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Abstract 

Machine learning is frequently used to make decisions based on big data. Among 
these techniques, random forest is particularly prominent. Although random for-
est is known to have many advantages, one aspect that is often overseen is that it 
is a non-deterministic method that can produce different models using the same 
input data. This can have severe consequences on decision-making processes. In this 
study, we introduce a method to quantify the impact of non-determinism on predic-
tions, variable importance estimates, and decisions based on the predictions or vari-
able importance estimates. Our findings demonstrate that increasing the number 
of trees in random forests enhances the stability in a non-linear way while computa-
tion time increases linearly. Consequently, we conclude that there exists an optimal 
number of trees for any given data set that maximises the stability without unneces-
sarily increasing the computation time. Based on these findings, we have developed 
the R package optRF which models the relationship between the number of trees 
and the stability of random forest, providing recommendations for the optimal number 
of trees for any given data set.

Keywords: Parameter optimisation, Random forest, Machine learning, Non-
determinism, Decision-making, Genomic selection, Variable selection

Introduction
Machine learning is a powerful tool to analyse complex and large data sets and is fre-
quently used across various scientific disciplines in decision-making processes. The term 
machine learning describes methods that enable the computer to recognise patterns 
and, in this way, to “learn” from the data and to make predictions for novel data based 
on the given data [1, 2]. Beyond predictions, these models are increasingly used to make 
decisions based on their outputs, enabling data-driven decision-making processes [3]. A 
particularly prominent machine learning method is random forest which is widely used 
in areas such as finance, healthcare, engineering, and genomic research for data-driven 
decision-making processes [4–13]. Its popularity is due to the fact that it is a non-para-
metric method that performs very well, requires very simple input preparation, and can 
handle binary, categorical, count, and continuous response variables [14].
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Random forest works by growing multiple decision or regression trees and making 
predictions by averaging the predictions of the trees. In order to grow the trees, at each 
node, the variable is chosen that splits the data set into two distinct groups [15]. Rather 
than choosing this variable from all available variables, the best variable can be chosen 
from a random sample of all variables [16]. While some publications state that the value 
for this parameter, which is typically called mtry, can influence the prediction accuracy 
[17–19], it was also described that the value for mtry did not influence the out-of-bag 
error rate in experiments with microarray data [20]. Next to the number of variables to 
choose the best variable from, it can also be adjusted how many observations are drawn 
for the training of each tree. On the one hand, a small value for the sample size can 
reduce computation time and will lead to more diverse trees which has a positive effect 
on prediction accuracy. On the other hand, more diverse trees will lead to less stability of 
the random forest model when aggregating the trees [17]. The depth of the trees can be 
controlled by defining the minimum number of observations in the terminal node (the 
node size) [17]. Tuning this hyperparameter can increase prediction accuracy, especially 
for data sets with a large sample size and a small number of variables [21].

Even though the number of trees grown in a random forest can have a severe effect 
on the prediction accuracy, this parameter has been described as not tunable because 
there is no best value for it [17]. While R packages for performing random forest such as 
randomForest, ranger, and Rborist use as default 500 trees [16, 22, 23], it is widely agreed 
that a greater number of trees in random forest has only benefits for the quality of the 
model such as more stable and accurate results without overfitting [24–27]. However, 
it is also known that the number of trees increases the computation time linearly [17, 
27]. This leads to the question of how to set this parameter. It has been recommended to 
set the number of trees to be ten times the number of variables in the data set and from 
there to increase the number of trees until the error rate stabilises [25]. Despite the sug-
gestion to set the number of trees as high as the computational power allows it, research 
with biomedical data sets has shown that from a certain number of trees on, a further 
increase in the number of trees did not further improve the quality of the random forest 
model but increased the computation time [28].

One example of data-driven decision-making processes is genomic selection where 
the phenotype of individuals is predicted using genomic data and subsequently used to 
select the best individuals in a population where the phenotype is unknown [14, 29]. 
Such studies rely heavily on the use of single nucleotide polymorphisms (SNPs) which 
can be analysed in large quantities using SNP chips [30–32]. However, such studies are 
often limited by the number of individuals that can be analysed, thus, leading to a small 
number of observations (n) and a large number of variables (p) which is a general prob-
lem in genomic research [33]. While random forest is known to sufficiently work also 
when the so called “small n, large p” problem occurs [34–36], it has been discussed that 
interactions between variables might not be detected and correctly used for predictions 
when p is too large [37–39]. In order to reduce the small n, large p problem, random 
forest can be used to estimate the importance of each variable and to select the most 
important variables from the data set [40–42]. In this way, random forest can also be 
used to analyse associations between the genotype and the phenotype [43–45]. Doing so, 
genomic markers can be selected that show the highest association with the phenotype 
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[38, 46–50] and to identify genes related to certain traits [51]. It should be noted that the 
recommendation to set the number of trees to be ten times the number of variables was 
not followed in studies regarding genomic selection [11, 52, 53] which could be due to 
the fact that doing so would require extensive computation time.

Despite the many advantages of random forest, it is often overseen that random for-
est is a non-deterministic method. This means that repeated runs of random forest with 
the same data set may lead to different prediction models and varying variable impor-
tance estimates. This variability is particularly problematic when the predictions or the 
estimated variable importances are used in decision-making processes. Even though 
the impact of non-determinism on decision-making processes may have severe conse-
quences, it has not been adequately addressed to date.

Here, we quantified the stability of random forests with special focus on decision-mak-
ing processes. Moreover, we analysed the relationship between the number of trees and 
the stability of the random forest. We analysed this relationship using multiple publicly 
available data sets from genomic research and show that with all data sets under investi-
gation, the number of trees had a severe effect on the stability of random forest and that 
this relationship is non-linear. Based on these results, we developed the R package optRF 
which models this relationship in order to determine the optimal number of trees that 
leads to a high stability of random forest without unnecessarily increasing the computa-
tion time. While it is possible to tune the mtry value for random forest using the caret 
package [54] or the mtry, node size, and sample size parameters using the tuneRanger 
package [17], there is no package available that recommends a number of trees to be 
set even though we show that regarding the stability of random forest, this parameter 
is highly important. We fill this void and show that using the optRF package, a certain 
number of trees is recommended that leads to stable random forest models without 
unnecessarily increasing the computation time which offers a huge advantage for data-
driven decision-making processes based on random forest.

Materials and methods
The optRF package

We developed an R package that (I) calculates the stability of a random forest model 
with t trees, (II) models the relationship between number of trees and the stability, and 
(III) defines an optimal number of trees from where on additional trees would increase 
computation time but would barely improve the stability further. For this purpose, the 
R package contains two main functions: opt_prediction to optimise the number of trees 
for predictions and selection of the best individuals in a test population and opt_impor-
tance to optimise the number of trees to estimate the variable importance of each vari-
able and select the most important variables in a data set.

The opt_prediction function

The opt_prediction function needs as input a training data set where the response 
variable is inserted in the y argument and the predictor variables are inserted in the X 
argument. Optionally, the user can specify a test data set using the X_Test argument 
containing the same predictor variables as in X. The opt_prediction function uses the 
training data to construct a random forest model with a certain number of trees using 
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the R package ranger [22] and uses this model to predict the response in the test data 
set. To analyse the data sets described in this paper, we used ranger, version 0.16.0. By 
default, this process is repeated ten times, leading to a matrix containing ntest • 10 pre-
dictions. With this prediction matrix, the prediction stability is calculated and the pro-
cess is repeated with different numbers of trees, leading to a result table that contains 
the number of trees and the corresponding prediction stability. By default, opt_predic-
tion calculates the prediction stability for random forests with 250, 500, 750, 1,000, and 
2,000 trees.

If the response variable is metric, random forest regression is performed. Therefore, 
the prediction matrix will contain metric values. Naturally, if the random forest is sta-
ble, the repeated predictions will be highly correlated. The prediction stability is, thus, 
defined as the intraclass correlation coefficient (ICC) [55] between the ten repetitions 
of random forest. The ICC is calculated using a one-way model and single measures 
ICC(1,1) [56, 57] using the function icc from the R package irr [58]. If the response vari-
able is categorical, random forest classification is performed and the prediction matrix 
will contain categorical values. In this case, if the random forest model is stable, the 
same class will be repeatedly predicted for the same individual in the test data set. Thus, 
the prediction stability is defined as Fleiss’ kappa (κ) [59, 60] using the function kap-
pam.fleiss from the irr package. For both the ICC and Fleiss’ kappa, a value of 1 would 
indicate a perfect prediction stability and a value of zero would indicate poor prediction 
stability [61, 62]. To analyse the data sets described in this paper, we have used irr, ver-
sion 0.84.1.

To assess the stability of selection decisions based on predicted response values in the 
test data set, we present the selection stability which is based on a similar metric pro-
posed by Ornella et al. (2014) where the α top performing individuals in the test data 
set were classified as “selected” once by the observed response values and once by the 
predicted values and the agreement in these two methods was measured using Cohen’s 
Kappa [52]. We have defined the selection stability by using the prediction matrix to 
derive a selection matrix where in each repetition of random forest, the α top perform-
ing individuals are also classified as “selected” whereas the remaining individuals are 
classified as “rejected”. Since ten raters are being compared, we also used Fleiss’ Kappa 
here, to measure the agreement between these raters. Opposed to the method presented 
in [52], opt_prediction compares the selection decision based on the ten repeated pre-
dicted values in the test data set without the need of knowing the true response values in 
the test data set.

To evaluate the selection stability when the response is metric, by default opt_predic-
tion selects the 15% individuals with the highest predicted values in the test data set in 
each repetition of random forest. However, both the number of individuals to be selected 
as well as the selection criterion can be adjusted by the user. The number of individu-
als to be selected can be adjusted in the alpha argument of the opt_prediction function. 
The selection criterion can be adjusted in the select_for argument where either the value 
“high” (default) can be entered to select individuals with the highest response values, 
the value “low” can be entered to select individuals with the smallest response values, 
or the value “zero” can be entered to select individuals where the response is closest to 
zero. If random forest classification is performed, in each repetition of random forest, 
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individuals are selected for which a certain class or certain classes were predicted. Thus, 
the user has to specify the name or the names of the desired classes in the select_for 
argument when using opt_prediction with a categorical response variable.

If no data is provided in the X_Test argument, stability is estimated using the out-of-
bag data for each tree grown in the random forest. For a metric response, the prediction 
for each individual in the data set is defined as the mean of the predictions from the 
trees in which that individual was not used for training. For a categorical response, the 
prediction is defined as the class most frequently predicted by the trees where the indi-
vidual was not included in the training process.

The opt_importance function

The opt_importance function needs as input the response variable in the y argument 
and the predictor variables in the X argument. By default, it repeats random forest ten 
times and in each repetition, the variable importance of each variable is calculated, lead-
ing to a p • 10 variable importance matrix. If the random forest model is stable, the vari-
able importance estimates will be highly correlated in all repetitions. Hence, the variable 
importance stability is also defined as the ICC. Also opt_importance calculates the vari-
able importance stability by default with 250, 500, 750, 1,000, and 2,000 trees and derives 
a result table that contains the number of trees and the corresponding variable impor-
tance stability.

Similar to the opt_prediction function, opt_importance also calculates the selec-
tion stability. Since variable importance estimates are always continuous, regardless of 
whether the response is metric or categorical, and higher values indicate more impor-
tant variables, the selection matrix is derived by classifying the α variables with the high-
est importance estimates as “selected” and the remaining variables as “rejected” in each 
repetition of random forest, similar to the approach for classifying variables proposed 
in [63]. By default, the top 5% of variables are classified as “selected” in each repeti-
tion of random forest but this threshold can be adjusted in the alpha argument of the 
opt_importance function. Selection stability is then quantified using Fleiss’ Kappa which 
measures the agreement of selected variables across the ten random forest repetitions.

Modelling the stability

While the function opt_prediction calculates the prediction stability and the selection 
stability for selecting the best individuals in a test population, opt_importance calculates 
the variable importance stability and the selection stability for variable selection. In a 
next step, both functions model the stability ( sj ) of a random forest model j with tj trees 
with the two parameter logistic (2PL) model

where θ1 denotes the number of trees where ŝj = 0.5 and θ2 denotes the slope at θ1 . 
This 2PL model equals the three parameter logistic model described in [64] where the 
maximum effect is set to 1 since the maximum value of the stability measures described 
above is 1 and the minimum value is 0. The 2PL model can also be derived from the 

ŝj =
1

1+

(
θ1

tj

)θ2
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extended four and five parameter logistic models described in [65–67] which have been 
adapted in multiple studies in the natural sciences [68–70] by setting the asymmetry 
parameter to 1, assuming no asymmetry within the logistic model. In order to estimate 
the parameter values, the Levenberg–Marquardt algorithm [71] was applied using the R 
package minpack.lm [72]. We have used minpack.lm, version 1.2–4, to analyse the data 
sets described here.

To define an optimal number of trees, the model is used to estimate the increase of 
stability for each tree being added to the random forest model in the interval from 10 to 
10,000,000. Based on the estimated stability per ten trees added to the random forest, the 
optimal number of trees can be determined. The number of trees will be recommended 
where an additional ten trees in random forest leads to an increase in stability of  10–6 or 
less. This threshold was set arbitrarily and can be defined by the user in the rec_thresh 
argument of the opt_prediction and the opt_importance function. By default, opt_pre-
diction will calculate the optimal number of trees based on the prediction stability and 
opt_importance based on the variable importance stability. However, the user can set the 
recommendation to be based on the selection stability in both functions.

Application with real life data
Data sets

In order to demonstrate the effectiveness of the optRF package, we estimated the opti-
mal number of trees for both genomic selection and for variable selection with 45 pub-
licly available data sets from genomic research (see Table  1 and the Supplementary 
Table). These data sets were collected from eight different species, namely two data sets 
from barley (Hordeum vulgare L.) [73], one data set from chicken (Gallus domesticus) 
[74] after linkage disequilibrium pruning as in [75], four data sets from maize (Zea mays 
L.) [76], six data sets from rice (Oryza sativa L.) [77], eight data sets from rye (Secale 
cereale L.) [78], four data sets from strawberry (Fragaria × ananassa) [79, 80], one data 
set from sugar beet (Beta vulgaris L.) [38], and nineteen data sets from wheat (Triticum 
aestivum L.) [81–84]. All data sets exhibited the small n, large p problem as they con-
tained more variables than observations. The smallest data set, in terms of observations, 
contained 61 observations and 11,086 variables while the smallest data set, in terms of 
variables, included 264 observations and 1,134 variables. The largest data set consisted 
of 1,063 observations and 139,101 variables.

All data sets were prepared for the analysis by calculating the mean of the response 
values if individuals with the same genotype were repeated in the experiment, SNPs with 
10% missing values or more or with a minor allele frequency of 1% or less were removed 
and missing genomic data were imputed with k-nearest neighbours using the function 
kNN from the R package VIM, version 6.2.2, with default settings [85].

Detailed analysis of selected data sets

To demonstrate the application of the optRF package, we present detailed results from 
applying opt_prediction and opt_importance to two example data sets. First, we applied 
both functions to the maize data set where the yield was measured in well irrigated plots. 
This is the smallest data set under consideration in terms of variables (264 observations, 
1,134 variables, data set 7 in Tab. 1). Second, we applied both functions to the largest 
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Table 1 Analysed data sets with species, response, number of observations (n), and number of 
variables (p). For a detailed description of the data sets, see Supplementary Table

Data
set

Species Response n p

1 Barley Beta-glucan 550 3815

2 Barley Yield 516 3798

3 Chicken Egg weight 1063 139,101

4 Maize Anthesis-silk interval (drought stress) 284 1146

5 Maize Anthesis-silk interval (well-irrigated) 284 1146

6 Maize Yield(drought stress) 264 1134

7 Maize Yield (well-irrigated) 264 1134

8 Rice Amylose content 386 61,260

9 Rice Grain yield 937 61,260

10 Rice Pyricularia oryzae infestation 668 61,260

11 Rice Nakataea oryzae infestation 915 61,260

12 Rice Rhizoctonia oryzae-sativae infestation 915 61,260

13 Rice Yield after milling 937 61,260

14 Rye Plant height (2018) 572 7718

15 Rye Plant height (2019) 645 7718

16 Rye Plant height (2020) 638 7718

17 Rye Plant height (2021) 572 7718

18 Rye Yield (2018) 572 7718

19 Rye Yield (2019) 645 7718

20 Rye Yield (2020) 638 7718

21 Rye Yield (2021) 572 7718

22 Strawberry Phytophthora cactorum infestation (2017) 1220 40,313

23 Strawberry Phytophthora cactorum infestation (2018) 1726 40,310

24 Strawberry Verticillium dahliae infestation (2017) 388 34,810

25 Strawberry Verticillium dahliae infestation (2018) 388 34,810

26 Sugar beet Beet necrotic yellow vein virus infestation 156 9127

27 Wheat Yield (2015) 348 10,560

28 Wheat Yield (2016) 324 10,560

29 Wheat Yield (2015, drought stress) 157 10,064

30 Wheat Yield (2016, drought stress) 150 10,064

31 Wheat Yield (2017, drought stress) 150 10,064

32 Wheat Yield (2015, well-irrigated) 157 10,064

33 Wheat Yield (2016, well-irrigated) 150 10,064

34 Wheat Yield (2017, well-irrigated) 149 10,064

35 Wheat Yield (2017) 61 11,089

36 Wheat Yield (2017) 501 11,089

37 Wheat Yield (2018) 447 11,089

38 Wheat Yield (2018) 759 11,089

39 Wheat Root length 77 9669

40 Wheat Yield 77 9669

41 Wheat Germination rate 411 25,200

42 Wheat Puccinia striiformis infestation (2016) 500 25,200

43 Wheat Puccinia striiformis infestation (2017) 500 25,200

44 Wheat Yield (2016) 500 25,200

45 Wheat Yield (2017) 498 25,200
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data set under consideration where the egg weight was measured in chickens (1,063 
observations, 139,101 variables, data set 3 in Tab. 1).

We applied opt_prediction and opt_importance to both example data sets to calcu-
late the prediction and variable importance stability with 250, 500, 750, 1,000, and 2,000 
trees, derive the 2PL model described in Eq. 1, estimate the stability for higher numbers 
of trees, and determine the optimal number of trees. For both example data sets we then 
calculated the prediction and variable importance stability with larger numbers of trees 
to show that the model can reliably estimate the prediction and variable importance sta-
bility even when derived using only small numbers of trees. Finally, we compared the 
prediction and selection stability as well as the variable importance and selection stabil-
ity alongside computation time when performing random forest analysis with 500 trees 
and with the optimal number of trees for both data sets.

General application across all data sets

For each data set, we ran opt_prediction once with the argument recommendation set 
to “prediction” and once with it set to “selection” to determine the optimal number of 
trees based on the prediction and the selection stability, respectively. These two recom-
mendations were saved and subsequently, random forest was run ten times with default 
settings of the ranger function which is 500 trees and the prediction and selection sta-
bility were calculated. Next, ranger was run ten times with the recommended number 
of trees for recommendation = “prediction” and the prediction stability was calculated, 
ranger was run ten times with the recommended number of trees for recommenda-
tion = “selection” and the selection stability was calculated, and finally ranger was run 
ten times with the number of trees defined as ten times the number of variables in the 
data set as recommended in [25] and the prediction and selection stability were calcu-
lated. The same approach was repeated with the opt_importance function where the 
argument recommendation was set to “importance” to determine the optimal number of 
trees based on the variable importance stability and to “selection” for selection stability. 
Subsequently, random forest was again repeated ten times with the default of 500 trees, 
the optimal number of trees, and with ten times the number of variables as the number 
of trees. For data set 3, we estimated the stability and computation time with ten times 
the number of variables as the number of trees to prevent the random forest model from 
exceeding the available computational power. However, based on the results shown in 
Fig. 2, we are confident that these estimates are reliable.

All data sets under investigation contained metric response variables. In order to esti-
mate the selection stability, the default settings of opt_prediction were used to select 
the top 15% individuals and the 5% most important genomic markers with opt_impor-
tance. Regarding opt_prediction, the select_for argument was adjusted depending on the 
response variable. Regarding yield, root length, germination rate, and egg weight, select_
for was set to “high”, regarding infestation, β-glucan content, plant height, and amylose 
content, select_for was set to “low” to select individuals with the lowest values following 
recommendations in [73, 86, 87], and regarding the anthesis-silk interval, select_for was 
set to “zero” to select individuals with values closest to zero following recommendations 
in [52].
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Results
Results from selected data sets

Analysis of the smallest data set

The results of applying opt_prediction and opt_importance to the maize data set can be 
seen in Fig. 1. The red dots represent the stability measures calculated using 250, 500, 
750, 1,000, and 2,000 trees, with the relationship modelled using the 2PL model shown 
as a blue line. The estimated stability at the recommended number of trees is indicated 
by a horizontal red line. To demonstrate the model’s ability to accurately describe and 
extrapolate the relationship to higher numbers of trees, the prediction and variable 
importance stability were calculated using 5,000 to 20,000 trees, shown as black dots in 
Fig. 1.

One can see in both graphs of Fig. 1 that even though the 2PL model was derived using 
only the first five data points, the model describes the relationship between the predic-
tion and variable importance stability and number of trees in a random forest accurately 
which is very important for the computation time of the opt_prediction and the opt_
importance function.

In this example, the opt_prediction function recommended to increase the number of 
trees in random forest by a factor of ten from the default of 500 trees to 5,000 trees with 
which the prediction stability increases from 0.958 to 0.996. Naturally, this increase in 
the number of trees would also increase the computation time by a factor of ten. How-
ever, one can see in the left graph of Fig. 1 that with 500 trees, the prediction stability 
increases steeply with each additional tree being added to the random forest while with 
5,000 trees, the stability reaches a plateau from where on adding more trees would barely 
increase the prediction stability further. When selecting the 15% top performing individ-
uals based on the predicted response, the selection stability with the default value of 500 
trees is 0.828 while the selection stability with 5,000 trees is at 0.957. In a further analy-
sis, we repeated random forest ten times with 500 and with 5,000 trees and found that 
57.5% of the selected individuals were selected in each repetition when random forest 

Fig. 1 Example of the application of the optRF package to the maize data set (data set 7 in Tab. 1). The 
relationship between the number of trees and the stability of the random forest was analysed for five 
numbers of trees (red dots) and estimated using a non-linear model (blue curve) for prediction (left graph) 
and variable importance stability (right graph). The prediction and variable importance stability with higher 
number of trees was also calculated (black dots). The horizontal red line indicates the stability with the 
recommended number of trees (5,000 for prediction and 17,000 for variable importance stability)
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was performed with 500 trees and 90% of the selected individuals were selected in each 
repetition when random forest was performed with 5,000 trees. This demonstrates that a 
slight increase in prediction stability increased the selection stability markedly.

The opt_importance function recommended for this data set to use random forest 
with 17,000 trees which increases the number of trees by a factor of 34 compared to 
the default of 500 trees and, thus, also increases the computation time by this factor. 
With the default of 500 trees, random forest leads to a variable importance stability of 
0.612 which is increased to 0.983 with 17,000 trees. One can see in the right graph of 
Fig. 1 that also here, the default of 500 trees leads to a part of the model where increasing 
the number of trees has a strong effect on the variable importance stability. The recom-
mended number of trees is set to be at the part from where on the model flattens and a 
further increase in the number of trees would barely increase the variable importance 
stability further. When performing random forest with 500 trees, a selection stability of 
0.492 is reached. When selecting the 5% most important variables in ten repetitions of 
random forest with 500 trees, we found that 14% of the selected variables were selected 
in each of these repetitions. With the recommended 17,000 trees, a selection stability of 
0.918 is reached. When selecting the 5% most important variables in ten repetitions of 
random forest with this number of trees, 73.7% of the selected variables were selected 
in each repetition of random forest. Here, the increase in the number of trees strongly 
affected both the variable importance and the selection stability.

Analysis of the largest data set

The results from applying the optRF package to the largest data set (egg weight in 
chicken, data set 3 in Tab. 1) can be seen in Fig. 2. Here as well, the red dots visualise 
the calculated stability with 250, 500, 750, 1,000, and 2,000 trees and the blue line shows 
the model that describes the relationship between number of trees and stability for any 
number of trees. To show that the model can accurately predict the stability for higher 
numbers of trees, the prediction and variable importance stability were calculated when 

Fig. 2 Example of the application of the optRF package to the chicken data set (data set 3 in Tab. 1). The 
relationship between the number of trees and the stability of the random forest was analysed for five 
numbers of trees (red dots) and estimated using a non-linear model (blue curve) for prediction (left graph) 
and variable importance stability (right graph). The prediction and variable importance stability with higher 
number of trees was also calculated (black dots). The horizontal red line indicates the stability with the 
recommended number of trees (8,000 for prediction and 137,000 for variable importance stability)
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using 25,000 to 150,000 trees, visualised as black dots. Furthermore, the estimated sta-
bility with the recommended number of trees is shown as horizontal red line.

In this example, the functions of the optRF package were applied to the largest data set 
under consideration and a larger number of trees was necessary to build stable random 
forest models. But even though the 2PL model was derived with only small numbers of 
trees, it could accurately estimate the prediction and variable importance stability with 
up to 150,000 trees. This shows the reliability of the stability estimates from the 2PL 
model.

Here, the prediction stability was 0.876 when using random forest with the default of 
500 trees. The opt_prediction function recommended to increase the number of trees to 
8,000 which led to a prediction stability of 0.991. Also here, with 500 trees, the predic-
tion stability increases steeply with each tree being added to random forest while with 
the recommended number of trees, the prediction stability reaches a plateau from where 
on adding more trees to random forest barely increases the prediction stability further. 
When selecting the 15% top performing individuals, the selection stability increases 
from 0.612 with 500 trees to 0.926 when random forest is performed with 8,000 trees. 
When repeating random forest ten times, only 30.2% of the selected individuals are 
selected in these ten repetitions with 500 trees while 82.4% of the selected individuals 
are selected in each of the ten repetitions of random forest with 8,000 trees.

Regarding the variable importance stability, one can see a dramatic increase in stability 
when the number of trees was increased from the default of 500 trees. With the default of 
500 trees, only a variable importance stability of 0.018 could be reached. The opt_impor-
tance function recommended to use 137,000 trees which increased the variable impor-
tance stability to 0.845. While this is still deviating from a stability of 1, this is the number 
of trees from where on adding more trees to the random forest would increase the variable 
importance stability by  10–6 or less and is, thus, a compromise between stability and com-
putation time. When selecting the 5% most important variables from the data set, random 
forest provides a selection stability of 0.029 with 500 trees which is increased to 0.482 with 
the recommended 137,000 trees. When repeating random forest ten times with 500 trees, 
not a single variable was selected in each of the ten repetitions which shows the instabil-
ity of random forest with only 500 trees for variable selection with this data set. With the 
recommended number of trees, 19.3% of selected variables were selected in each of the ten 
repetitions. With this data set, one can see the severe necessity to increase the number of 
trees for reliable variable selection using random forest.

General results across all data sets

To show the effectiveness of the optRF package, we applied both opt_prediction and 
opt_importance to 43 further data sets with various different response variables, num-
bers of observations, and numbers of variables. For each data set, we calculated the opti-
mal number of trees to select the top performing individuals based on their predicted 
response values or to select the most important variables. The data sets and the rec-
ommended numbers of trees as well as the resulting stability and computation time are 
given in the Supplementary Table. While we could in general observe that a high number 
of trees is necessary to build stable random forest models in data sets with a large num-
ber of variables, the results also show that different numbers of trees were recommended 
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for data sets with similar numbers of variables. For example, data sets 35 and 38 contain 
the same response for the same species with the same number of variables. However, 
data set 35 contains 61 observations while data set 38 contains 759 observations. While 
75,000 trees optimise the variable importance stability in data set 35, 9,000 trees are 
already optimising the variable importance stability in data set 38. This indicates that not 
only the number of variables but also the number of observations in the data set affects 
the optimal number of trees.

In the same way, data sets 43 and 44 can be compared. Both data sets analyse the same 
species with the same number of variables and the same number of observations. How-
ever, while data set 43 contains data about the infestation with Puccinia striiformis, data 
set 44 contains yield data. While the variable importance stability was optimised for data 
set 43 with 18,000 trees, 53,000 trees were necessary to optimise the variable importance 
stability for data set 44. This indicates that not only the dimensionality of the data affects 
the recommended number of trees but also the response variable.

Figure 3 visualises the prediction and selection stability of random forest to select the 
top performing individuals based on their predicted response values with the 45 data 
sets under investigation with 500 trees which is the default setting in the ranger func-
tion, the recommended number of trees from the optRF package, and the number of 
trees being ten times the number of variables. One can see in Fig. 3 that both the predic-
tion and selection stability increased markedly when the number of trees was increased 
from 500 to the optimal number of trees as recommended by the opt_prediction func-
tion. The average prediction stability increased from 0.9545 to 0.9957 and the average 
selection stability increased from 0.7934 to 0.964. Furthermore, one can see that the 
random forests where the number of trees was set to ten times the number of variables 
increased the prediction and selection stability only slightly compared to the random 
forests with the optimal number of trees. The random forests with ten times the number 
of variables led to an average prediction stability of 0.9996 and an average selection sta-
bility of 0.9825.

Figure  4 visualises the variable importance and selection stability of random for-
est used for variable selection with the 45 data sets under investigation. Here as well, 

Fig. 3 The prediction stability (left graph) and the selection stability (right graph) for all 45 data sets under 
investigation when using random forest for predictions and to select top performing individuals with (I) 
500 trees, (II) the recommended number of trees from the optRF package, and (III) ten times the number of 
variables as the number of trees
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the number of trees was defined as 500, as the recommended number of trees from the 
opt_importance function, and as ten times the number of variables. One can see that 
the variable importance stability and the selection stability increased markedly when the 
number of trees was increased from 500 to the optimal number of trees. Here, the varia-
ble importance stability increased from an average of 0.3763 to an average of 0.9563 and 
the selection stability increased from an average of 0.2533 to 0.8602. The variable impor-
tance and selection stability increased in most cases again only slightly when the number 
of trees was ten times the number of variables. While the variable importance stability 
increased on average to 0.9688, the selection stability increased on average to 0.8787.

Next to the stability, we were also interested in the computation time of the differ-
ent methods to set the number of trees in random forest. Since the default value of 500 
trees led to insufficient stabilities, we only focused on comparing the computation time 
of the optimal number of trees and ten times the number of variables as the number of 
trees. Therefore, the computation time of the optimal number of trees was defined as the 
computation time of the opt_prediction or the opt_importance function to determine 
the optimal number of trees plus the computation time of ranger which was performed 
with the optimal number of trees. Figure 5 visualises the number of variables in the data 
sets on the X axis and the corresponding computation time for random forest with the 
optimal number of trees as blue dots and with ten times the number of variables in the 
data set as red dots.

As shown in Fig. 5, for data sets with fewer than 30,000 variables, executing opt_pre-
diction or opt_importance followed by running the ranger function with the recom-
mended number of trees required mostly comparable computation time as running 
ranger with ten times the number of variables as the number of trees. However, for data 
sets exceeding 30,000 variables, applying opt_prediction or opt_importance in combina-
tion with ranger using the recommended number of trees resulted in lower computation 
time compared to using ranger with ten times the number of variables as the number of 
trees. These results indicate that the optRF package reduces computation time for data 
sets with a large number of variables compared to a fixed approach of using ten times 
the number of variables as the number of trees.

Fig. 4 The variable importance stability (left graph) and the selection stability (right graph) when using 
random forest to select the most important variables with (I) 500 trees, (II) the recommended number of trees 
from the optRF package, and (III) ten times the number of variables as the number of trees
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Furthermore, setting the number of trees to be ten times the number of variables still 
led in some cases to unstable random forests. For example, the second data set had 3,798 
variables but showed a variable importance stability of 0.845 and a variable selection sta-
bility of 0.671 when random forest was performed with 37,980 trees. The opt_impor-
tance function recommended here to use 96,000 trees as the optimal number of trees 
regarding the variable importance stability and even 708,000 trees as the optimal num-
ber of trees regarding the selection stability. This shows that setting the number of trees 
to be ten times the number of variables can still lead to unstable random forest models. 
Regarding the stability, the authors actually stated to use random forest with ten times 
the number of variables as the number of trees and to increase the number of trees fur-
ther until the error rate stabilises [25]. Thus, the computation time of this approach can 
be assumed to exceed the approach of the optRF package for most data sets.

Discussion
Random forest is a useful tool for data-driven decision-making processes. However, 
in order to fully exploit the potential of random forest, optimal hyperparameters must 
be set. While it is generally agreed that the number of trees is an extremely important 
parameter in random forest, it has been argued that this parameter cannot be tuned since 
there is no value that would maximise the quality of the random forest [17]. Instead, 
it was generally recognised that the quality of the random forest increases with higher 
numbers of trees and it was, thus, recommended to use as many trees as the computa-
tional power allows. However, we showed that the stability of random forest increases 
non-linearly with higher numbers of trees while the computation time increases linearly. 
Thus, it is possible to determine the optimal number of trees that increases the stability 
of random forest until a further increase of the number of trees only leads to a negligible 
increase of the stability.

With all data sets under investigation, it could be shown that increasing the number 
of trees had a strong effect on the prediction and variable importance stability which 
also increased the selection stability for both the selection of individuals and variables. 
However, one could also see that this effect was stronger for variable selection than for 

Fig. 5 The computation time of the opt_prediction function (left graph) and the opt_importance function 
(right graph) together with the ranger function run with the recommended number of trees as blue dots 
compared to the computation time of the ranger function run with ten times the number of variables as the 
number of trees as red dots for all data sets under investigation with the corresponding number of variables
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the selection of the top performing individuals with the data sets under investigation. 
However, all data sets under investigation had in common that the number of variables 
exceeded the number of individuals.

In all data sets, the number of trees recommended by the optRF package improved 
stability markedly. However, considering Fig.  2, the optimal number of trees recom-
mended by the optRF package led to a variable importance stability below 0.9. This is 
because we defined the optimal number of trees to be the number at which an increase 
of ten additional trees would increase the stability by less than  10–6. While we found this 
threshold to be adequate, it can be adjusted by the user via the rec_thresh argument in 
both opt_prediction and opt_importance. Alternatively, opt_prediction and opt_impor-
tance can be used to study the relationship between the number of trees and the stability 
and subsequently, the functions estimate_stability and estimate_numtrees can be used to 
either analyse the stability of a random forest model with a certain number of trees or to 
determine the smallest number of trees to achieve a desired level of stability. Moreover, 
these functions also estimate the computation time, enabling the user to adjust the crite-
ria for determining the optimal number of trees as desired.

When running opt_prediction and opt_importance across all data sets, we found that 
the optimal number of trees did not only depend on the number of variables in the data 
set but also on the number of observations and the response under investigation. We 
found that a higher number of observations leads to a smaller number of trees being 
necessary for stable variable selection. Moreover, we found that the optimal number of 
trees required for stable random forest models also depends on the internal structure 
of the data. In cases where the response is influenced by many weak predictors, a larger 
number of trees is needed to achieve stability. Conversely, when the response is driven 
by a few strong predictors, stability can be reached with fewer trees. A large number of 
trees is also required in cases where the most influential predictors are missing from 
the data set. When strong predictors exist in reality but are not captured in the avail-
able variables, the model relies on many weakly associated variables instead. As a result, 
more trees are needed to achieve stable variable selection.

One important feature of the opt_prediction function is that the prediction stability 
is analysed, not the prediction accuracy. While it is necessary for the calculation of the 
prediction accuracy to compare the predicted values to the observed values in the test 
data set, the observed values of the test data set do not need to be known to calculate 
the prediction stability. Thus, in a realistic scenario where the predictor variables in the 
test population are known but the response is unknown, this method can still be applied. 
However, this method is most appropriate when a specific test data set is available. Here, 
we used data sets that did not allow for an evaluation in a scenario where predictions were 
made for an independent test data set. Although it would have been possible to split each 
data set into, for example 80% training and 20% test data, such an approach would have 
reduced the number of observations in the training data set and would have introduced 
additional stochasticity which could have affected the results. Instead, the opt_prediction 
function was designed such that, if no test data are provided, the entire data set is used 
for training and predictions are generated only from trees in which the given individual 
was not included during training. This approach ensures that opt_prediction provides a 
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realistic estimation of prediction and selection stability for a test data set with a structure 
similar to that of the training data set.

Despite the many advantages of optimised hyperparameters on the quality of random 
forest, determining optimal parameter values can be a computational burden [27]. We 
have developed a method where the relationship between the stability and the number 
of trees in random forest is modelled with small numbers of trees and with this model, 
the relationship is extrapolated for higher numbers of trees. Doing so, the computation 
time to determine the optimal number of trees can be reduced immensely. However, 
even with this method, the optRF package still needs to calculate the stability with 250, 
500, 750, 1,000, and 2,000 trees which requires random forest to be run ten times with 
each of these numbers of trees. Consequently, for data sets with smaller numbers of var-
iables, running opt_prediction or opt_importance and subsequently running ranger with 
the recommended number of trees led to a comparable computation time as running 
ranger with ten times the number of variables as the number of trees. However, when 
applying this method to data sets with more than 30,000 variables, the computation time 
was reduced when using the optRF package. Since the computation time of random for-
est and the recommendation of the optRF package depends not only on the number of 
variables, the threshold of 30,000 variables from where on optRF performs faster than 
ten times the number of variables as the number of trees can vary for different data sets. 
Furthermore, the real advantage of using the optRF package is that the stability can be 
estimated. In some cases even ten times the number of variables did not result in stable 
random forest models which would always give reason for doubt. The optRF package on 
the other hand can offer a measure of how reliable decisions based on the random forest 
model are.

Although modelling the relationship between stability and the number of trees offers 
computational advantages, it is based on parametric statistical modelling which requires 
assumptions to be made regarding the relationship and residual distributions. Further-
more, this process depends on the data used to build the statistical model. Thus, the 
numbers of trees that are analysed could theoretically have an impact on the recom-
mendation. That is why we give the user the possibility to enter any set of values for 
the numbers of trees that should be analysed and used to derive the statistical model. 
Nevertheless, since the recommendations are based on the model’s relationship between 
the numbers of trees and stability, they can still be influenced by randomness. Therefore, 
the process of estimating prediction stability and variable importance stability should 
be repeated and averaged to achieve stable results. We found that repeating the process 
ten times for each number of trees provides stable estimates but users can increase this 
number to further stabilise results at the cost of additional computation time. However, 
with the 45 data sets under investigation, the default settings of the optRF package pro-
vided stable recommendations.

It was shown in the results that although the model was derived with only small num-
bers of trees, it could reliably estimate the prediction and variable importance stability 
for higher numbers of trees. We observed a similar pattern for selection stability when 
using the opt_prediction function, however, we cannot assume that this applies univer-
sally to all data sets or response variables. In contrast, we observed that opt_importance 
sometimes under- or overestimated the selection stability for higher numbers of trees. 
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We recommend that the number of selected variables in the alpha argument of opt_
importance should approximate the actual number of important variables in the data set 
to ensure accurate selection stability estimates for higher numbers of trees. As a default 
setting in the opt_importance function, we set alpha to be 0.05, thus, assuming that 5% 
of the variables in the data set are truly important, a common assumption in genomic 
research [88]. While this default is suitable for the data sets analysed here, we advise 
adjusting alpha for applications outside of genomic research. For variable selection, we 
suggest first running random forest with a sufficient number of trees (at least equal to 
the number of variables) to identify highly important variables. Then, the opt_impor-
tance function can be used with an adjusted alpha value based on this number.

While R packages such as caret or tuneRanger recommend specific values for mtry, 
the node size, or the sample size [17, 54], optRF provides recommendations for the opti-
mal number of trees. Additionally, whereas caret and tuneRanger focus on maximising 
prediction accuracy, optRF optimises the number of trees based on the stability of the 
random forest. Another key distinction is that caret and tuneRanger tune hyperparame-
ters within the training data set, whereas optRF determines the optimal number of trees 
for both a given training and test data set. Since the optRF package optimises a hyper-
parameter that is not tuned by the other packages, they can be effortlessly combined to 
set values for mtry, sample size, node size, and the number of trees. However, Probst 
et al. (2019) pointed out that reducing the sample size can improve prediction accuracy 
but may come at the cost of decreased stability [17]. As the tuneRanger package selects 
hyperparameters that maximise accuracy, this may decrease stability. Therefore, we rec-
ommend to first optimise hyperparameters such as mtry, sample size, and node size and 
then optimise the number of trees using the optRF package to ensure both accuracy and 
stability.

Moreover, the functions in the optRF package cannot only be used to determine the 
optimal number of trees but also to analyse the stability of a random forest model with 
a certain number of trees. Since the stability of random forest is crucial for the repro-
ducibility of results, we highly recommend to state the number of trees and the stabil-
ity of the random forest model either as prediction and selection stability or as variable 
importance and selection stability when publishing results that were determined using a 
random forest model.

Conclusion
The results presented here show that the number of trees has an important effect on 
the stability of random forest. Furthermore, it shows that a random forest model with 
the default setting of 500 trees provides too much instability for decision-making pro-
cesses in all data sets that were analysed. Moreover, the results indicate that the number 
of trees necessary to reach a stable random forest model depends not only on the num-
ber of variables but also on the number of observations and internal structures in the 
data set.

While other R packages aim to maximise the prediction accuracy by tuning mtry, the 
sample size, and the node size, we present a method that optimises the stability of ran-
dom forest by determining the optimal number of trees. We share the optRF package 
via CRAN and GitHub to enable others to either search for an optimal number of trees 
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when using random forest for decision-making processes or to estimate the stability of 
the random forest model with a given number of trees. Since the stability of random 
forest is crucial for the reproducibility of results, we highly recommend to increase the 
number of trees until stable results can be retrieved from random forest and to publish 
the number of trees as well as the stability of the random forest model whenever ran-
dom forest is used for prediction, variable importance estimation, or decision-making 
processes.
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