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Introduction
The intricate architecture of biological systems has been progressively demystified
through advanced computational methodologies. Currently, biological network analysis
predominantly focuses on constructing and interrogating well-defined interaction net-
works. These approaches often employ graph-theoretical methods to identify key nodes
and critical pathways, utilizing high-confidence interaction data to map out precise bio-
logical processes. Databases such as KEGG [1] and STRING [2] are commonly used.
Initially, researchers employed network-based methods primarily to analyze bio-
logical data [3]. Subsequent advancements have profoundly deepened our under-
standing of biological networks through unsupervised analysis. Jeong et al. [4]
unveiled complex structures within metabolic networks, Barabdsi and Oltvai [5]
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elucidated the functional organization of cellular networks, and Stuart et al. [6] were
pioneers in identifying conserved gene modules across species. Cumulatively, these
seminal studies underscore the evolution and significant impact of network analysis
in bioinformatics. Within the past decades, researchers have been applying machine
learning on graphs and utilizing various methods to represent [7]: from shallow
embedding approaches like DeepWalk [8], node2vec [9], and HARP [10], to methods
based on deep learning like neighborhood autoencoder methods DNGR [11], SDNE
[12], and convolutional one like GraphSAGE [13]. Among these methods, node2vec
stands out due to its simplicity and strong interpretability in an unsupervised learn-
ing context.

In the field of computational biology, graph representation learning has gained pop-
ularity in the analysis of biological relationships [14, 15]. Over the past three years,
numerous studies have reviewed and summarized its applications in the biomedical
domain [16]. Most research has primarily focused on protein-drug associations and
uncovering potential relationships among cell types or diseases through semi-super-
vised or unsupervised learning approaches. In particular, gene-expression matrices
are often transformed into topological forms for analysis. For instance, the GCN-
MEF [17] developed by Han et al. effectively captures nonlinear associations between
genes and diseases using semi-supervised learning. Subsequently, they introduced
VGE [18], which utilizes an autoencoder to generate potential distributions in a novel
semantic embedding space, improving the prediction of new disease-gene associa-
tions. Similarly, this approach has been applied to analyzing cell-type associations
by leveraging transcriptomic data with robust models such as DREAMIT [19], Cel-
lograph [20], and DEGAS [21], all of which employ graph neural networks (GNN).
These studies aim to enhance model discriminative capabilities. In our research, we
adopt the core principle of embedding while utilizing a simpler and more interpret-
able GNN to investigate these relationships.

Building on advancements in graph-based representation learning, this study
extends traditional bipartite models by incorporating attribute-driven knowledge
database, Molecular Signatures Database (MSigDB) v2023.2 [22]. Traditional biologi-
cal network analyses, while effective with specific, well-curated datasets, often falter
when faced with incomplete or ambiguous data from diverse sources [23]. To bridge
this gap, we introduce a novel network-based framework designed to explore com-
plex relationships within biological terms (Fig. 1). Rather than relying solely on anno-
tated data, our approach uncovers potential gene associations with functional terms
(e.g., pathways, functions) through network connectivity. By analyzing network struc-
ture and topology, we aim to reveal hidden patterns and novel associations, offering
deeper insights, particularly in exploratory studies where direct evidence is limited or
mechanisms are unclear. This integrative approach enhances traditional data mining
by offering a more comprehensive perspective.

Using the Jaccard index and node2vec-based distance, we analyzed and embedded
human and mouse datasets into a shared vector space. Homologous gene alignment
across species highlighted consistent relational patterns, reinforcing the robustness of
the findings. This figure focuses on the connections between terms, with the abstract
representation of these relationships shown in the diagram at the lower left.
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Fig. 1 Network-based framework for exploring complex relationships between biological terms

Method

Data integration

The dataset incorporates a comprehensive set of terms that encapsulate a wide array
of biological phenomena, we have opted to focus on a single species to mitigate these
potential confounders and to ensure the integrity of the analysis. Within this scope, we
define two essential sets: the set of genes, denoted as G = {g1, 2, ....&u}, and the set of
terms, denoted as T = {¢1, £y, ..., t,}. Data for these sets were sourced from the MSigDB
(https://www.gsea-msigdb.org/gsea/msigdb). To bridge species-specific differences in
gene nomenclature, we utilized the R package biomaRt [24], which facilitated the con-
version of murine genes to their human orthologs, ensuring cross-species comparability
in our analysis.

Following data preprocessing, we construct an index dictionary to facilitate the crea-
tion of a PyG [25] (PyTorch Geometric) data object. This entails defining two mappings:
one from genes to indices, termed gene_to_index: G — {0,1,..,m — 1}, and another
from terms to indices, termed term_to_index:T — {m,m + 1,...,m +n — 1}.

We then generate the list of edges by adding an edge for each gene-term pair (g) to
form the edge set £ = {(gene_to_index(g), term_to_index(¢)}. The PyG data object, rep-
resented as Graph = (V, E), encompasses the node set V = G U T, and the edge set E,
where the number of nodes |V | = m + n.

Reliability score

Our analysis revealed that across 10°® pairwise comparisons, both the Jaccard index and
the distances in the node2vec embeddings exhibited distributions with extreme values.
To assess significant biological associations, we normalized both metrics and selected
representative pairs at distance thresholds of 0.1, 0.3, 0.5, 0.7, and 1 for further manual
evaluation and literature-based validation. For each threshold, 10 pairs were analyzed
in-depth to determine their biological relevance. To enhance the rigor of biological rel-
evance assessment, we introduced a reliability score (RS) ranging from 0 to 5 (Table 1),
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Table 1 The criteria for RS assignment

Reliability score Descriptions

5 (Strong evidence) The association is strongly supported by multiple independent studies and exten-
sive literature evidence, showing clear biological relevance

4 (Reported, with inference)  The association has been reported in the literature, but its biological relevance
requires some level of inference or additional interpretation

3 (Weak association) The association has limited evidence in the literature, often mentioned in less
direct contexts or without detailed mechanistic support

2 (Speculative) The association lacks direct literature evidence but is suggested by indirect data or
weak connections

1 (Minimal overlap) The association is based on minimal overlap between gene sets or datasets, sug-
gesting a tenuous link that is mostly speculative

0 (No association) The association is deemed biologically implausible, such as involving genes
located on different chromosomes without known interactions

reflecting levels of confidence from speculative associations to those strongly supported
by extensive literature (Supplementary Material 1).

Distance calculation methodology
We utilized the node2vec algorithm to embed nodes within our graph-structured data,
capturing their contextual relationships. The node2vec algorithm learns these embed-
dings by performing biased random walks on the graph, balancing between breadth-first
search (BFS) and depth-first search (DFS) through two parameters: return parameter p,
and in—out parameter g.

The random walks are controlled by the following transition probability formula:

}7 ifd(v,x) =0
Pei=xlcici=v)=4¢1 ifdv,x)=1
; ifd(v,x) =2

where ¢; is the candidate note at step i, ¢c;_1 = v is the previous node in the walk, 4 (v, x)
is the shortest path distance between nodes v and x.

The Jaccard index measures the overlap between two sets, and in our context, it rep-
resents the similarity between terms based on the overlap of their corresponding gene
sets. Consider two terms, T and T3, each associated with a set of genes based on their
adjacency in the graph structure.

The Jaccard index between these two terms is calculated using the formula:

| T N T3

J(Tp, Tp) = 221
A |Ta U Tl

Node2vec training and hyperparameter optimization

To uncover the underlying patterns within our data, which involve complex many-to-
many relationships without precise numerical values, we have adopted an unsupervised
learning approach. Central to this approach is the node2vec algorithm, as implemented
in the torch_geometric library, which we integrated into a machine learning pipeline.
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This pipeline enables the sequential execution of node embeddings and subsequent
clustering.

Clustering is essential in unsupervised learning as it allows us to organize data points
into groups based on their inherent similarities, without relying on pre-labeled classes.
The hyperparameter tuning for the node2vec model involved varying several parameters
(Table 2).

Following the optimization of hyperparameters, we applied k-means clustering to
evaluate the quality of the embeddings. The cluster labels assigned by k-means were
used to calculate two internal clustering validation metrics, which assess the coherence
and separation of the clusters.

The Silhouette score [26] ranges from —1 to 1, with higher values indicating better clus-
tering performance. It is defined as:

S— l i b; —a;
n e max(a;, b;)
where 4; is the average distance between the i-th data point and other points in the same
cluster, b; is the minimum average distance from the i-th data point to the points in a dif-
ferent cluster, # is the total number of data points.
The Davies-Bouldin score [27] measures the average similarity between clusters, with a
lower values indicating better clustering performance. It is calculated by:

k

1 0; + 0j
DB = — max(———
k zl: j#i (d(Ci,Cj))

where o; is the average distance of all points in cluster i to the cluster centroid, d(c;, ¢;) is
the distance between centroids of clusters i and j, while k is the number of clusters.

The 64-dimensional space is more likely to exhibit biological credibility, as evidenced
by supervised analyses where embeddings of this dimensionality achieve higher Micro-
F1 and Macro-F1 scores across benchmark datasets [9]. Furthermore, we observed that
the 32-dimensional embeddings produce less credible results within the top 5%. Ulti-
mately, we utilized the 64-dimensional embeddings for the subsequent statements of
node2vec-based distances.

The model was trained on a server equipped with an NVIDIA GeForce RTX 3080 Ti
GPU, using CUDA for parallel computations. The server ran Ubuntu 20.04 LTS and had

Table 2 Hyperparameter search for node2vec

Parameter Values tested
Embedding dimensions 32,64

Walk length 10, 20, 30
Return parameter (p) 0.25,05,1,2,4
In—out parameter (q) 0.25,05,1,2,4
Context size 10, 20
Negative samples 1,5,10

Number of walks per node 10, 20, 30
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256 GB of RAM. We used Python 3.8 and the torch_geometric library for our imple-
mentation. The hyperparameter search was conducted over the course of one week, with
each parameter combination undergoing 40 epochs of training. The duration of training
for each parameter set varied depending on the specific parameters chosen, with some
combinations taking more time to complete.

Results

Interpreting biological relevance of Jaccard Index

A higher Jaccard index generally signifies a substantial overlap between gene sets, indi-
cating a robust biological connection. However, a lower Jaccard index should not be
overlooked, particularly when the gene sets involved contain fewer genes, where even
modest overlap might indicate meaningful associations. To refine the analysis, we
applied a hypergeometric distribution test with a p value threshold of 0.05 to assess the
significance of shared gene counts. From the analysis, it is evident that higher Jaccard
index are generally associated with higher RS (Fig. 2), reflecting a trend that aligns with
our expectations.

This box plot illustrates the distribution of RS across different Jaccard index values,
highlighting their correlation. The Jaccard index quantifies the similarity between gene
sets of biological terms, calculated as the size of the intersection divided by the size of
the union of the gene sets. Higher values indicate greater overlap and stronger poten-
tial associations. RS represents the biological relevance of term pairs, ranging from 0
to 5. Each box represents the interquartile range (IQR), with the central line showing
the median RS for term pairs at each Jaccard index level. Points outside the whiskers
represent term pairs with exceptional RS values, indicating either unexpectedly high
or low biological relevance given the Jaccard index. Higher Jaccard index values (e.g.,
0.7-1) are generally associated with higher median RS, reflecting a trend that aligns with

RS

0.1 03 05
Jaccard Index

Fig. 2 Relationship between the Jaccard index and RS
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expectations of stronger biological relevance. Lower Jaccard index values (e.g., 0.1-0.3)
exhibit greater variance in RS, suggesting these pairs may include a mix of weakly and
potentially novel associations.

For example, the association between GOBP_UBIQUITIN_DEPENDENT_GLYCO-
PROTEIN_ERAD_PATHWAY and GOMF_MANNOSYL_OLIGOSACCHARIDE_1_2_
ALPHA_MANNOSIDASE_ACTIVITY (with a Jaccard index of 1) is biologically
intuitive. Although this connection is not explicitly indicated in MSigDB, these terms
describe closely related processes. The ubiquitin-dependent glycoprotein ERAD path-
way is responsible for recognizing and degrading misfolded glycoproteins in the endo-
plasmic reticulum (ER) via the ER-associated degradation (ERAD) system [28]. During
this process, mannosyl oligosaccharide 1,2-alpha mannosidase enzymes trim misfolded
glycoproteins, preparing them for ubiquitination and degradation. The inclusion of this
enzyme activity within the pathway underscores the functional cohesion, highlighting
the expected biological relationship between the two functional terms.

As the Jaccard index decrease, a turning point emerges around 0.5, where RS typically
ranges between 3 and 4 (Fig. 3). Although direct literature support becomes sparse, these
associations remain biologically plausible. A notable example is the interaction between
FU_INTERACT_WITH_ALKBH8 and GOCC_CHAPERONIN_CONTAINING_T_
COMPLEX (CCT). While no explicit link has been documented between the CCT
complex and ALKBHS, both share a key gene, TCPI, suggesting a potential functional
connection. CCT, a type II molecular chaperone in eukaryotes, plays a pivotal role in
folding nascent proteins, particularly during T-cell activation and in response to exter-
nal stressors. Its critical function in maintaining protein homeostasis means that CCT
deficiency can lead to immune dysfunction and impaired stress response. Conversely,
ALKBHS, an enzyme responsible for tRNA modification, ensures translation accu-
racy and regulates oxidative stress by modifying the wobble position (e.g., mcm5U).
Loss of ALKBHS can result in neurological disorders and dysregulated oxidative stress

S~ o o2
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Fig. 3 Linear correlation of RS and node2vec distances in 64- and 32-dimensions
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responses [29]. In a stress environment, accurate protein folding and translation are cru-
cial. Although CCT and ALKBHS operate at different molecular levels—CCT ensuring
proper protein folding and ALKBHS8 ensuring translation fidelity—they converge on the
broader roles of stress management and protein quality control. Deficiencies in tRNA
modification, such as those caused by ALKBHS8 dysfunction, could increase the burden
of misfolded proteins, thereby heightening the reliance on the CCT complex for correc-
tion [30]. Thus, despite the moderate Jaccard index, the inferred connection suggests a
meaningful biological interplay between these components.

This figure illustrates the linear correlation between RS and node2vec distances in
both 64-dimensional and 32-dimensional vector spaces. The scatter plot displays indi-
vidual term pairs, with RS (0-5) plotted against node2vec distances. A stronger nega-
tive correlation is observed in the 64-dimensional embeddings, where shorter distances
(e.g.,<0.1) consistently correspond to higher RS, indicating a tighter coupling of spatial
proximity and biological relevance. This suggests that the 64-dimensional embedding
captures nuanced relational patterns more effectively than the 32-dimensional embed-
ding, which exhibits greater variability at similar distances. The observed trend high-
lights node2vec’s capacity to encode biologically meaningful relationships, particularly
at finer scales, where embedding quality directly influences interpretability and down-

stream analyses.

Comparative analysis of node2vec and other embedding methods in network analysis

Addressing the challenges of incomplete and heterogeneous datasets that limit tra-
ditional graph-theoretical methods, our study explores the utility of node2vec and
compares it with other graph embedding techniques, including FastMap [31], GraphFac-
torizations, LINE [32], and RandomProjection. This study highlights the strengths and
limitations of node2vec in specific contexts, offering a balanced view of its performance.

While traditional graph-theoretical methods often struggle with missing nodes or
edges, node2vec leverages biased random walks to enrich embeddings with meaningful
context, allowing for the discovery of potential associations between indirectly related
nodes. This makes node2vec particularly useful for sparse graphs. Through the combina-
tion of MSigDB with node embeddings, we successfully bridge diverse data types, link-
ing genes and biological or clinical terms within a unified framework. Node2vec proved
effective in incorporating such heterogeneous data, providing biologically interpretable
insights. Node2vec showed a tendency to focus on associations with moderate RS (3-4),
indicating its strength in uncovering potential relationships that may not be immediately
evident but are biologically relevant upon closer examination. By contrast, methods like
LINE and RandomProjection were better at preserving high-RS relationships between
semantically similar terms.

We evaluated these embedding methods by manually reviewing the top 100 pairwise
term distances and assessing their relevance using RS (Supplementary Material 2). LINE
and RandomProjection achieved higher average RS, primarily excelling in identifying
semantically close and well-documented term pairs. However, these methods demon-
strated limited flexibility in capturing the deeper structure and complex relationships
within the network, often prioritizing relationships that are already well-established
in databases. In contrast, node2vec provided a more versatile approach, uncovering a
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broader range of connections that are less immediately apparent but biologically inter-
pretable upon closer examination. While its average RS was lower, node2vec demon-
strated strengths in capturing potential associations beyond semantically similar terms.
Notably, even though semantically close terms appeared less frequently in node2vec’s
top 100 pairs, they were consistently well-represented across the entire network, show-
casing the method’s robustness in identifying both obvious and latent relationships.
FastMap performed poorly, failing to effectively capture meaningful relationships. While
GraphFactorizations achieved relatively high RS, the method tended to generate locally
optimized clusters dominated by specific types of terms (e.g., miRNA-related terms),
limiting its utility in broader analyses.

Identifying novel biological associations through node2vec-based distances

Compared to traditional methods like the Jaccard index, which resemble differential
gene analysis, node2vec results tend to have lower RS based on literature surveys. How-
ever, they hold greater research value, as node2vec-derived spatial proximity often cor-
relates with phenotypic synergy. Additionally, comparisons between the Jaccard index
and node2vec spatial distances reveal that the 64-dimensional embeddings (d64) include
a higher proportion of the closest distances (top 5%), indicating higher reliability. Fur-
thermore, the d64 scores consistently surpass that of the 32-dimensional embeddings
(d32) in terms of reliability (Fig. 4), underscoring its superior performance in captur-
ing meaningful biological relationships. We specifically focused on capturing those from
the top 5% of the d64 distances. To further elucidate the relationships among terms,
we developed a minimum spanning tree (MST, Supplementary Material 3) [33] and an
interactive web interface.

This figure depicts the correlation between the Jaccard index and node2vec-calculated
spatial distances in 64-dimensional (left) and 32-dimensional (right) embedding spaces.
Each plot visualizes the distribution of term pairs based on their Jaccard index and cor-
responding node2vec distance, with normalized distance values ranging from 0 to 0.5
for d64 and 0.3 to 0.5 for d32. The dashed lines represent the top 5% threshold values,

Jaccard Index Threshold Analysis on Node2Vec Distances (d64 & d32)

Normalized Node2Vec Spatial Distance (d64)

°
w o o o oo

oo ®e

s 7 a5
Jaccard Index Jaccard Index

Fig. 4 Correlation between Jaccard Index and node2vec distances in 64- and 32-dimensional spaces
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indicating d64 distance=0.13 and d32 distance=0.33, respectively. Term pairs below
these thresholds are considered highly similar in the vector space. Despite a generally
weak global correlation between the Jaccard index and node2vec distances, a clear pat-
tern emerges in the 64-dimensional embedding: lower node2vec distances are associated
with higher Jaccard index, suggesting that the spatial proximity in this embedding space
reflects meaningful biological overlap. In contrast, the 32-dimensional embedding shows
greater variability, with term pairs often scattered across a broader range of distances
even at high Jaccard index. This observation shows that higher-dimensional embeddings
better capture fine-grained biological relationships, particularly when evaluating term
pairs with substantial gene overlap.

Our analysis reveals that a low Jaccard index does not invariably indicate a lack of
functional or biological relevance, as several key genes across two distinct terms occupy
crucial roles and upstream positions within the pathway. For instance, we observed a
Jaccard index of merely 0.083 between the GNF2_PRDX2 gene set from the GNF2
expression atlas and the HP_ANISOCYTOSIS gene set. Despite the minimal overlap,
the node2vec spatial distance between these terms’ ranks within the top 5%, hinting at
a potential biological connection. This link may be driven by oxidative stress mecha-
nisms, as PRDX2, an antioxidant enzyme, plays a pivotal role in regulating cellular
redox balance. Oxidative stress is a key factor in various hematological disorders, and
its modulation could influence red blood cell (RBC) morphology, specifically in condi-
tions like anisocytosis, which is characterized by variations in RBC size. Altered PRDX2
expression has been associated with hematological conditions such as anemia, which
frequently presents with anisocytosis. Specifically, aberrations in PRDX2 potentially
influences cellular proliferation and contributes to various carcinomas. We hypothesize
that PRDX2 may regulate RBC morphology by mitigating oxidative damage, thereby
establishing a mechanistic link to anisocytosis. This potential connection between
PRDX2 and RBC size variability could pave the way for further research into its role in
hematological disorders, particularly those involving oxidative stress [34]. Despite the
common clinical treatments for anisocytosis focusing on symptom management, such
as vitamin B12 supplementation or blood transfusions, our findings suggest that target-
ing PRDX2-related pathways could offer a novel therapeutic perspective. Future experi-
ments could include targeted gene editing techniques to modulate PRDX2 expression
in model organisms or cell lines, observing resultant changes in RBC morphology and
proliferation rates.

Both KEGG_MEDICUS_REFERENCE_TYROSINE_DEGRADATION and WP_
TYROSINE_METABOLISM_AND_RELATED_DISORDERS are pathways associated
with tyrosine metabolism and degradation. The former emphasizes the overall meta-
bolic process, while the latter focuses on the pathological mechanisms resulting from
metabolic disorders. Although these pathways share an identical gene set, their spa-
tial distances in the node2vec analysis rank among the closest 5%, reflecting a stronger
similarity in the embedding space. This suggests a tight biological network connection
between these pathways and hints at potential clinical phenotypic commonalities.

In contrast, despite having a Jaccard index close to 1, KEGG_MEDICUS_REFER-
ENCE_TRANSPORT_OF_CALCIUM and GOMF_GLUTAMATE_GATED_CAL-
CIUM_ION_CHANNEL_ACTIVITY exhibit a noticeably larger spatial distance in the
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node2vec analysis and possess a RS that is four points lower than the others. The dif-
ference between these two terms lies in their perspective on the same activity; however,
the former encompasses three fewer genes (GRIA1, GRIA3, GRIK]I) than the latter. This
highlights node2vec’s ability to distinguish between pathways based on their functional
roles and pathological relevance, rather than being solely driven by gene set overlap.
The KEGG pathway describes the broad physiological process of calcium ion trans-
port across membranes, involving various cell types and tissues. In comparison, the GO
molecular function category is more specific, focusing on the activity of glutamate-gated
calcium ion channels within the nervous system, a more narrowly defined molecular
mechanism. Consequently, node2vec separates the two terms in the biological network,
reflecting differences in their functional and contextual roles despite their identical gene
sets. This demonstrates node2vec’s capacity to capture topological distinctions in the
network, offering a more nuanced understanding of functional relationships beyond
simple gene overlap.

Applying clinical insights to uncover complex biological relationships

with node2vec-based distances

Building on our strategy involving node2vec-based distances, such as the insightful asso-
ciation between PRDX2 and anisocytosis, we explore more practical scenarios to deepen
our understanding of complex biological processes and diseases. By harnessing clinically
relevant term pairs, this approach aids in uncovering subtle yet significant biological
interactions that may be overlooked by conventional methods.

In clinical research on immune diseases resulting from nephron developmental
defects, we focused on the term HP_ABNORMAL NEPHRON_ MORPHOLOGY to
identify critical genes implicated in these processes. Through Jaccard index and node-
2vec-based distance calculations, we expanded our analysis to related terms, such as
HP_ABNORMAL_URINE_PROTEIN_LEVEL and HP_SKIN_RASH, which align with
observed clinical manifestations and fall within the predefined screening criteria. These
analyses have pinpointed key genes like MEFV, IRF5, TNFAIP3, and PTPN22, which are
central to immune regulation and renal pathology. By narrowing the search space for
candidate genes, our approach accelerates the discovery of up-downstream relationships
in complex biological systems.

For instance, our term-driven analysis highlights IRF5 and STAT4 as pivotal genes
linking proteinuria and skin rash in lupus nephritis (LN). These findings align with lit-
erature evidence [35], where these genes are shown to mediate interferon signaling and
inflammatory responses. Moreover, pharmacological exploration, such as hydroxychlo-
roquine (HCQ) modulation of these pathways, reveals dual effects [36]. Literature sug-
gests that while HCQ improves renal inflammation and survival in LN, it may disrupt
proximal tubular epithelial cell autophagy and accelerate cellular senescence, exacerbat-
ing susceptibility to acute kidney injury [37]. This demonstrates the complex interplay
between genetic pathways and therapeutic interventions, reinforcing the importance of
integrating term analysis with biological validation.

By combining term-based relationships and documented experimental evidence,
our methodology offers a robust framework to rapidly identify and interpret key

genetic pathways. It supports the generation of actionable hypotheses for experimental
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validation and enhances understanding of the molecular mechanisms underlying com-
plex diseases.

Cross-species discovery through node2vec embedding reveals shared biological insights
Due to ethical constraints prohibiting functional perturbation experiments within
human subjects, alongside the limitations of cell line experiments that diverge from the
true in vivo environment, a substantial amount of research is conducted within murine
models. The central aim of these animal experiments is to bridge murine data with
human disease and physiological mechanisms, rendering cross-species association stud-
ies indispensable.

We extended our analysis to include cross-species validation, utilizing node2vec
unsupervised embeddings at 64 dimensions. By embedding both human and mouse
gene datasets into a shared vector space, we aimed to identify biologically relevant pat-
terns that are conserved across species. Specifically, we converted mouse genes to their
homologous human counterparts and embedded the mice collections based on the pre-
trained human model.

To ensure cross-species comparability, we mapped 41,662 mouse genes and 42,416
human genes, identifying 17,044 homologous gene pairs. While the homologous mouse
genes represent less than half of the original set, the connections between homologous
mouse genes and human terms increased four folds compared to their original connec-
tions to mouse terms. Importantly, both homologous genes, mouse terms, and human
terms were embedded into the same shared space, facilitating the identification of con-
served relationships. In our analysis, we prioritized biologically meaningful mouse terms
(Table 3) and focused on examining their relationships with the nearest human terms.
Following this, we searched for the nearest human term-related nodes corresponding to
the embedded terms in mouse. This approach allowed us to discover and strengthen our
findings across species (Supplementary Material 1).

The observed connection between mice. TABULA_MURIS_SENIS_LUNG_B_CELL_
AGEING and human_CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHY-
MAL_UP suggests potential links between ageing lung B cells and distinct cellular states
in breast cancer [38]. The mesenchymal transition in cancer is frequently associated with
immune responses and cellular ageing, which might explain this correlation. Ageing B
cells, particularly in tissues like the lung, may undergo significant functional changes,
such as a reduction in antigen-specific responses or a shift towards pro-inflammatory

Table 3 Key cross-species associations between mouse ageing data and human disease-related
terms

Mice term Human term Biological interpretation

TABULA_MURIS_SENIS_LUNG_B_ CHARAFE_BREAST_CANCER_LUMI-  Links ageing lung B cells with mes-

CELL_AGEING NAL_VS_MESENCHYMAL_UP enchymal transitions in breast cancer
progression
LIVER_T_CELL_INFLAMMATORY HCC_TUMOR_MICROENVIRON- Suggests inflammation-driven tumo-
MENT_UP rigenesis mechanisms in the liver
SPLEEN_MARGINAL_ZONE_B_ IMMUNE_CELL_FUNCTION_IN_ Indicates possible changes in
CELL_AGEING BREAST_CANCER immune surveillance impacting

tumor development
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profiles. These changes are characteristic of immunosenescence, which is known to both
impair immune surveillance and enhance a pro-tumorigenic environment. Chronic
inflammation, often seen with ageing immune cells, creates a microenvironment condu-
cive to cancer progression through the secretion of inflammatory cytokines and growth
factors that support tumor cell proliferation, survival, and metastasis. This is especially
relevant to the mesenchymal transition in cancer, as inflammatory signals are critical
drivers of epithelial-mesenchymal transition (EMT), facilitating cancer cell invasion and
dissemination.

Discussion

In this study, we utilized node2vec, comparing to straight forward set-overlapping
methods, to explore complex biological relationships within diverse datasets. The key
strength of this approach lies in its ability to embed terms from various datasets into
a shared vector space, enabling researchers to discover relationships between similar
terms across different datasets. This provides a flexible tool for uncovering hidden pat-
terns, particularly in contexts where data is heterogeneous and often incomplete.

However, one of the limitations of this work is the reliance on pre-existing datasets,
which introduces a level of uncertainty. Our term embeddings are drawn from various
sources, each with varying levels of curation and confidence, and we have not assigned
explicit weights to these terms yet. This results in a broad, unsupervised analysis where
both input and output lack precise control. While this introduces potential noise and
ambiguity, it also allows for serendipitous discoveries, as seen in some of the unexpected
relationships we uncovered. These findings suggest that even in a loosely structured
exploration, novel biological insights can emerge, particularly when the direct evidence
is limited or the underlying mechanisms are not well understood. In addition, MSigDB
was selected over other databases such as KEGG or Reactome due to its broad aspects
of gene sets (terms) and inclusion of computationally derived gene clusters. Notably,
MSigDB also integrates information from databases like Reactome and KEGG, provid-
ing a more comprehensive resource for general-purpose analyses. While Reactome and
KEGG are highly curated and particularly well-suited for pathway-specific research or
studies targeting detailed mechanistic insights, they are less versatile for exploratory or
large-scale analyses involving heterogeneous datasets.

The node2vec algorithm itself alleviates some of the concerns mentioned above. Its
simplicity and ease of parameter tuning make it well-suited for exploratory analyses.
Additionally, its unsupervised nature is particularly advantageous when working with
heterogeneous and incomplete data, which is common in biological research. This flex-
ibility allows us to capture potential relationships that more rigid, supervised methods
might overlook.

Despite these strengths, it is important to acknowledge that our study primarily serves
as a proof-of-concept. The current framework demonstrates the potential of node2vec
in biological research, but more concrete case studies with well-curated datasets are
necessary to fully exploit its capabilities. The quality and scope of the analysis are ulti-
mately constrained by the completeness and curation standards of the underlying data.
To address this, future studies could incorporate complementary resources, to enhance
the granularity and reliability of analyses, particularly in pathway-specific or clinical
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contexts. Furthermore, while node2vec offers simplicity and flexibility, its unsupervised
nature limits its applicability in more targeted settings. Future work should therefore
focus on integrating experimental validation and leveraging more sophisticated models,
such as GNN, which may provide greater precision and sensitivity when tailored to spe-
cific research questions. These advancements would enable the transition of our frame-
work from an exploratory tool to a robust platform for targeted biological discovery and
clinical application.
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