
ongoing work.

PDATC-NCPMKL-updated demonstrates several valuable applications. Firstly, its 
cross-validation results indicate that false positive predictions may reveal latent drug-
ATC code associations, potentially leading to the assignment of new ATC codes to exist-
ing drugs and identifying new diseases that these drugs may treat. Secondly, the trained 
PDATC-NCPMKL-updated can be employed to evaluate unlabeled drug-ATC code 
pairs. A positive test result in this context also suggests a novel ATC code for a drug. 
Overall, PDATC-NCPMKL-updated offers valuable insights into the discovery of new 
therapeutic and pharmacological effects of drugs.

Fig. 7 Bar chart to compare the performance of various models only using drug structure information for 
the prediction of drug-ATC code associations. A Bar chart for AUROC; B Bar chart for AUPR. The model with 
fingerprint-related kernels, derived from PDATC-NCPMKL-updated, provides competitive performance
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Conclusions
The drug ATC classification system is a critical area of research in drug repositioning. 
This study presents an updated model of PDATC-NCPMKL that incorporates newly 
inferred biological profiles of ATC codes. The updated model demonstrated superior 
performance compared to the original PDATC-NCPMKL, highlighting the positive 
impact of the inferred biological profiles of ATC codes on predicting drug-ATC code 
associations. The enhanced efficacy of the new model is further validated by its per-
formance against other existing models. Additionally, the importance of the biological 
profiles of ATC codes was confirmed through ablation tests on the ATC code kernels. 
It is optimistic that this new model will serve as a valuable tool for exploring the ATC 
classification system, and that the inferred biological profiles of ATC codes can con-
tribute to addressing other drug-related challenges. The codes and data associated 
with this study are available at https:// github. com/ Lywhe re/ PDATC- NCPMKL- updat 
ed.
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