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Abstract 

Background: Chromatin loops are critical for the three-dimensional organization 
of the genome and gene regulation. Accurate identification of chromatin loops 
is essential for understanding the regulatory mechanisms in disease. However, cur-
rent mainstream detection methods rely primarily on single-source data, such as Hi-C, 
which limits these methods’ ability to capture the diverse features of chromatin loop 
structures. In contrast, multi-source data integration and deep learning approaches, 
though not yet widely applied, hold significant potential.

Results: In this study, we developed a method called DconnLoop to integrate Hi-C, 
ChIP-seq, and ATAC-seq data to predict chromatin loops. This method achieves feature 
extraction and fusion of multi-source data by integrating residual mechanisms, direc-
tional connectivity excitation modules, and interactive feature space decoders. Finally, 
we apply density estimation and density clustering to the genome-wide prediction 
results to identify more representative loops. The code is available from https:// github. 
com/ kuikui- C/ Dconn Loop.

Conclusions: The results demonstrate that DconnLoop outperforms existing methods 
in both precision and recall. In various experiments, including Aggregate Peak Analysis 
and peak enrichment comparisons, DconnLoop consistently shows advantages. Exten-
sive ablation studies and validation across different sequencing depths further confirm 
DconnLoop’s robustness and generalizability.

Keywords: Chromatin loops, Multi-source data, Deep learning, Feature integration, 
Clustering

Background
Understanding the three-dimensional organization of chromatin within the cell 
nucleus is crucial for elucidating the regulatory mechanisms of gene expression and 
genome function [1].Recent advancements in high-throughput chromosome confor-
mation capture techniques, such as Hi-C [2], have significantly enhanced our ability 
to explore chromatin architecture within the nucleus, particularly at high-resolution 
levels. Chromatin structure is further divided into A/B compartments, Topologically 
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Associating Domains (TADs), and chromatin loops, reflecting regions of chromatin 
openness and compaction [3–5].

Epigenetics explores heritable modifications in gene function that occur without 
changes to the underlying DNA sequence. Central to this field are structural com-
ponents such as DNA-binding proteins and RNAs, alternative DNA conformations, 
and chemical modifications like methylation [6]. High-throughput sequencing tech-
nologies have revolutionized our ability to study these epigenetic factors [7, 8]. For 
instance, ATAC-Seq (Assay for Transposase-Accessible Chromatin using sequencing) 
profiles regions of open chromatin, enabling the assessment of chromatin accessibil-
ity and the identification of transcription factor binding sites [9]. Chromatin Immu-
noprecipitation followed by sequencing (ChIP-seq) maps protein-DNA interactions 
across the genome, providing insights into the regulatory roles of proteins such as 
transcription factors and histones [10]. Hi-C, a genome-wide chromosome confor-
mation capture technique, examines the three-dimensional architecture of chromatin 
by quantifying physical interactions between genomic loci that are spatially proximal 
within the nucleus but may be distant along the linear genome sequence [11]. Col-
lectively, these methodologies deepen our understanding of the complex regulatory 
networks and spatial organization that underpin genomic function.

Chromatin looping is a critical component of the genome’s three-dimensional 
organization, enabling distal genomic elements to interact functionally despite their 
linear separation. Mediated by architectural proteins such as CTCF and cohesin com-
plexes, these loops bring enhancers, silencers, and promoters into close spatial prox-
imity, facilitating precise regulation of gene expression [12]. The dynamic modulation 
of chromatin loops allows cells to respond to developmental cues and environmental 
stimuli by altering transcriptional programs [13]. Disruptions or aberrations in chro-
matin looping can lead to misregulation of gene expression networks, contributing to 
the onset and progression of various diseases [14–16].

For instance, mutations in enhancer elements that affect their looping interactions 
with target gene promoters have been linked to developmental disorders. In holo-
prosencephaly, mutations in the SBE2 enhancer disrupt its interaction with the SHH 
gene promoter, leading to forebrain malformations [17]. Similarly, alterations in the 
ZRS enhancer can impede its regulatory loop with the SHH promoter in limb buds, 
resulting in limb malformations such as preaxial polydactyly type 2 (PPD2) [18]. In 
cancer biology, enhancer hijacking or duplication events can create aberrant loops 
that enhance oncogene expression. A notable example is the duplication of enhancers 
near the MYC gene in lung adenocarcinoma, which leads to its overexpression and 
drives tumorigenesis [19].

Exploring the methodologies used to study chromatin loops is essential. Under-
standing how these loops are formed, maintained, and altered requires robust 
techniques that can capture the dynamic interactions within the nucleus. Current 
methods for detecting chromatin loops can be broadly divided into two main catego-
ries: unsupervised and supervised approaches, with the latter further subcategorized 
based on the type of input data utilized.
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(1) Unsupervised Methods; Unsupervised methods rely on statistical models or com-
putational algorithms to identify chromatin loops without requiring labeled data-
sets. These methods focus on detecting significant interaction peaks from Hi-C 
contact matrices by modeling background noise, biases, or using image-based cor-
relation techniques.

 HiCCUPS [3, 20] is a peak-finding algorithm based on the Poisson distribution that 
identifies peaks as chromatin interactions by comparing the abundance of reads 
with local neighborhoods (horizontal, vertical, lower-left, and doughnut). Fit-Hi-
C [21] assigns statistical confidence estimates to mid-range intrachromosomal 
contacts by jointly modeling the random polymer looping effect and previously 
observed technical biases in Hi-C datasets. HiC-ACT [22] assumes statistical sig-
nificance between all chromatin interactions and uses the aggregated Cauchy test 
(ACT) method to learn from adjacent loci statistics to achieve peak identification. 
HiCExplorer [23] employs negative binomial distribution modeling and the Wil-
coxon rank-sum test to identify enriched Hi-C interactions by analyzing candidate 
regions within their genomic neighborhoods, effectively distinguishing significant 
interaction peaks from background noise. InferLoop [24] method enhances signal 
by grouping adjacent cells into respective bins and uses a metric akin to a perturbed 
Pearson correlation coefficient to derive loop signals. Chromosight [25] employs a 
computer vision-based approach to detect specific templates (e.g., loops or bound-
ary cores) in images (i.e., Hi-C contact matrices) by correlating each sub-image 
with the template and selecting the sub-images with the highest correlation as the 
template’s representation. Mustache [26] utilizes the scale-space theory from com-
puter vision to detect blob-like objects (i.e., loop structures) in Hi-C contact matri-
ces, determining the presence of loops by evaluating the statistical significance of 
local enrichment of pixels.

(2) Supervised Methods; Supervised methods depend on labeled training datasets and 
are designed to predict chromatin loops by leveraging machine learning or deep 
learning models. These methods are categorized based on the type of input data 
they integrate.

 (i) Methods Using Hi-C Contact Matrices;
 Peakachu [27] uses a supervised random forest classification framework for predicting 

chromatin loops from genome-wide contact maps, capable of identifying a unique 
set of short-range interactions. RefHiC [28] leverages the advantages of deep learn-
ing and high-quality Hi-C datasets from reference panels, utilizing attention mech-
anisms to identify loop structures in the genome. Be-1DCNN [29] uses a bagging 
ensemble learning strategy and one-dimensional convolutional neural networks 
(1DCNN) to enhance the accuracy and reliability of chromatin loop prediction. 
GILoop [30], a dual-branch neural network model, leverages graphical and image 
representations of Hi-C contact matrices to identify genome-wide CTCF-mediated 
chromatin loops. CD-loop [31] uses a pre-trained estimation model on Hi-C con-
tact matrices, combined with the denoising process of a diffusion model, to predict 
chromatin loops.
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 (ii) Methods Integrating Hi-C Contact Matrices and Multi-omics Data;
 LoopPredictor [32] adopts an integrated machine learning model, combines the 

H3K27ac/YY 1 HiChIP dataset and an ensemble of multi-omics features based 
on Random Forests and Gradient Boosted Regression Trees to predict long-range 
enhancer-mediated loops. DLoopCaller [33] employs a deep learning framework 
to integrate Hi-C contact matrices and accessible chromatin data to predict chro-
matin loops.

Previous studies have observed that CTCF (CCCTC-binding factor), a key structural 
protein involved in the formation of chromatin loops, binds to specific DNA sequences 
and acts as an insulator, forming loops that connect distant genomic regions within the 
chromatin. Co-oriented CTCF binding sites are notably enriched at the anchor points of 
these loops across various cell types [34–36]. Therefore, we leverage the spatial informa-
tion of potential loop anchors provided by CTCF binding regions obtained from CTCF 
ChIP-seq data to enhance the identification of chromatin loops.

Chromatin loops frequently connect enhancers and promoters, facilitating regulatory 
interactions that modulate gene expression [37]. Regions of accessible chromatin are 
often associated with active regulatory elements such as enhancers, and ATAC-seq data 
can assess chromatin accessibility, revealing regions where transcription factors and reg-
ulatory proteins bind [38, 39]. By overlaying ATAC-seq data with Hi-C contact matrices, 
it is possible to precisely identify open chromatin regions overlapping with loop anchors, 
thereby uncovering the interactions between enhancers and promoters.

In this paper, we developed a method, named DconnLoop, based on deep learning 
model, which integrates Hi-C contact matrices, ATAC-seq data, and CTCF CHIP-seq 
data to extract and fuse features, and accurately identify chromatin loops.

Methods

DcoonLoop adopts Hi-C contact matrices, ATAC-seq data and CTCF ChIP-seq data as 
input, and the process of DconnLoop is shown in Fig. 1. In this study, we used 10 kb res-
olution bins to construct the input sub-matrices. The steps of DconnLoop are as follows: 
(1) Generating sub-matrices. For one bin-pair (one chromatin loop) in the Hi-C con-
tact matrix, DconnLoop constructs three sub-matrices based on Hi-C contact matrix, 
ATAC-seq data and CTCF ChIP-seq data. Meanwhile, DconnLoop sets filtering condi-
tions to select high-confidence sub-matrices. (2) Extracting Feature. DconnLoop uses 
the ResNet model, Directional Prior Extraction, Sub-path Direction Excitation Model, 

Fig. 1 The workflow of DconnLoop. A The input data includes Hi-C contact matrices, open chromatin data 
from ATAC-seq, CTCF ChIP-seq binding peak data. B Generate model input submatrix. C Extracting Feature. D 
Predicting candidate loop. E Clustering
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Fig. 1 continued
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and Interactive Feature-space Decoder for feature extraction and fusion of the input sub-
matrices. (3) Predicting candidate loop. DconnLoop adopts MLP model to score each 
chromatin loop, based on the features extracted by previous step, and then identifies 
the candidate loops. (4) Clustering. Due to experimental noise and sequencing technol-
ogy effects, it may lead to false positives or redundant positive candidate loops, cluster-
ing can be used to group adjacent candidate loops and identify the most representative 
loops. The detail of DcoonLoop is illustrated below.

Generating sub‑matrices

The input of DconnLoop includes Hi-C contact matrix, ATAC-seq data and CTCF 
ChIP-seq data. In Hi-C contact matrix HM, HM[i, j] refers to the interaction number 
between the i-th bin and j-th bin.

Given the nature of chromatin loops, which are predominantly found within a 2 MB 
range near the diagonal of the Hi-C contact matrix [3], DconnLoop limits its prediction 
scope to between 11 and 300 bins offset from the diagonal. To ensure the robustness 
of loop predictions and to minimize false positives, we applied a Poisson distribution 
model for significance testing on each interaction pair within this prediction range. In 
this process, calculating the expected value λi, j for each interaction pair is a critical step. 
The expected value λi, j reflects the expected interaction frequency between any two 
positions within a specified offset distance d =|i − j| in the contact matrix.

Specifically, for each offset d, we initially calculate the average value of the diagonal 
elements as the initial estimate of the expected value. This preliminary step allows us to 
capture the overall trend without being overly influenced by extreme values at specific 
positions. Subsequently, we adjust these expected values according to the corresponding 
weights, which are derived from the Knight-Ruiz (KR) normalization of the Hi-C contact 
matrix. These weights (w[i] and w[j]) represent correction factors for bins i and j respec-
tively, which are computed to ensure that the sum of contacts in each row and column of 

Fig. 1 continued
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the matrix are balanced, thus correcting for systemic biases such as sequencing depth and 
local coverage variability. The final expected value λi, j for each bin pair (i, j) is calculated 
using the following formula:

where λd represents the expected value at offset d, and w[i] and w[j] are the weights for 
positions i and j, respectively, derived through the KR normalization process. These 
weights ensure that biases introduced by non-uniform coverage across different bins are 
accounted for, providing a balanced and unbiased estimation of chromatin interactions.

Finally, using this adjusted expected value, we can calculate the p-value for each inter-
action pair:

Here, pi, j represents the probability that, under the condition where the parameter is 
λi, j, the random variable X is greater than or equal to the observed interaction count 
HM[i, j]. We consider interaction pairs with p-values less than 0.01 as statistically signifi-
cant and retain them for further analysis.

Next, for each significant interaction pair (i, j) filtered by p-value, a 23 × 23 Hi-C sub-
matrix was generated by extending 11 bins in all directions—up, down, left, and right—
from the center bini, j within the Hi-C contact matrix, as shown in Fig. 1B. To ensure the 
generation of valid submatrices HMsub in the Hi-C contact matrix HM, we implemented 
stringent screening conditions. These conditions include: Boundary Check (The selected 
window must remain entirely within the bounds of the Hi-C contact matrix HM, ensur-
ing that the submatrix does not exceed the matrix boundaries and that no out-of-bounds 
interactions are included. This is achieved by filtering out interaction pairs at the edges 
of the matrix, where the full 23 × 23 window cannot be generated), Non-zero Element 
Proportion (To avoid processing matrices with excessive noise or background values, 
we excluded submatrices with a low proportion of non-zero values. Specifically, subma-
trices were filtered if the number of non-zero elements was less than 10% of the total 
number of elements in the window. This ensures that the submatrix contains a meaning-
ful amount of interaction data rather than sparse or insignificant values), Center Signal 
Significance (We further ensured that the signal at the center of the window was sig-
nificantly higher than the surrounding background to exclude potential low-quality or 
noise-dominated data. This was done by comparing the center value of the submatrix 
with the mean value of the surrounding area. If the ratio of the center value to the mean 
of the surrounding area was less than 0.1, the submatrix was excluded. This threshold 
helps ensure that only submatrices with biologically relevant signals are retained, and 
noise-dominated submatrices are discarded).

For the final retained submatrices, we performed normalization using the expected 
values λd calculated based on the diagonal offsets within the genomic regions in the 
matrix.

�i,j = �d ×
1

w[i]× w[j]

pi,j = P(X ≥ HM[i, j]|�i,j)

HMnorm[i, j] =
HM[i, j]

�d
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For the submatrix HMsub, we produce two other submatrices AMsub and CMsub 
based on ATAC-seq data and ChIP-seq data, as shown in Fig.  1B. The specific steps 
are as follows(See Supplementary Figure  S1 for more details). (1) Determining the 
Range and Extracting Signals. The center coordinates (i, j) used to generate HMsub are 
mapped to the corresponding left locus i and right locus j in the ATAC-seq and ChIP-
seq data, respectively. The signal values within a window of width 11 around these loci 
are extracted at a resolution of 10 kb. (2) The extracted signals from the ATAC-seq and 
ChIP-seq data are segmented into 23 parts, each representing a 10 kb region. (3) Bilat-
eral Filtering and Weight Assignment. After segmentation, a bilateral filter is applied to 
each segment to assign weights, balancing smoothing with the preservation of signal 
edges. First, a smoothed version of each segment is computed using a Gaussian filter to 
provide a baseline and mitigate high-frequency noise. The difference between the orig-
inal signal and the smoothed values is then calculated, indicating local variations and 
significant changes. This difference is subsequently filtered again with another Gauss-
ian filter to refine the weights, which emphasize significant changes while reducing the 
influence of less informative data points. These refined weights are used to compute a 
weighted average for each segment, resulting in a single representative value. Conse-
quently, each extracted region is converted into a 23-dimensional vector, with each ele-
ment representing the weighted average of a segment, effectively capturing the relevant 
signal characteristics. (4) Transposing and Dot Product to Generate Submatrix. Once 
the 23-dimensional vectors for both the left and right sites (i and j) are obtained, we use 
a transposed dot product operation to generate the final submatrices, AMsub and CMsub. 
The dot product operation results in a 23 × 23 matrix, where each element represents the 
interaction between segments from the left and right loci.

Extracting features

DconnLoop uses the ResNet model, Directional Prior Extraction, Sub-path Direction 
Excitation Model, and Interactive Feature-space Decoder for feature extraction and 
fusion of the input multi-source data, as shown in Fig. 1C. In the model, the Directional 
Prior Extraction module extracts directionality information by examining the connectiv-
ity of each feature element with its eight neighboring elements. This generates a feature 
mask vector containing 8 channels, where each channel represents the connectivity of 
the element in a specific direction. This connectivity information helps the model deter-
mine which elements have more significant associations, potentially indicating physical 
chromatin loop contacts. Subsequently, the Sub-path Direction Excitation (SDE) mod-
ule further processes these directionality features through a multi-path feature process-
ing mechanism, which includes the Position Attention Module (PAM) and the Channel 
Attention Module (CAM). The Position Attention Module captures spatial dependen-
cies, while the Channel Attention Module emphasizes the directional connectivity fea-
tures. This mechanism allows the input feature map to highlight significant regions 
within the feature matrix that may represent chromatin loop areas. This approach 
effectively utilizes directional connectivity to capture significant features of chromatin 
loop regions, enhancing the model’s accuracy in predicting chromatin loop locations. 
By using directional relationships and attention mechanisms, the model can pinpoint 
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prominent areas within the feature map, facilitating the identification of potential chro-
matin loops.

(1) ResNet module. For the input sub-matrices HMsub, AMsub and CMsub, ResNet [40] 
is used as the backbone network to efficiently represent the input features by lever-
aging the advantages of residual learning. Initially, the input feature maps undergo 
initial convolution and pooling. Then, three residual layers are used, employing 3, 4, 
and 5 residual blocks, respectively, to progressively deepen the network and extract 
and accumulate feature information at different spatial scales and depths.

 This formula demonstrates the relationship between the input and output feature 
maps at each layer within the ResNet network. Specifically, xi refers to the input 
feature map at the i-th layer. The residual mapping, F(xi), indicates the transforma-
tion applied to the input xi after it passes through the residual block. Finally, the 
output feature map  xi+1 at the i + 1-th layer is derived by summing the input feature 
map and the residual mapping.

(2)  Directional prior module. The deepest feature maps extracted by the network are 
subjected to directionality prior extraction and re-encoding, aimed at capturing the 
directional features inherent in the data [41]. As shown in Fig. 1C. For each element 
of the matrix, the connectivity with its eight surrounding neighbors (including the 
top, bottom, left, right, and four diagonal directions) is checked. The connectivity 
status in each direction is encoded and stored in the corresponding channel. The 
final connection mask transforms each element into a vector containing 8 chan-
nels, with each channel corresponding to the connectivity status of one neighbor-
ing direction.

 Next, we upsample the extracted directional information Xprior to match the input 
size and re-encode it using a 1 × 1 convolution kernel W1. Subsequently, global aver-
age pooling is applied to compress the spatial information, followed by a convolu-
tion kernel W2 to transform it into a feature map with the same number of channels 
as the original latent feature e4.

where H and W are the height and the width of a feature map, W 1 ∈ RCe4×Ck , 
W 2 ∈ RCe4×Ce4 ,  Ck is the channel of Xprior, and δ is the ReLu activation, X̃ repre-
sents the re-encoded features, vprior represents the directional prior.

(3) Sub-path Direction Excitation module (SDE). The SDE module divides the input 
latent features e4 and directional prior vprior into eight parts using channel slicing. 

xi+1 = F(xi) = xi

X̃ = W1Xprior

GAP(X) =
1

H ×W

H
∑

i=1

W
∑

j=1

X(i, j)

vprior = δ(W 2GAP(X̃))
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Each part is processed using a multi-path feature processing mechanism (DANet-
Head), which includes a Position Attention Module (PAM) and a Channel Atten-
tion Module (CAM). These mechanisms are utilized to extract significant spatial 
and channel features, particularly when dealing with data with complex spatial 
and directional relationships. The feature maps from each sub-path are then con-
catenated and fused with the original input feature map, thus achieving feature 
enhancement.

where the input feature map X ∈ RB×C×H×W; Q, K and V represent the feature rep-
resentations of Query, Key, and Value, respectively. The term γX denotes the resid-
ual connection, where γ is a learnable parameter used to adjust the relationship 
between the input features and the attention-enhanced features. The function σ(.) 
refers to the Softmax function, which is used to generate attention weights. The 
functions φ(.) and φ−1(.) represent the reshape and inverse reshape operations, 
respectively, Specifically:

(1) Reshape Operation φ(.): This operation is used to transform the input fea-
ture map X ∈ RB×C×H×W into a suitable shape for attention calculation. For 
the Position Attention Module (PAM), the feature map is reshaped into 
φ(Q) ∈ RB×H×W×C′, where C′ is the reduced number of channels obtained 
through convolution. In the Channel Attention Module (CAM), the reshape 
operation is used to flatten the spatial dimensions of the feature map, resulting 
in φ(X) ∈ RB×C×(H×W).

(2) Inverse Reshape Operation φ−1(.): After the attention mechanism has been 
applied, the output needs to be reshaped back to its original dimensions 
to ensure compatibility with subsequent layers in the network. The inverse 
reshape operation restores the feature map from the flattened representation to 
its original form, φ−1(.) ∈ RB×C×H×W

 The reshape and inverse reshape operations ensure that the feature map has the 
correct dimensions for both the attention calculation and subsequent integra-
tion with residual connections.

(4) Interactive Feature-space Decoder (IFD) module. The model’s feature representa-
tion capabilities are enhanced through mechanisms of multi-scale feature process-
ing and fusion. The IFD module consists of three Space Blocks and three Feature 
Block. Each Space Block uses a Context Encoder to extract global features from the 
outputs of the previous stage (r4, r3, r2) and a Content Encoder to extract local fea-
tures from the current level’s feature map (d4, d3, d2). The global and local features’ 
relevance is computed and integrated through weighted fusion.

PCM = φ−1(V · σ(φ(Q) · K ))+ γX

CAM = φ−1(σ (max(Q · K )−Q · K ) · φ(X))+ γX

ni = GAP(ri)
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In the space flow, ri represents the direction-enhanced feature map that is pro-
cessed within the Space Block. The Global Average Pooling (GAP) operation is 
applied to ri to generate the directional embedding ni. This embedding retains the 
directional information from the feature map. The resulting ni serves as a high-level 
directional representation, which will be used in subsequent steps to enhance the 
directional information within the main feature map.

The projection uses two 1 × 1 convolutional projectors, Wdi
∈ R

Cdi
×Cdi and 

Wni
∈ R

Cdi
×Cdi

/2 , which compress the input feature map di and directional embed-
ding ni into the same dimension.

The representations di
′ and ni

′ are the re-projected main feature map and direc-
tional embedding obtained from the previous step. Their similarity is computed 
through a dot product operation, and the result is passed through a Sigmoid acti-
vation function σ to produce a normalized attention map αnd. This attention map 
αnd emphasizes the direction-related information within the feature map while sup-
pressing irrelevant information, allowing the model to better focus on the relevant 
features, thereby improving the accuracy of classification or detection tasks.

The attention map αnd is applied to di
′ through a dot product operation, resulting 

in an enhanced directional feature map ri-1. The final ri-1 feature map embeds direc-
tional information and can be used for feature flow processing in the next layer.

For each Feature Block, features extracted at different depths from the backbone 
network (ResNet)—namely (e1, e2 and e3)—and the directionality-prior-enhanced 
features processed by the spatial blocks ( r3, r2 and r1) are fused at the same dimen-
sion through skip connections.

Predicting candidate loop

We integrate the outputs d1 to d3 after feature fusion from each feature block in 
the IFD module to obtain the final output, as shown in Fig. 1D. For the integrated 
feature outputs d1 to d3, we constructed a lightweight decoder (LWdecoder). This 
decoder generates multiple decoding paths by performing upsampling and convolu-
tion operations on input feature maps of different scales, and fuses the features from 
different levels. This allows the model to effectively integrate multi-scale informa-
tion, enhancing its ability to recognize chromatin loops.

Subsequently, the final fused feature map is passed through convolution, flatten-
ing, fully connected layers, and nonlinear activation, with a Sigmoid activation func-
tion applied to achieve probabilistic prediction for binary classification.

d′
i = Wdi

di, n′i = Wnini

αnd = σ
(

d′
i · n

′
i

)

ri−1 = αnd · d′
i
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Obtaining final loop based on clustering

To ensure the reliability and biological significance of these predicted interaction pairs 
(high confidence loops), further clustering analysis was conducted, as shown in Fig. 1E. 
Clustering analysis helps to integrate spatially adjacent or nearby interaction pairs, iden-
tifying regions with frequently occurring interactions. These regions are more likely to 
represent actual chromatin loops, thereby enhancing the confidence in the predictions.

Specifically, we integrated density estimation and density-based clustering algorithms 
to enhance the accuracy and robustness of clustering. Initially, we retained high-scoring 
candidate loops by applying a confidence score threshold. Next, we identified high-fre-
quency anchor points separately at both the left and right anchor regions. These high-
frequency anchor points were then combined as boundary points, and HDBSCAN 
(Hierarchical Density-Based Spatial Clustering of Applications with Noise) [42] was 
applied to locally cluster within these high-frequency combined regions. HDBSCAN 
extends the traditional DBSCAN algorithm, transforming it into a hierarchical cluster-
ing algorithm capable of extracting hierarchical clusters at different density levels. It 
provides more robust and efficient clustering results when handling complex and den-
sity-uneven datasets.

After executing local clustering, a certain amount of redundant predictions remained, 
necessitating further refinement. We constructed a KDTree to rapidly query the dis-
tances between the current loop at position i and other loops at positions j within its 
neighborhood. For each loop, the local density ρ was estimated based on the weighted 
sum of distances from all loops within its neighborhood, and the minimum distance 
δ =|i-j| to a neighboring loop with higher density was calculated.

Here, ρi represents the local density estimate of loop i; N( i) denotes the neighborhood 
set of loop i; R indicates the size of the neighborhood range; and IF stands for interaction 
frequency. This algorithm effectively selects loops that are both in close proximity and 
exhibit high interaction frequencies. By employing a data-driven approach to determine 
the thresholds for ρ and δ, the method can better adapt to the variations and characteris-
tics of different datasets.

Generating training data and training

In our preliminary dataset, CTCF mediates long-range chromatin interactions, playing 
a key role in the loop extrusion model and the formation of topologically associating 
domains (TADs). On the other hand, H3K27ac marks active enhancers and promoters, 
capturing potentially more dynamic and shorter-range promoter-enhancer interactions 
[27]. Therefore, we integrate CTCF ChIA-PET [43] and H3K27ac HiChIP [44] data to 
construct a non-redundant interaction set. This integration leverages the strengths of 
both experimental methods to provide a more comprehensive detection of chromatin 
interactions.

We mapped the interaction coordinate pairs from the integrated CTCF ChIA-PET and 
H3K27ac HiChIP data to the Hi-C contact matrix and apply the methods described in 

ρi =
∑

j∈N (i)

e−( δR )
2

· IF [j]
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the ‘Generating Submatrices’ subsection to generate the Hi-C submatrices HMsub, fol-
lowed by rigorous screening based on several strict criteria, including boundary checks 
to ensure that the submatrices did not exceed the Hi-C contact matrix boundaries, 
non-zero element proportion filtering to exclude sparse submatrices with insufficient 
interaction data, and ensuring center signal significance, where the central value of the 
submatrix was required to be significantly higher than the surrounding background 
values. After these filtering steps, we normalized the submatrices based on the relative 
diagonal offset of their center position within the Hi-C contact matrix, ultimately gener-
ating the final set of positive Hi-C submatrices for training.

Subsequently, we mapped the effective interaction coordinate pairs, used for gener-
ating positive Hi-C submatrices, to the ATAC-seq and ChIP-seq datasets. By applying 
the methods for generating submatrices AMsub and CMsub described in the "Generating 
Submatrices" section, such as determining the range and extracting signals, dividing the 
signal range into bins based on the resolution, performing bilateral filtering within each 
bin to collect weights for weighted averaging, and using transposing and dot products 
to generate submatrices, positive sample submatrices from the ATAC-seq and ChIP-seq 
datasets were also generated.

To generate negative samples interaction coordinates sites, we employed a random 
sampling strategy based on distance distribution and long-range interactions to capture 
different types of negative interactions. First, we applied Gaussian kernel density estima-
tion (KDE) to the pairwise distances between the midpoints of the positive sample coor-
dinates, modeling the probability density function (PDF) of these distances. We then 
sampled from this distribution to generate negative samples interaction coordinates 
sites. This step ensures that the negative samples interaction coordinates sites reflect 
similar genomic distance distributions as the positive samples interaction coordinates 
sites but lack their biological significance. Second, we randomly sampled long-range 
interactions, which are less likely to form actual loop structures due to their large dis-
tances. By combining these two components, we created a diverse set of negative sam-
ples interaction coordinates sites.

Given the limited number of positive interaction sites, we sampled negative interac-
tion sites at five times the number of positive interaction sites to maximize the utiliza-
tion of the available genomic data. Subsequently, we applied the methods outlined in 
the "Generating Submatrices" section to generate submatrices for Hi-C, ATAC-seq, and 
ChIP-seq datasets from these negative interaction sites. Specifically, we followed the 
same process used for the positive samples, ensuring that the negative samples were pro-
cessed in a manner consistent with the positive samples, enabling fair comparisons and 
maintaining biological relevance. The computational time required for generating these 
training datasets and the data volumes are detailed in Supplementary Tables S1 and S2, 
respectively.

To address the potential issue of overly distinguishable negative samples interaction, 
we adjusted the proportion of short-range and long-range interaction in the negative 
interaction set. We ensured that short-range interaction dominate the negative inter-
action set, with a higher proportion of short-range interaction than those found in the 
positive interaction set(See Supplementary Figure S2A). These short-range interaction 
are defined by anchor points that are closer in distance and near the Hi-C diagonal. This 
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adjustment makes the negative sample interaction set more similar to the positive inter-
action set in terms of distance distribution and biological significance.

Additionally, we conducted K-means clustering (See Supplementary Figure S2B) and 
regression model analyses (See Supplementary Figure  S2C, D) on the distance and 
interaction frequency features of both positive and negative samples interaction sites. 
Our results show that the negative samples interaction sites are now more difficult to 
distinguish from the positive samples interaction sites, demonstrating that the revised 
negative sample interaction sites generation strategy leads to a more balanced and bio-
logically meaningful dataset. Following the modification of our sampling strategy, we 
conducted comprehensive retraining and evaluation procedures on the adjusted dataset. 
The detailed results are presented in Supplementary Figures  S3-S6, including ablation 
studies with different input data combinations (Supplementary Figure S3), performance 
comparisons with logistic regression (Supplementary Figure  S4), cross-cell type and 
cross-species predictions (Supplementary Figure  S5), and comparative analyses with 
other state-of-the-art tools (Supplementary Figure S6).

In this study, we employed Leave-One-Out Cross-Validation (LOO-CV) for training 
and validating the model, as illustrated in Fig. 2. Specifically, we partitioned the dataset 
by alternately assigning 22 chromosomes to the training set and 1 chromosome to the 
test set in each iteration of cross-validation. Within each training set, we separated all 
positive and negative samples, and the negative samples were further split using five-
fold cross-validation (KFold) into five subsets (Negative1 to Negative5). For each fold, 
we combined all positive samples with one subset of negative samples, with 80% of the 
data used for training and 20% for validation. In each iteration, we trained five models 
(Model1 to Model5) and selected the best-performing model based on validation perfor-
mance ( by specify the metric, e.g., F1-score) as the final model for that fold. The selected 
best model was then applied to predict on the balanced test set to obtain the final results.

By combining all positive samples with different sets of negative samples across mul-
tiple iterations, this sample partitioning method maximizes the utilization of positive 
data, mitigating potential biases from the imbalance between positive and negative 

Fig. 2 Dataset partitioning and training process
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sample ratios [45]. Additionally, training the model on different subsets of negative sam-
ples in each iteration introduces greater variability, which improves its ability to gen-
eralize and distinguish between positive and negative samples, enhancing the model’s 
robustness and stability across different data distributions.

To prevent overfitting during training, we implemented early stopping and learning 
rate adjustment strategies. Early stopping was triggered if the validation loss failed to 
improve after five consecutive epochs, terminating the training process. Additionally, we 
applied the CosineAnnealingWarmRestarts [46] learning rate schedule, which cyclically 
adjusts the learning rate by gradually decreasing it within each cycle and resetting it at 
the beginning of the next cycle, helping the model escape local minima and achieve bet-
ter generalization. All training procedures were conducted on a Linux system with an 
RTX 4090 GPU.

The selection of hyperparameters was guided by a combination of empirical experi-
mentation and established best practices for training deep learning models. Specifically, 
the batch size was set to 256, after testing several values to strike a balance between 
memory usage and model performance. The initial learning rate was set to 0.001, based 
on preliminary trials, and the learning rate decay was modeled using a polynomial 
schedule to ensure smooth convergence. A momentum value of 0.9 and a weight decay 
of 0.0005 were chosen based on values commonly used in similar studies [33]. The num-
ber of training epochs was set to 30, with early stopping applied to prevent overfitting.

Results
Detail of dataset

All datasets utilized in this study are summarized in Supplementary Table S3 in the Sup-
plementary Materials. For all raw Hi-C data within the data file, we converted the format 
to cool and applied KR normalization using the ‘hicConvertFormat’ command from the 
HiCExplorer [23] tool. All experiments were conducted using contact matrices at a reso-
lution of 10 kb.

Ablation experiment analysis

To validate that the integration of multiple source data (Hi-C, ATAC-seq, and ChIP-
seq) significantly enhances model performance, we conducted ablation experiments 
comparing multi-source data, single-source data, and dual-source data. We specifically 
analyzed their performance on GM12878 cells by examining the Precision-Recall Curve 
(PRAUC), F1-score, and Matthews Correlation Coefficient (MCC).

The tests and comparative analyses were performed on chromosomes 15, 16, and 
17. As shown in Fig.  3A, the model achieved the best performance across all evalua-
tion metrics when utilizing the integrated multi-source data. Even when using only 
Hi-C data, our model maintained high performance, with PRAUC and F1-score both 
exceeding 97% and 93%, respectively. As depicted in Fig.  3B, the overall performance 
of the curve slightly decreased, particularly in regions with high recall rates, indicating 
that a single data type might not capture the full range of feature information. When 
using dual-source data combinations, as shown in Figs. 3C and 3D, the model’s perfor-
mance was intermediate between the results obtained from using all data and single-
source data, suggesting that two data types can complement each other but are still not 
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as comprehensive as the full dataset. Additionally, the combination of ChIP-seq and 
Hi-C data exhibited performance close to that of the full dataset. This is because ChIP-
seq data identifies transcription factor binding sites on the genome, and the CTCF tran-
scription factor is considered a key regulator in chromatin loop structures. This suggests 
that features derived from CTCF ChIP-seq data play a crucial role in constructing chro-
matin loops, consistent with previous findings [47, 48].

Comparison of model performance

To evaluate the performance of the DconnLoop model, we compared it with existing 
deep learning methods, DLoopCaller, and machine learning methods, Peakachu, on 
GM12878 cells. In Table 1, we used the original same input data and compared the mod-
els under their respective standard input configurations: DconnLoop utilized multi-
source data inputs comprising three data types, DLoopCaller employed the specified 
dual data combination input, and Peakachu utilized the specified Hi-C data input, using 
only MCC (Matthews Correlation Coefficient) as the evaluation metric. From the test 
results, the DconnLoop model demonstrated significant superiority across all evaluation 
metrics, particularly in terms of higher F1 score, PRAUC (Precision-Recall Area Under 
Curve), and MCC. This advantage may be attributed to DconnLoop’s ability to integrate 
multi-source data in feature extraction and fusion, capturing and understanding the 
complexity of chromatin interactions more comprehensively. In contrast, DLoopCaller 
and Peakachu may have certain limitations in data input diversity and the depth of fea-
ture extraction.

Fig. 3 Ablation experiments using multi-source data versus single Hi-C data and dual data combinations. A 
Model performance with all source data. B Model performance using only Hi-C data. C Model performance 
using a combination of Hi-C data and ATAC-seq data. D Model performance using a combination of Hi-C data 
and ChIP-seq data
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Subsequently, we further compared the three models using only Hi-C data as 
input, as shown in Table  2. Even under the condition of a single Hi-C data input, 
the DconnLoop model still outperformed the other two methods, demonstrating its 
strong generalization ability and robustness in handling single data types. This fur-
ther validates the broad applicability and superior performance of the DconnLoop 
model under different data combinations and input conditions.

To ensure fair comparison and validate our method’s superiority, we conducted 
additional experiments using unified filtering criteria (as described in Generating 
Sub-matrices section for submatrix sample filtering) across all supervised learning 
methods. We applied our filtering standards, which consider biological factors such 
as Hi-C matrix boundaries, signal-to-noise ratios, and known distance constraints 
in chromatin loop formation, to generate a standardized dataset. Using this unified 
dataset, we compared DconnLoop with Peakachu and DLoopCaller (detailed results 
in Supplementary Figures S10).

For unsupervised methods (Mustache and Chromosight), which operate directly 
on Hi-C contact matrices without requiring training data, we evaluated their pre-
dictions through comprehensive biological feature analyses, including APA scores, 
CTCF binding site enrichment, and experimental validation support.

Table 1 Model performance using each tool’s respective input specifications

Chromosome Method PRAUC F1 Score MCC

Chr 15 DconnLoop 0.996 0.975 0.949
DLoopCaller 0.932 0.911 0.838

Peakachu 0.966 0.905 0.705

Chr 16 DconnLoop 0.995 0.965 0.929
DLoopCaller 0.921 0.876 0.790

Peakachu 0.966 0.905 0.706

Chr 17 DconnLoop 0.996 0.968 0.937
DLoopCaller 0.932 0.921 0.848

Peakachu 0.966 0.905 0.707

Table 2 Model performance using only Hi-C data as input

Chromosome Method PRAUC F1 Score MCC

Chr 15 DconnLoop 0.982 0.932 0.868
DLoopCaller 0.925 0.889 0.807

Peakachu 0.966 0.905 0.705

Chr 16 DconnLoop 0.978 0.942 0.883
DLoopCaller 0.924 0.887 0.804

Peakachu 0.966 0.905 0.706

Chr 17 DconnLoop 0.982 0.945 0.888
DLoopCaller 0.932 0.908 0.830

Peakachu 0.966 0.905 0.707
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Cross‑cell line and cross‑species predictive ability of the model

To evaluate whether a model trained on one cell type can be applied to other cell types, 
we utilized a model trained on human lymphoblastoid cell line GM12878 using CTCF 
ChIA-PET and H3K27ac HiChIP data to predict loops in human leukemia cells (K562), 
human embryonic stem cells (H1ESC), and mouse embryonic stem cells (MESC).

For the K562 cell dataset, we generated data using loops validated by CTCF ChIA-
PET and H3K27ac HiChIP experiments. The H3K27ac HiChIP data [44] was extracted 
from the Hi-C pipeline of filtered HiChIP sequencing reads using juicer_tools [3]. For 
the experimentally validated loops in H1ESC and MESC, we used CTCF ChIA-PET and 
SMC1 HiChIP, respectively.

As shown in Figs. 4A, B, and C, our model demonstrated high Precision-Recall Curve 
performance across different cell and species types. The consistent prediction perfor-
mance in different human cell types (H1ESC and K562) indicates that a model trained 
on one human cell type can generalize well to other human cell types. Although there 
was a slight decline in performance in mouse embryonic stem cells (MESC), the model 
still maintained high precision and recall, suggesting that while cross-species prediction 
poses greater challenges, models trained on human cell types still exhibit potential for 
application in mouse cells. This also highlights the differences between using control 
groups derived from ChIA-PET and HiChIP experimental techniques alone versus using 
them in combination.

Analysis of chromatin loop detection results

We conducted a comparative analysis of the detection results from all tools on chro-
mosomes 15, 16, and 17 in GM12878 cells. In the binary classification predictions by 
Peakachu, DLoopCaller, and DconnLoop, the probability values assigned to each pixel 
can serve as filtering criteria; setting a higher probability threshold results in fewer but 
higher quality loops. We standardized the settings using a probability threshold of 97%, 
which is the optimal threshold for Peakachu’s performance in GM12878 cells. For Mus-
tache and Chromosight, we used their default optimal P-value and Pearson parameter 
settings. In all subsequent experiments, we compared all prediction results across the 
three chromosomes.

Quantitative analysis

Different tools exhibit both commonalities and distinctions in predicting chromatin 
loops. As shown in Fig. 5A, we used a KD tree to query overlapping matching regions 
between each tool and others within a matching radius of one bin. The central region is 

Fig. 4 Cross-cell line and cross-species model testing. A Test evaluation on human K562 cells. B Test 
evaluation on human H1ESC cells. C Test evaluation on mouse MESC cells
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Fig. 5 Comparison of chromatin loop detection by DconnLoop, Peakachu, dloopcaller, Mustache, and 
Chromosight on GM12878 cells. A Venn diagram of loops predicted by different tools. B Number of loops 
supported by ChIA-PET, HiChIP, and Capture Hi-C experimental techniques among all detected results on 
chromosomes 15, 16, and 17. C Enrichment level of ChIP-seq peaks at CTCF binding sites. D Enrichment 
level of regulatory elements. E Aggregate peak analysis profiles for target (ChIA-PET and HiChIP identified) 
and annotated loops. F CTCF motif orientation of loops. G Local significance analysis of loops. H, I Distance 
distribution of loops. J Loop radius statistics. K, L Visualization comparison of detection results from different 
tools in small regions on chromosomes 15 and 16
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considered significant across all tools. DconnLoop displayed a larger number of over-
laps in multiple regions, indicating a high consistency with predictions from other tools. 
Additionally, each tool demonstrated unique predictive capabilities, reflecting the dis-
tinct focus and strengths of different methodologies in chromatin loop detection.

Enrichment experimental analysis We validated the reliability of the results from all 
tools by comparing them with target loops identified by various experimental techniques. 
In Fig. 5B, we combined and de-redundified target loops identified by CTCF ChIA-PET 
[43], H3K27ac HiChIP [44], SMC1 HiChIP [21], RAD21 ChIA-PET [49], and Promoter 
Capture Hi-C [50] based on resolution. Using multiple experimental datasets ensured 
broad coverage of various types of loops. By matching the prediction results with target 
loops using the RefHiC’s [28] experimental method, we found that DconnLoop exhibited 
the most support for target loops.

CTCF binding site analysis In chromatin interaction maps generated by techniques 
such as Hi-C, chromatin loops often manifest as peaks, where the loci of the peaks cor-
respond to the anchor points of the loops [3]. In Fig. 5C, we analyzed the peak enrich-
ment at chromatin loop anchors predicted by different tools near CTCF binding sites. 
All tools exhibited a significant increase in peak enrichment at anchor points, forming 

Fig. 5 continued
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sharp peaks, which indicates that all tools predicted numerous chromatin loop anchors 
at CTCF binding sites. DconnLoop demonstrated higher peak enrichment near CTCF 
binding sites, suggesting greater reliability in chromatin loop detection.

A key protein involved in the formation of chromatin loops is the CCCTC-binding 
factor (CTCF), a highly conserved zinc-finger DNA-binding protein. CTCF recognizes 
and binds to specific DNA sequences, with a consensus motif typically represented as 
5′-CCACNAGG TGG CAG-3′. This sequence is asymmetric and non-palindromic, 
meaning each CTCF binding site has a specific orientation or polarity along the DNA 
strand. When considering pairs of CTCF binding sites on the same chromosome, there 
are four possible orientation configurations: (1) both sites oriented in the same direc-
tion on one DNA strand, (2) both oriented in the same direction on the complementary 
strand, (3) oriented towards each other (convergent), and (4) oriented away from each 
other (divergent). Empirical studies have demonstrated that chromatin loops predomi-
nantly form between CTCF sites in a convergent orientation—that is, the binding motifs 
face each other [3].

In Fig.  5F, both Peakachu and DconnLoop performed well in detecting convergent 
CTCF motifs. However, in detecting tandem CTCF motifs, DconnLoop and Mustache 
had the highest and nearly equal proportions. Peakachu and DconnLoop had lower pro-
portions of anchors without CTCF motifs or with CTCF motifs only at one anchor, mir-
roring the trend observed with GILoop [30].

Regulatory element enrichment analysis The anchors of loops typically include a known 
promoter (annotated by ENCODE’s ChromHMM) and another known enhancer [51]. In 
Fig. 5D, DconnLoop identified the highest proportion of enhancer-promoter loop struc-
tures, while also having a relatively low proportion of anchors without regulatory ele-
ments. This indicates that DconnLoop effectively captures enhancer-promoter interac-
tions during chromatin loop detection.

Furthermore, the functional annotation analysis of predicted loop anchors (Supple-
mentary Figure S7) demonstrates that although the model was trained with CTCF ChIP-
seq and ATAC-seq data, it successfully captures diverse regulatory interactions. The IGV 
browser tracks [52] reveal enrichment of various functional elements at predicted loop 
anchors, including architectural proteins (CTCF, RAD21, and SMC3), active histone 
modifications (H3K27ac, H3K4me1, and H3K4me3), and repressive histone modifica-
tion (H3K27me3). This comprehensive functional enrichment at loop anchors further 
validates the reliability of our predictions and highlights DconnLoop’s ability to identify 
biologically meaningful chromatin interactions.

Aggregate peak analysis and distance distribution Aggregate Peak Analysis (APA) is a 
method used to evaluate and compare the overall enrichment of multiple peaks (e.g., 
chromatin loops) within chromatin structure. This is achieved by comparing the aggre-
gated matrix of the obtained peak set with the aggregated matrix after shifting the peak set 
towards the bottom left corner, thereby assessing the significance of the aggregated peaks 
[3]. The analysis window size and the distribution of anchor distances have a significant 
impact on the peak significance analysis. In the APA analysis shown in Fig. 5E, to accom-
modate the input specifications of Peakachu, we standardized the aggregation matrix size 
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to 11 × 11 and performed a significance comparison for predicted loops within the range 
of 100 kb-1 MB across different tools and target loops (a non-redundant merge of CTCF 
ChIA-PET and H3K27ac HiChIP). Notably, dloopcaller and DconnLoop exhibited higher 
significance for their aggregated peaks.

In APA analysis, apart from the window size, the distribution of anchor distances is a 
crucial influencing factor. As illustrated in Figs. 5H, I, and J (with Fig. 6J using the blob_
log method to calculate the loop radius within the local Hi-C contact matrix), dloop-
caller and DconnLoop demonstrated fewer short-range interaction loops (< 250  kb), 
whereas other tools and target loops predominantly consisted of short-range interac-
tion loops located near the diagonal. The Hi-C signals in the diagonal vicinity are often 
densely packed with significant background noise, making it challenging to distinguish 
peak significance within the local background when using larger aggregation matrices in 
APA analysis.

Therefore, in Fig.  5G, we analyzed only the 8 surrounding pixels around the loop 
neighborhood, evaluating the significance of the center region by assessing the intensity 
distribution of the central position and its surroundings. We conducted a comprehen-
sive statistical analysis for all tools and target loops. Peakachu and DconnLoop showed 
a higher frequency of maximum values in the central region, indicating that their pre-
dicted loops exhibit higher interaction frequencies at the center, aligning with the crite-
rion of loops as high-pixel points.

Hi‑C heat map analysis We visualized the loops predicted by different tools and the 
target loops in specific chromosomal regions of chromosomes 15 and 16, spanning 33M-
39M and 54M-64M, respectively (Figs. 5K and L). Peakachu showed a higher distribution 
near the diagonal, indicating its sensitivity to high-frequency interaction regions. Both 
dloopcaller and Chromosight also exhibited higher distributions near the diagonal but 
with some results scattered, potentially indicating some false detections. DconnLoop’s 
detection results were more concentrated and had a higher overlap with the target loops, 
suggesting higher detection accuracy. Mustache detected fewer loops, and the results 
were more dispersed, indicating relatively lower accuracy.

Performance under different sequencing depths To test the impact of different sequenc-
ing depths on DconnLoop performance, we employed the FAN-C [53] method to down-
sample the Hi-C contact matrices of GM12878 cells at 10 kb resolution. We filtered out 
low-coverage bins and restored the coverage to the original read count. Using Peakachu’s 
depth method, we counted the effective read pairs in both the original and downsam-
pled datasets. The original dataset contained approximately 2000 million (M) effective 
read pairs, while the downsampled datasets at depths of 90%, 70%, 50%, 20%, and 1.5% 
contained approximately 1800 M, 1400 M, 1000 M, 400 M, and 30 M effective read pairs, 
respectively.

We trained and tested the models on these downsampled datasets to evaluate their 
performance with reduced data volumes. As shown in Figs.  6A, D, G, J, and M, the 
models trained on datasets with different sequencing depths maintained robust per-
formance on chromosomes 15, 16, and 17, with PRAUC scores consistently above 98% 
and F1-scores above 91%. The downsampling operation involved random sampling of 
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read coverage within each bin across the chromosome, which could result in differences 
in data volume between chromosomes. This might lead to imbalanced training data, 
slightly affecting model performance. However, selecting an appropriate downsampling 
rate can reduce noise in the original data, thus enhancing the model’s robustness and 
generalizability.

Fig. 6 A, D, G, J, M Model performance on data with different sequencing depths. B, E, H, K, N Number of 
predicted loops matching experimental controls on data with different sequencing depths. C, F, I, L Peak 
content at predicted loop anchors on data with different sequencing depths. O Venn diagram of loops 
predicted by DconnLoop on data with different sequencing depths
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Next, we utilized different tools to predict chromatin loops on chromosomes 15, 16, 
and 17 across datasets with varying sequencing depths. Throughout this process, we 
consistently applied the parameters from the original data. Due to DloopCaller’s pre-
dictions in the downsampled data containing a substantial number of false positives, 
we only retained its high-confidence regions. As shown in Figs. 6B, E, H, K, and N, our 
method demonstrated higher robustness in predictions across the 90%, 70%, and 1.5% 
downsampled datasets. Notably, in the 1.5% downsampled dataset with only 30 million 
effective read pairs, we identified the most loops (625), which were highly consistent 
with experimentally validated loops. To assess the reliability of the predicted loops in the 
downsampled data, we conducted CTCF peak enrichment analysis at the loop anchors. 
Due to the low prediction counts (fewer than 100) by most other tools in the 1.5% down-
sampled dataset, the analysis was performed only on other downsampled datasets. As 
illustrated in Figs.  6C, F, I, and L, our method’s predicted loop anchors exhibited the 
highest CTCF peak enrichment ratios across different sequencing depths.

In Fig. 6O, we evaluated the overlap between the loops predicted by DconnLoop in the 
downsampled datasets and those predicted from the original dataset. The results indi-
cated that, for loops predicted at various sequencing depths, there was over 60% over-
lap with those predicted from the original dataset containing 2000 million effective read 
pairs. Therefore, even in low-coverage data, the detection of numerous loops does not 
introduce significant false positives. This demonstrates that DconnLoop maintains high 
robustness and reliability across different sequencing depths.

To further evaluate DconnLoop’s performance in real-world scenarios where mod-
els trained on high-depth data might need to predict loops in lower-depth datasets, we 
conducted additional cross-depth prediction experiments. We trained the model on the 
original GM12878 dataset and tested its performance on downsampled datasets from 
both GM12878 and K562 cells (Supplementary Figures S8 and S9). These cross-depth 
experiments further validated DconnLoop’s capability to maintain reliable predictions 
even when applied to datasets with substantially different sequencing depths, reinforc-
ing its practical utility in diverse research scenarios.

Discussion
In this study, we developed the DconnLoop model by integrating Hi-C, open chroma-
tin, and histone modification data to construct chromatin loop features. The model uses 
multi-path feature processing and multi-scale integration to improve the accuracy of 
predicted loops. In the training process, we generated multiple negative samples from 
a limited set of positive samples and used proportionate training to optimize the binary 
classification model. For genome-wide predictions, we applied density estimation and 
density-based clustering to identify the most representative loops among significant 
candidates. These technical innovations facilitated the model’s strong performance 
across various cell types, species, and sequencing depths.

When compared with other existing tools, our detailed biological feature analysis—
including significance testing, anchor peak enrichment, motif pattern analysis, distance 
distribution characteristics, and regulatory element content evaluation—demonstrated 
that DconnLoop has certain advantages in predicting biologically relevant chromatin 
loops.
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Given the current limitations of functional genomics data, we aim to incorporate addi-
tional data features, such as DNA methylation and RNA expression from transcriptomics. 
These additional data sources will provide more comprehensive insights into the formation 
and function of chromatin loops. For instance, DNA methylation patterns can reveal the 
activity status of gene regulatory regions, while RNA-seq technology can offer a complete 
gene expression profile, aiding in the understanding of gene expression under different bio-
logical conditions. By integrating these data features, we aim to more accurately identify 
and interpret the biological functions and regulatory mechanisms of chromatin loops.

Conclusion
The DconnLoop model presents a novel approach for constructing and predicting chroma-
tin loops by integrating multi-source genomic data. Our results indicate that the model per-
forms consistently well across various conditions, and it shows advantages in key biological 
feature analyses compared to other existing tools.

Moving forward, we aim to enhance the model by integrating additional data types, 
including DNA methylation and transcriptomics, to further improve prediction accuracy 
and biological interpretability. These data sources will enable us to gain deeper insights into 
the regulatory mechanisms underlying chromatin loop formation, offering a more compre-
hensive understanding of their roles in gene regulation.
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