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Abstract 

Background: Microorganisms are found in almost every environment, including soil, 
water, air and inside other organisms, such as animals and plants. While some micro-
organisms cause diseases, most of them help in biological processes such as decom-
position, fermentation and nutrient cycling. Much research has been conducted 
on the study of microbial communities in various environments and how their inter-
actions and relationships can provide insight into various diseases. Co-occurrence 
network inference algorithms help us understand the complex associations of micro-
organisms, especially bacteria. Existing network inference algorithms employ tech-
niques such as correlation, regularized linear regression, and conditional dependence, 
which have different hyper-parameters that determine the sparsity of the network. 
These complex microbial communities form intricate ecological networks that are fun-
damental to ecosystem functioning and host health. Understanding these networks 
is crucial for developing targeted interventions in both environmental and clinical 
settings. The emergence of high-throughput sequencing technologies has generated 
unprecedented amounts of microbiome data, necessitating robust computational 
methods for network inference and validation.

Results: Previous methods for evaluating the quality of the inferred network include 
using external data, and network consistency across sub-samples, both of which have 
several drawbacks that limit their applicability in real microbiome composition data 
sets. We propose a novel cross-validation method to evaluate co-occurrence network 
inference algorithms, and new methods for applying existing algorithms to predict 
on test data. Our method demonstrates superior performance in handling composi-
tional data and addressing the challenges of high dimensionality and sparsity inherent 
in real microbiome datasets. The proposed framework also provides robust estimates 
of network stability.

Conclusions: Our empirical study shows that the proposed cross-validation method 
is useful for hyper-parameter selection (training) and comparing the quality of inferred 
networks between different algorithms (testing). This advancement represents 
a significant step forward in microbiome network analysis, providing researchers 
with a reliable tool for understanding complex microbial interactions. The method’s 
applicability extends beyond microbiome studies to other fields where network 
inference from high-dimensional compositional data is crucial, such as gene regula-
tory networks and ecological food webs. Our framework establishes a new standard 
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for validation in network inference, potentially accelerating discoveries in microbial 
ecology and human health.

Keywords: Co-occurrence network inference, Machine learning, Cross-Validation, 
LASSO, Microbiome Analysis, Network Validation, Compositional Data, High-
dimensional Statistics, Ecological Networks

Background
Microorganisms form complex ecological interactions such as mutualism, parasitism/
predation, competition, commensalism and amensalism  [1]. The human body hosts 
complex microbial communities consisting of bacteria, protozoa, archaea, viruses, and 
fungi. The human intestine alone has trillions of bacteria (microbiota), that have a sym-
biotic relationship with the host. The main function of the microbiota is to protect the 
intestine against colonization by harmful microorganisms like pathogens through mech-
anisms, such as competition for nutrients and modulation of host immune responses. 
Studying the interaction of the microbiota with pathogens and the host can offer new 
insights into disease pathogenesis and potential treatments  [2]. Over the past several 
years, the importance of the microbiome to human health and disease has become 
increasingly recognized. The trillions of microbes can protect us from colonization by 
pathogens, promote immunoregulation and tolerance by our own immune systems, and 
digest many of the foods that we ourselves cannot [3]. However, they can also contribute 
to disease, if their balance is disrupted by antibiotics, immune dysregulation, or other 
disturbances. The focus of this field has largely been on the bacterial members of the 
microbiome, since they make up the largest proportion of microbiota [4]. The bacteria 
exist alongside a diversity of organisms which can interact with each other and the host 
to impact health [5]. Therefore, understanding the ecological interactions that occur in 
microbial communities is very crucial in maintaining a well-functioning ecosystem [6]. 
To understand the interactions of microbial communities, it is beneficial to construct 
ecological networks that depict their positive and negative associations [7]. These net-
works, known as co-occurrence networks, have become an essential tool in microbial 
ecology and biomedical research [8]. Co-occurrence networks are graphical representa-
tions where nodes represent microbial taxa, and edges represent significant associations 
between taxa  [9]. These associations can be positive (indicating potential cooperation 
or similar environmental preferences) or negative (suggesting competition or antago-
nism) [6]. Co-occurrence networks help researchers visualize and understand complex 
microbial ecosystems, revealing key players and their relationships  [10]. In medical 
microbiology, these networks can highlight differences between healthy and diseased 
states, potentially identifying microbial signatures of various conditions  [8]. Ecologists 
use co-occurrence networks to study how microbial communities respond to environ-
mental changes, crucial for understanding climate change impacts [11]. In soil and plant 
microbiome studies, these networks help identify beneficial microbial associations that 
could improve crop yields [12]. The field of microbial co-occurrence networks has been 
significantly advanced by the contributions of numerous researchers and institutions. 
Jed Fuhrman and colleagues at the University of Southern California have been pioneers 
in applying network analysis to marine microbial ecology. Their work has been instru-
mental in revealing complex interactions among marine microbes and their responses to 
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environmental changes [13]. In the field of human microbiome research, Rob Knight and 
his team at the University of California, San Diego have made substantial contributions. 
Their application of network analysis to human microbiome studies has revealed intri-
cate relationships between different microbial taxa and their associations with human 
health and disease [14]. This work has been crucial in advancing our understanding of 
how microbial communities influence human physiology and pathology. Janet Jansson’s 
group at the Pacific Northwest National Laboratory has been at the forefront of apply-
ing co-occurrence networks to soil microbiomes. Their research has elucidated how soil 
microbial communities respond to various environmental factors, including climate 
change and agricultural practices  [15]. These studies have important implications for 
sustainable agriculture and ecosystem management in the face of global environmental 
changes. Numerous algorithms exist for inferring these networks, each with their own 
set of hyper-parameters used to determine the level of sparsity (number of edges) in a 
network. The choice of algorithm and the tuning of these parameters can significantly 
impact the resulting network structure and, consequently, the biological interpreta-
tions drawn from it. Several comprehensive reviews have examined different aspects of 
microbial network inference. For instance, Kurtz et al. (2023) [16] conducted a system-
atic evaluation of network inference methods from amplicon data, providing valuable 
insights into the strengths and limitations of various approaches. Similarly, Zhang and 
Sun (2024) [17] reviewed current modeling techniques and tools for studying microbial 
interactions, while Liu et al. (2021) [18] presented a mini-review focusing specifically on 
network analysis methods for microbial communities. These studies collectively high-
light the evolving nature of the field and the importance of choosing appropriate meth-
ods for specific research contexts.

Microbiome composition data sets

There have been some challenges in obtaining microbiome abundance in different envi-
ronments [19]. High-throughput Sequencing is used to sequence large amounts of DNA 
fragments at relatively low cost [20]. This involves amplifying a particular region of the 
bacterial genome through Polymerase Chain Reaction (PCR) and subsequently sequenc-
ing the produced amplicons. This region represents the 16S rRNA gene in bacteria, 
extensively used as indicators for microbial classification and identification. The pro-
cessed sequences are classified into Operational Taxonomic Units (OTU) with the aid of 
an advanced software that compares the sequences to a reference database such as the 
Ribosomal Database Project [21] and the Green Genes Database [22]. Table 1 presents 
some real microbiome composition data from public sources. Each Operational Taxo-
nomic Unit (OTU) data describes the taxonomic composition of different samples from 
various environments. The percentage of zero entries in the data is displayed in the spar-
sity column. In Fig. 1, the microbiome composition data set is represented by a matrix 
N × D of counts (abundance) of bacteria, where each column represents a different type 
of bacteria (taxon) and each row represents a different sample.

Categorization of previous algorithms

Many algorithms have been proposed to infer co-occurrence networks from real micro-
biome data sets. In Table 2, we group previous network inference algorithms into four 
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categories: Pearson correlation (Pearson), Spearman correlation (Spearman), Least 
Absolute Shrinkage and Selection Operator (LASSO), and Gaussian Graphical Model 
(GGM).

For example, SparCC [29] estimates the Pearson correlations of log-transformed abun-
dance data and uses an arbitrary threshold to limit the network, whereas MENAP [30] 
uses Random Matrix Theory to determine the correlation threshold of the standardized 
relative abundance data. MANIEA  [31], improve the basic co-occurrence methods by 
incorporating environmental adaptation factors directly into the model.

Table 1 Publicly available microbiome composition datasets

Data Algorithm Samples Taxa Sparsity (%)

glne0 07 mLDM [23] 490 338 58.88

Baxter_ CRC mLDM [23] 490 117 27.78

amgut2 SPIEC_EASI [24] 296 138 34.60

amgut1 SPIEC_EASI [24] 289 127 30.40

enter otype phyloseq [25] 280 553 67.62

MixMP LN_ real_ data MixMPLN [26] 195 129 69.82

crohns MDiNE [27] 100 5 1.00

iOral dat COZINE [28] 86 63 43.10

soilr ep phyloseq [25] 56 16825 69.82

hmp21 6S SPIEC_EASI [24] 47 45 12.67

hmp2p rot SPIEC_EASI [24] 47 43 14.05

esoph agus phyloseq [25] 58 3 43.10

Fig. 1 A Proposed cross-validation for evaluating network inference algorithms. B Learned regression model. 
C Co-occurrence network: Nodes represent distinct taxa/bacteria and edges represent positive or negative 
associations

Table 2 Categories of microbial network inference algorithms

Category Notable methods

Pearson SparCC (2012) [29], MENAP (2012) [30], CoNet (2016) [41], MANIEA (2021) [31]

Spearman MENAP (2012) [30], CoNet (2016) [41]

LASSO CCLasso (2015) [32], REBACCA (2015) [33], SPIEC-EASI (2015) [24], MAGMA (2019) [34]

GGM REBACCA (2015) [33], SPIEC-EASI (2015) [24], gCoda (2017) [42], mLDM (2020) [23], 
MDiNE (2019) [27], HARMONIES (2020) [43], COZINE (2020) [28], PLNmodel 
(2021) [44], Multinomial VA (2021) [45], SPLANG (2024) [36], MicroNet-MIMRF 
(2024) [36]

https://github.com/tinglab/mLDM/blob/master/CRC/glne007.csv
https://github.com/tinglab/mLDM/blob/master/CRC/Baxter_CRC.RData
https://github.com/zdk123/SpiecEasi/blob/master/data/amgut2.filt.phy.rda
https://github.com/zdk123/SpiecEasi/blob/master/data/amgut1.filt.rda
https://github.com/joey711/phyloseq/blob/master/data/enterotype.RData
https://github.com/sahatava/MixMPLN/blob/master/data/real_data.csv
https://github.com/kevinmcgregor/mdine/blob/master/data/crohns.RData
https://github.com/MinJinHa/COZINE/blob/master/data/iOraldat.rda
https://github.com/joey711/phyloseq/blob/master/data/soilrep.RData
https://github.com/zdk123/SpiecEasi/blob/master/data/hmp2.rda
https://github.com/zdk123/SpiecEasi/blob/master/data/hmp2.rda
https://github.com/joey711/phyloseq/blob/master/data/esophagus.RData
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Both CCLasso  [32] and REBACCA [33] employ LASSO to infer correlations among 
microbes using log-ratio transformed relative abundance data. MAGMA [34] employs 
L1 penalty to enforce sparsity in the estimation of the precision matrix.

The field has seen substantial development in GGM-based approaches. Early methods 
like mLDM [23] and SPIEC-EASI [24] introduced basic graphical models, with mLDM 
focusing on microbe-environment associations and SPIEC-EASI on conditional depend-
encies between microbes. MicroNet-MIMRF  [36] uses mixed integer optimization for 
network inference whereas SPLANG [36] further extends these approaches by incorpo-
rating gene regulatory information into the network inference process.

There are other algorithms, such as Mutual Information (MI), which can capture both 
linear and nonlinear associations between microbial species. Unlike traditional cor-
relation metrics, which are limited to linear relationships, MI is capable of detecting a 
wider range of dependencies by measuring the amount of shared information between 
two variables. This makes it particularly useful in microbiome studies, where interac-
tions between species are often complex and may not follow simple linear patterns. 
Techniques such as ARACNE [37] and CoNet [38] utilize MI to construct microbial co-
occurrence networks. These tools often employ additional steps, like the Data Process-
ing Inequality (DPI), to filter out indirect associations, reducing the likelihood of false 
positives and improving the accuracy of the inferred networks  [39]. The implementa-
tion of MI is straightforward as the scikit-learn [40] library provides efficient functions 
for its calculation. However, for our cross-validation approach, the conditional expecta-
tion required is mathematically complex and not easily defined. This complexity arises 
because the calculation of conditional expectation in the context of MI often involves 
estimating joint distributions of multiple variables, which becomes difficult to apply, 
particularly in high-dimensional microbiome datasets.

Previous sparsity hyper‑parameter training methods

Hyper-parameters are configuration variables that are external to the model and whose 
values cannot be estimated from the data; they are often set before the learning process 
begins and significantly influence the model’s performance. Each of the algorithms have 
their own set of hyper-parameters used to determine the level of sparsity (number of 
edges) in a co-occurrence network. For instance, in the Pearson and Spearman corre-
lation inference algorithms, there is a threshold on the correlation coefficient which is 
typically chosen arbitrarily or using prior knowledge  [29, 30, 41]; edges with absolute 
coefficient magnitude below the threshold are removed from the network. The LASSO 
uses the degree of L1 regularization, typically selected using cross-validation to deter-
mine the sparsity of the network  [32]. The GGM infers the conditional dependencies 
between taxa by estimating the sparsity pattern of the precision matrix using penalized 
maximum likelihood methods through cross-validation [24].

Previous evaluation criteria

Various evaluation criteria have been utilized to assess the performance of differ-
ent algorithms used for network inference. The most common approaches can be cat-
egorized into three main types: external data validation, network consistency analysis, 
and synthetic data evaluation. External data validation, used by early methods like 
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SparCC [29] and SPIEC-EASI [24], is based on the comparison of inferred networks with 
known biological interactions. However, this approach is limited by the scarcity of reli-
able ground-truth data and potential biases in external datasets. Network consistency 
analysis, exemplified by CCLasso [32], evaluates the stability of inferred networks across 
different subsamples. Although this approach helps assess reproducibility, it may favor 
overly sparse networks that show perfect consistency by inferring few or no edges. Our 
cross-validation framework addresses this limitation by focusing on prediction accuracy 
rather than mere consistency, ensuring that inferred relationships generalize meaning-
fully to new data. Recent methods have increasingly employed synthetic data evaluation. 
For instance, MANIEA [31] uses ROC curves on simulated networks, while MicroNet-
MIMRF  [36] employs edge recovery rates on synthetic data. SPLANG  [36] combines 
multiple metrics including F1 scores and modularity measures. While synthetic evalu-
ation offers controlled testing environments, it may not fully capture the complexity 
of real biological networks. Table  3 provides a comprehensive overview of evaluation 
approaches used by different algorithms, including their comparison methods and spe-
cific evaluation metrics. The diversity of evaluation criteria underscores the challenge of 
establishing standardized performance assessment in microbial network inference.

Summary of contributions
Table  4 summarizes the key contributions of our paper, which extend and enhance 

existing methodologies for inferring and evaluating microbial co-occurrence networks. 
The table is organized by algorithm type and distinguishes between cross-validation 
methods used for training and those proposed for testing. In the category of LASSO 
(Least Absolute Shrinkage and Selection Operator) algorithms, several existing meth-
ods have utilized cross-validation for training. CCLasso, introduced by Fang et al. [51], 
employs cross-validation to optimize the regularization parameter in their composi-
tional data analysis approach. Similarly, REBACCA [52] and SPIEC-EASI [53] use cross-
validation in their respective LASSO-based approaches to infer microbial associations. 
Our contribution in this category is the proposal of a novel cross-validation method 
for testing LASSO-based models, which addresses a gap in the existing methodologies 
and potentially improves the robustness of network inferences. For Gaussian Graphi-
cal Models (GGM), several algorithms have previously incorporated cross-validation in 
their training processes. The gCoda method, developed by Fang et al.  [54], uses cross-
validation to select optimal parameters for their graphical model. MDiNE  [55] and 
COZINE  [28] also employ cross-validation in their GGM-based approaches to micro-
bial network inference. Our contribution extends these methods by proposing a new 
approach for using cross-validation to test GGM-based models. In the context of corre-
lation-based methods (Pearson and Spearman), our paper introduces novel approaches 
for both training and testing using cross-validation. This represents a significant 
advancement over previous methods, which often relied on arbitrary thresholds or prior 
knowledge to determine significant correlations. By introducing cross-validation to 
both the training and testing phases of correlation-based network inference, we aim to 
enhance the reliability and reproducibility of these widely-used methods. In this paper, 
we present novel contributions that extend the existing research in this field. Firstly, we 
introduce new techniques for leveraging well-established algorithms such as Pearson/
Spearman correlation and Gaussian Graphical Model for prediction on held-out or test 
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Table 3 Existing evaluation methods

Algorithm Algorithms compared How they compare Evaluation type

SparCC(2012) SparCC, Pearson Confusion matrix detected 
in the Pearson network by 
treating the SparCC net-
work as the ground truth

External data (HMPOC 
dataset, build 1.0) [46]

REBACCA(2015) REBACCA, SparCC, 
BP, ReBoot

Consistency of positive 
and negative correlated 
taxonomic pairs identified 
independently from three 
data sets

External data (Mouse skin 
microbiota) [47]

SPIEC-EASI(2015) SPIEC-EASI, 
SparCC, CCREPE

Consistency of sub-
samples by measuring 
the Hamming distance 
between a reference 
network and inferred 
network

External data (American 
Gut data set) [48]

CCLasso(2015) CCLasso, SparCC Frobenius accuracy 
between the estimated 
correlation matrices and 
a reference correlation 
matrix from data using 
half samples

Sub-sample analysis

gCoda(2017) gCoda, SPIEC-EASI False positive count on 
shuffled OTU data

External data (Mouse Skin 
microbiome data) [47]

MAGMA(2019) MAGMA, SPIEC-
EASI, gCoda

Graph accuracy evaluation 
using precision-recall 
curves and network spar-
sity patterns

Synthetic data and TARA 
ocean data

HARMONIES(2020) HARMONIES, SPIEC-
EASI, CCLasso, 
Pearson

Accuracy of identifying 
true positive edges by 
comparing the estimated 
precision matrix with an 
arbitrarily chosen true one

External data

mLDM(2020) mLDM, SparCC, 
CCLasso

Power of association infer-
ence when compared to 
the reference association 
inference data [49]

External data (Tara Oceans 
Eukaryotic data)

COZINE(2020) COZINE, SPIEC-
EASI, Ising

The assortativity coef-
ficient [50] (The likelihood 
of taxa existing within 
the same branch of the 
taxonomic tree to be 
interconnected within co-
occurrence networks)

External data (Oral microbi-
ome data)

MANIEA(2021) MANIEA, SPIEC-
EASI, SparCC, 
REBACCA 

Network inference accu-
racy using ROC curves and 
environmental adaptation 
scores

Synthetic data and human 
gut microbiome

Multinomial 
VA(2021)

Multinomial VA, 
SPIEC-EASI, gCoda

Edge detection accuracy 
using precision matrices 
and stability selection

Synthetic data and Ameri-
can Gut Project

SPLANG(2024) SPLANG, SPIEC-
EASI, MANIEA

Network structure accu-
racy using F1 scores and 
modularity metrics

Synthetic data and gut 
microbiome

MicroNet-
MIMRF(2024)

MicroNet-MIMRF, 
SPIEC-EASI, gCoda

Edge recovery rates and 
false discovery control 
using mixed integer 
optimization

Synthetic and TARA ocean 
data
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data. Secondly, we propose the utilization of prediction error on test set in cross-val-
idation as a more widely applicable method for evaluating various algorithms on real 
microbiome data. Lastly, we propose training the optimum correlation threshold in 
correlation based algorithms with cross-validation as compared to previous methods 
that use prior knowledge or pre-determined correlation threshold. Although several 
new methods have been developed recently (MANIEA [31], SPLANG [36], MicroNet-
MIMRF [36]), none of these utilize cross-validation for testing, further highlighting the 
novelty and potential impact of our proposed testing methodology.

Methods
Preprocessing and normalization of dataset

Microbial data sets are very high-dimensional in nature because they have substantial 
number of taxa that can be present in a single sample [56]. Their sparse nature makes 
even conventional machine learning algorithms struggle since they assume that most 
features are non-zero  [57]. Hence, it is crucial to apply appropriate preprocessing and 
normalization technique to convert the data set to a suitable format before conducting 
any data analysis [58]. These are some of the notable methods for transforming sparse 
microbial data sets.

Standard scaling

Standard scaling normalizes each taxon column to have zero mean and unit variance for 
numerical stability. This can help to reduce the influence of outliers and scale differences 
among taxa. Let N be the sample size, x̄j be the mean of the jth taxa across all samples, sj 
be the standard deviation of the jth taxa across all samples and xij be the count of taxon j 
in sample i ∈ {1, . . . ,N } . The standard scaling transformation is given by:

Yeo‑Johnson power transformation

The Yeo-Johnson power transformation is a method for transforming numerical vari-
ables to approximate a normal distribution [59]. This transformation is inspired by the 
log transformation that has been used in previous studies [29, 32, 33], but it differs in the 
mathematical function that it applies depending on the sign of the count value. Moreo-
ver, it involves a power parameter that determines the extent of the transformation and 

xij =
xij − x̄j

sj

Table 4 Summary of contributions

Algorithm Cross‑validation for training Cross‑
validation for 
testing

LASSO CCLasso (2015) [32], REBACCA (2015) [33], 
SPIEC-EASI (2015) [24]

Proposed

GGM gCoda (2017) [42], MDiNE (2019) [27], COZ-
INE (2020) [28]

Proposed

Correlation (Pearson/Spearman) Proposed Proposed
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that is estimated from the data itself using the maximum likelihood method [59]. Let � 
be the power parameter, xij be the count data and y(�) be the transformed count data. 
The Yeo-Johnson transformation is given by:

Cross‑validation for evaluating co‑occurrence network inference algorithms

Cross-validation is a standard algorithm in machine learning used for selection, evalua-
tion and estimation of performance of models. It has been previously used in the context 
of microbiome for training co-occurrence network inference algorithms [32]. Our study 
introduces cross-validation as a novel criterion to test the performance of co-occurrence 
network inference algorithms on microbiome data. In Fig. 1A, we show how K = 3 fold 
cross-validation can be used in the context of microbiome data.

We used K = 3 folds because our small sample size limits the ability to split the data 
into larger training and testing sets, which could reduce model stability. Choosing K = 3 
also reduces the computational burden by minimizing the number of training iterations 
compared to larger K values. While larger K values generally provide more stable results 
by using more data for training, they also increase computation time [60]. The analysis 
is repeated D times, each time using a different taxon as the outcome variable and the 
remaining taxa as the predictor variables. We randomly split the data into 3 folds. One 
of the three folds is used as test set whilst the other two folds are used as the train set. 
We fit each algorithm on the train set, which is further split into subtrain and valida-
tion sets to learn the hyper-parameters of the model. We select the best model based 
on the validation score and fit it on the whole training set. We then evaluate it on the 
test set. We repeat this process 3 times and average the test errors to get the overall 
performance metric. Our Mean Squared Error calculations validate prediction accuracy 
on held-out abundance data, rather than validating the inferred interactions themselves 
against ground truth networks. Although successful prediction suggests that the model 
has captured meaningful relationships, direct validation of microbial interactions would 
require experimental verification, which is not always available.

We show a learned regression model in Fig. 1B from cross-validation which is used to 
infer the co-occurrence network in Fig. 1C. As shown in the network graph where D = 7 
taxa, there is an edge between two taxa only if the relationship between them is positive 
or negative.

Correlation based methods

Pearson correlation

Pearson correlation coefficient is the standard tool to infer a network through correla-
tion analysis among all pairs of OTU (Operational Taxonomic Unit) samples. It meas-
ures the strength and direction of the relationship between two variables. It ranges from 
−1 to 1, where −1 indicates a perfect negative linear relationships, 0 indicates no linear 
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relationship and +1 indicates a perfect positive relationship. In most literature [29, 30, 
41], there is an arbitrary or pre-determined threshold chosen to select the range of val-
ues which is regarded as proof of positive or negative association. For a pair (x1, x2) of 
standard scaled taxa that follow a bivariate normal distribution with Pearson correlation 
coefficient ρx1,x2 , marginal standard deviations σx1 and σx2 , the predicted value of x1 given 
x2 is given below.

This expression is used to compute a prediction for the test set given a trained model 
that was fit on a training set. The parameter, ρx1,x2 is learned from the training data.

Spearman correlation

Spearman correlation coefficient is another popular correlation method for micro-
bial network inference. It is often adopted as an alternative to the Pearson correlation 
coefficient when dealing with non-linear relationships between taxa. It is less sensitive 
and robust to outliers. Just as Pearson coefficient, the value of the Spearman coefficient 
ranges from −1 to +1 , with −1 indicating a perfect negative monotonic relationship, 0 
indicating no monotonic relationship, and +1 indicating a perfect positive monotonic 
relationship. Spearman coefficient is the Pearson coefficient of ranked data  [61]. We 
implemented the Spearman algorithm by converting the data into ranks adopting the 
Pearson Correlation algorithm to predict the ranks. For a pair (r(x1), r(x2)) of standard 
scaled taxa that follow a bivariate normal distribution with correlation coefficient ρx1,x2 , 
marginal standard deviations σr(x1) and σr(x2) , the predicted rank value, r(x1) given r(x2) 
is given below.

The model contains the parameters σr(X) , σr(Y ) and sx1,x2 , which are estimated from the 
training data. We used linear interpolation [62] to infer the actual predicted values from 
the predicted ranks. Linear interpolation is a technique widely adopted to estimate 
a value within a range of known values by calculating the proportionate relationship 
between the known values. Therefore, we utilize the actual values of the training data 
alongside their corresponding ranks to estimate the real values of the predicted ranks for 
the test data. Specifically, we use the known pairs of (value, rank) in the training data to 
form a linear relationship between values and their ranks. We then apply this relation-
ship to the predicted ranks to estimate the actual values.

Least absolute shrinkage and selection operator (LASSO)

The LASSO is a form of linear regression which uses L1 regularization technique and taxon 
selection to increase the accuracy of prediction [63]. L1 regularization adds a penalty which 
causes the regression coefficient of the less contributing taxon to shrink to zero or near 
zero. In this algorithm, the overall objective is to minimize the loss function with respect 
to the coefficients. Let X ∈ R

N×D be the compositional data matrix where each row rep-
resents a sample and each column represents a taxon, y ∈ R

n be the target taxon vector, 

(1)x1 = ρx1,x2
σx1

σx2
(x2)

(2)r(x1) = sx1,x2
σr(x1)

σr(x2)
(r(x2))
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w ∈ R
p be the coefficient vector, and β0 be the intercept term. The linear model can be 

defined as:

Then, the loss function of the LASSO regression model can be formulated as:

The first term is the residual sum of squares (RSS), which is the deviation of the pre-
dicted values from the actual values. The second term is the L1 penalty term that encour-
ages sparsity in the coefficient estimates. � is the regularization parameter that controls 
the amount of shrinkage. With cross-validation algorithm, optimum LASSO model is 
selected and the coefficient of this model is used for network inference [40]. Train set is 
split into subtrain set (used to learn regression coefficients) and validation set (used to 
learn the degree of L1 regularization, which controls sparsity / number of edges in co-
occurrence network).

Gaussian graphical model (GGM)

The Gaussian distribution is a continuous and symmetrical probability distribution that 
explains how the outcomes of a random variable are distributed. The shape of the Gaussian 
distribution is determined by its mean and standard deviation, which evaluates the location 
and spread of the distribution, respectively. Most observations cluster around the mean of 
the distribution [64]. The Probability Density Function (PDF) of a multivariate normal dis-
tribution is frequently employed in data analysis to model complex data sets that involve 
multiple variables [65]. Let D be the total number of taxa, x be a D-dimensional row/sample 
vector, � be a D × D covariance matrix, � be a D × D precision matrix comprised of ωij 
elements and xT denote the transpose of x . The multivariate normal distribution PDF is 
given below.

The predicted value of the first taxon ( x1 ) can be calculated by finding the conditional 
mean of the distribution. This is the value of x1 when f(x) is maximum. Therefore, we 
take the partial derivative of f(x) with respect to x1 and equate to zero. As demonstrated 
in the Gaussian Graphical Model Proof, we solve for the value of x1 , which leads us to 
the following equation which we use to compute predictions,

This is well known for the special case of D = 2 (See proof in Supplementary Informa-
tion), the conditional mean of a bivariate normal (1) under the assumption that data is 
standard scaled thus zero mean and unit variance. Our contribution here is to derive 
a formula for the general case, D > 2 (See proof in Supplementary Information). The 

(3)f (x) = β0 + xTw

L(β0,w) =
1

2n
||y − β0 − Xw||22 + �||w||1

f (x) =
1

√

(2π)D|�|
exp

(

−
1

2
x
T
�x

)

(4)x1 =
−1

2ω11





D
�

i=2

ωi1xi +

D
�

j=2

ω1jxj
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inverse covariance matrix (precision matrix) is computed from the train dataset in the 
GGM. The conditional independence structure among taxa is represented by the spar-
sity pattern of the precision matrix. This sparsity pattern can be estimated from data 
using various methods, such as maximum likelihood estimation or penalized likelihood 
methods. The Graphical Lasso (GLASSO) is used to estimate the precision matrix from 
high-dimensional data. In GLASSO, the penalty is applied to the elements of the pre-
cision matrix, resulting in a sparse estimate of the matrix. Given a train data matrix 
X ∈ R

N×D where N is the number of samples and D is the number of taxa, the goal is 
to estimate the precision matrix � that satisfies the following optimization problem. Let 
S = 1

NX⊤X be the sample covariance matrix, ‖�‖1 be the L1-norm penalty term to pro-
mote sparsity in the precision matrix, � be the regularization parameter that controls the 
strength of the penalty term. The precision matrix is given by:

The constraint � � 0 enforces the positive semi-definiteness of the precision matrix. 
The solution �̂ corresponds to the maximum likelihood estimate of the precision matrix 
under the sparsity constraint. The precision matrix is used to infer the network graph 
of the taxa based on their conditional dependencies. The presence or absence of an 
edge between taxa i and j in the graph is determined by the value of �̂ij in the precision 
matrix. An edge between taxa i and j exists if and only if �̂ij �= 0.

Microbial association network inference

Following the identification of the optimal model for each algorithm, pairwise posi-
tive and negative associations between taxa in the data sets are computed to infer the 
co-occurrence network. For the correlation-based algorithms, the correlation matrix is 
estimated by calculating the pairwise correlation coefficient for each taxon pair, and the 
network is constrained by the learned correlation threshold. In the case of the LASSO 
algorithm, we save the coefficients of the optimal model at each iteration of the taxa col-
umns, hence forming an association matrix. For the GGM, the GLASSO inferred preci-
sion matrix is used for the association matrix. We compute the mean of the upper and 
lower triangular matrices for each of the LASSO and the GGM, resulting in lower trian-
gular matrices for each algorithm. In the resultant lower triangular matrix of the asso-
ciation matrix, an edge is identified if its value is non-zero. A positive value indicates a 
positive association, while a negative value indicates a negative association. Edge prob-
abilities can be estimated by averaging the presence of an edge across the different folds, 
providing a measure of confidence for each inferred edge. Through the application of 
3-fold cross-validation analysis, three networks are inferred for each algorithm based on 
the fold IDs. The final network obtained is the median of the three networks inferred by 
the 3 folds. While different algorithms employ varying criteria for determining signifi-
cant interactions, our cross-validation framework provides a unified approach for evalu-
ating these criteria. The prediction error on the test set serves as a unified metric across 
all algorithms, allowing for objective comparison of different significance thresholds. 
This addresses a key challenge in the field where different methods use distinct criteria 
for edge detection. Our approach suggests that optimal thresholds can be determined 

�̂ = argmin
��0

(

tr(S�)− log det(�)+ ����1
)
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by minimizing prediction error, providing a data-driven way to identify significant 
interactions.

Results and discussions
In this study, we conducted a real microbiome composition data analysis on Amgut [24], 
crohns [27] and iOral [28] data sets because they are public and widely used when com-
paring previous algorithms. We wrote python code to implement the various algorithms. 
We specifically utilized the LassoCV and GraphicalLassoCV classes from scikit-learn 
package [40] to implement the LASSO algorithm and estimate the precision matrix for 
the GGM respectively.

Testing the prediction accuracy of different transformation methods

We used the Yeo-Johnson power transformation  [59] in combination with standard 
scaling, so that each column has zero mean and unit variance (for numerical stability). 
The Amgut2  [24] real microbiome dataset undergoes the Yeo-Johnson transformation 
and standard scaling before we conduct the cross-validation analysis with various algo-
rithms. Figure 2 shows the error on test set of the algorithms against the number of train 
samples. The results demonstrate that the Yeo-Johnson transformation substantially 
enhances the prediction accuracy on the test set relative to standard scaling only.

Training of correlation based methods

One of the most notable challenges is selecting the Pearson or Spearman’s rank correla-
tion coefficient threshold for the co-occurrence network inference. This should be done 
so as to limit the network to only edges whose magnitudes are greater than the thresh-
old. While most literature [29, 30, 41] often choose an arbitrary or pre-determined value 

Fig. 2 This figure evaluates the performance of Different algorithms on the Amgut2 real dataset under 
standard scaling only (left panel) and, Yeo-Johnson transformation and standard scaling (right panel). The 
results imply that just standard scaling alone (applied to the raw data set) yields lower accuracy than the 
combination of Yeo-Johnson and standard scaling for each of the algorithms compared
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as the correlation threshold, the choice of threshold can significantly impact the results 
and conclusions drawn from the analysis. Therefore, it is crucial to carefully consider 
and justify the choice of correlation threshold. In Figure 3, we leverage 3-fold cross-vali-
dation to choose the optimal values for the correlation coefficient threshold and � , which 
minimize the validation error when used for prediction. This figure illustrates how the 
test error and the number of edges vary with correlation threshold for the correlation 
based algorithms and log(�) of the LASSO model, applied to the Amgut2 data set [48]. 
We systematically varied these hyperparameters and monitored the resulting subtrain 
and validation errors. The adoption of log(�) , rather than � , enhances the interpretabil-
ity of the graph and mitigates potential distortion arising from extreme � values. The 
error curves reveal tendencies towards overfitting for small thresholds or log(�) values 
(leading to many edges) and underfitting for large thresholds or log(�) values (resulting 
in fewer edges). We selected the value of � corresponding to the minimum validation 
error, which yielded a network with 1585 edges. For the Pearson correlation coefficient, 
the optimal threshold was found to be 0.495, resulting in 785 edges, while for the Spear-
man correlation coefficient, the optimal threshold was 0.448, resulting in 1231 edges. 
These thresholds were chosen because they minimized the validation error, rendering 
correlation values smaller than these thresholds incapable of establishing edges in the 
co-occurrence network.

Impact of total sample size on test error

In Figure 4, we investigated how the test error varies with the number of total samples 
for the various algorithms, including the featureless/baseline method, where the pre-
dicted values were computed using the mean of the train data. We sub-sample each data 
set by randomly dividing it into a series of different sample sizes (10, 20, etc), before 
we run the cross-validation analysis on each sample size. The relationship between each 
pair of taxon columns is utilized for prediction, as shown in the equations 1 and 2 for 
Pearson and Spearman algorithms respectively. The predicted value for both LASSO and 
GGM algorithms is calculated using the equations 3 and 4 respectively. The test error 
was computed by taking the average of the Mean Squared Error (MSE) of the predicted 
values compared to the actual test values, across all the taxa in each of the data sets, test 
sets and sub-samples. The lower and upper bounds of the MSE line represent the vari-
ance of the MSE. For the Amgut1 data set, GGM achieved the highest accuracy from 10 

Fig. 3 Training the Pearson correlation threshold using cross-validation
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to 20 sample size, but LASSO performed best for larger sample sizes (above 30). The 
GGM outperformed the other algorithms on the iOral data set. The results from the 
crohns data set suggest that both LASSO and GGM algorithms may be good choices 
for this data set, as they performed similarly well. The figure also provides insights into 
the minimum sample size required for a useful cross-validation of the algorithms. The 
plot reveals that significant differences between algorithms are apparent even with 
only 10 samples. It is widely recognized that increasing the number of samples gener-
ally enhances correlation accuracy. However, our analysis extends this understanding 
by addressing a critical question: “What is the minimum number of samples required 
for the cross-validation technique to be effective?”. Our findings indicate that when the 
sample size exceeds 20 to 30, further increases in sample numbers do not significantly 
improve prediction accuracy. This insight is particularly valuable in the field of microbi-
ome research, where obtaining samples is both difficult and costly. Knowing the precise 
sample size needed for meaningful analysis provides a novel and practical contribution 
to the field. These findings highlight the importance of selecting an appropriate algo-
rithm for a given dataset, as different algorithms may perform differently depending on 
the characteristics of the data. Therefore, it is crucial to consider multiple algorithms 
and evaluate their performance before selecting the most appropriate one. In addition, 

Fig. 4 Model comparison using test error
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it may be necessary to use a combination of algorithms to obtain the best results. In the 
Analysis of High-Sparsity Datasets section, we show that even highly sparse datasets do 
not really affect algorithm performance.

Edge detection variability

The microbial association network was inferred using the various algorithms on the 
three real microbiome datasets: amgut1, crohns, and ioral.

In Figure 5A, we showcase how the number of edges inferred varies with each of the 
algorithms in the various real microbiome data sets. For instance, in the amgut1 data-
set, Pearson and Spearman correlation methods exhibit a significant difference in edge 
detection, with Pearson identifying more edges due to its sensitivity to linear relation-
ships, whereas Spearman is better suited to non-linear associations. This pattern, how-
ever, reverses in the ioral dataset, where GGM and LASSO exhibit contrasting behavior, 
with LASSO producing more edges than GGM. These discrepancies highlight the 
importance of considering dataset-specific characteristics when selecting an algorithm 
for microbial network inference. Another point of interest is the presence or absence 
of negative links in the inferred networks, which varies significantly across algorithms. 
LASSO and GGM, for instance, tend to reveal negative associations that are often over-
looked by correlation-based methods like Pearson and Spearman. This ability to detect 
negative links is crucial in understanding inhibitory interactions within the microbial 
community, which may have important biological implications, particularly in disease 
contexts such as Crohn’s disease. LASSO typically infers more number of edges than 
GGM because GGM employs the precision matrix that measures the partial correlation 
between taxa.

In Figure 5B, we present the co-occurrence network graphs of the Crohn’s disease 
(CD) dataset, which comprises 5 distinct bacterial taxa across 100 total samples. 
This simplified network reveals crucial differences in how each algorithm interprets 
microbial associations in the context of CD. The Pearson algorithm produces a fully 
connected network, suggesting complex interplay among all bacterial groups. This 
comprehensive view captures both strong and weak associations, potentially over-
estimating biologically relevant interactions. In contrast, the Spearman algorithm 

Fig. 5 A Model comparison using inferred positive and negative associations. B Microbial Network graph of 
crohns data set
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excludes the edge between Lachnospiraceae and Enterobacteriaceae, indicating a 
non-linear or rank-based relationship that Pearson’s linear correlation might over-
look. Interestingly, both correlation-based methods show a strong positive associa-
tion between Bacteroidaceae and Enterobacteriaceae, aligning with previous studies 
that suggest their co-occurrence in inflammatory environments characteristic of CD 
[66]. Additionally, Lachnospiraceae exhibits positive correlations with most other 
taxa in these models, reflecting its role as a core commensal group in the gut micro-
biome [67]. The LASSO and GGM algorithms share the same network topology as 
Spearman but differ significantly in the nature of the associations. Notably, both 
reveal a negative association between Pasteurellaceae and Lachnospiraceae, which 
is not captured by the correlation-based methods. This inverse relationship could 
indicate a potential protective role of Lachnospiraceae against the pro-inflammatory 
effects associated with some Pasteurellaceae species in CD [68]. The absence of an 
edge between Lachnospiraceae and Enterobacteriaceae in these regularized mod-
els suggests that their co-occurrence might be indirect or mediated by factors not 
captured in this dataset. The choice of algorithm depends critically on the research 
question and the data quality. If the goal is to identify a robust network structure 
with high confidence, prioritizing the strongest and potentially most relevant asso-
ciations, then LASSO or GGM may be preferable. These methods offer a more con-
servative approach, effectively filtering out weaker connections that might arise 
from noise or indirect associations. They are particularly useful when seeking to 
identify key microbial players and their primary interactions in CD. However, if the 
research aims to explore a comprehensive and diverse network structure, including 
potential weak but biologically relevant associations, then Pearson or Spearman cor-
relations might be more suitable. These methods provide a more inclusive view of all 
possible associations, which can be valuable for exploratory analysis and hypothesis 
generation. They may capture subtle relationships that could be biologically signifi-
cant, especially in complex ecosystems like the gut microbiome in CD.

Network visualization of the american gut project 1 dataset

Figure  6 illustrates network representations of the American Gut Project 1 dataset, 
showing the 200 strongest edges inferred by four algorithms: Spearman, LASSO, Pear-
son, and GGM. The Spearman network features a dense core with hubs like X197556 
and X193832, alongside smaller peripheral clusters. LASSO reveals a sparser struc-
ture, emphasizing modularity with prominent clusters, such as X192161, X193832, and 
X188900, indicating direct relationships. The Pearson network exhibits similar density to 
Spearman but shifts in hub centrality, with X190649 gaining prominence over X197556. 
GGM emphasizes modular organization, isolating distinct clusters like X193880, 
X197766, and X196564, suggesting tightly linked taxa groups.

Across all methods, nodes such as X197556 and X193832 consistently serve as 
major hubs, underscoring their potential ecological significance in the gut micro-
biome. Variations in edge thickness and node size reflect differences in algorithmic 
inference, with LASSO capturing strong direct associations and GGM highlighting 
modularity.
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Network visualization of the ioral dataset

Figure 7 visualizes the ioral dataset, highlighting the 200 strongest edges inferred by four 
network inference algorithms: Spearman, LASSO, Pearson, and GGM. The Spearman 
network displays a densely connected structure with Streptococcus and Veillonella as 
major hubs and a peripheral cluster involving Corynebacterium, Rothia, and Actino-
myces, suggesting potential functional associations. LASSO reveals a sparser topol-
ogy with modular clusters, including a strong Prevotella-Veillonella connection and a 
distinct group of Neisseria, Haemophilus, and Porphyromonas. The Pearson network, 
while similar in density to Spearman, highlights stronger connections for Fusobacterium 
and an intensified relationship between Streptococcus and Veillonella. GGM empha-
sizes modularity, isolating the Corynebacterium-Rothia-Actinomyces cluster, indicating 
its functional distinction from the broader network. Key genera, such as Streptococcus, 
Veillonella, and Prevotella, consistently emerge as hubs across all networks, underscor-
ing their central ecological roles in the oral microbiome. Algorithm-specific patterns, 

Fig. 6 Network visualizations of the American Gut Project 1 (amgut1) dataset, showing the 200 most heavily 
weighted edges as determined by four different network inference algorithms: Spearman, LASSO, Pearson, 
and Graphical Gaussian Models (GGM)
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such as the prominent Prevotella-Veillonella link in LASSO and the modularity captured 
by GGM, offer complementary insights into microbial relationships. The centrality of 
Streptococcus and Veillonella across all methods highlights their importance as key-
stone taxa in the oral microbial community.

Conclusion
This study provides a comparative analysis of different algorithms for inferring microbial 
association networks from real microbiome composition data. We propose cross-vali-
dation as a more widely applicable evaluation criterion for training and testing various 
algorithms used for inferring microbial co-occurrence networks. We also introduce a 
novel technique of using previous algorithms for prediction on test data.

Key Findings

Our cross-validation framework represents a methodological advance over traditional 
evaluation approaches like network consistency analysis. While consistency across sub-
samples is valuable, it can reward methods that produce overly sparse networks. In con-
trast, our prediction-based evaluation ensures that inferred relationships are both stable 

Fig. 7 Network visualizations of the ioral dataset, showing the 200 most heavily weighted edges as 
determined by four different network inference methods: Spearman, LASSO, Pearson, and Graphical Gaussian 
Models (GGM)
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and biologically meaningful, as demonstrated by their ability to generalize to unseen 
data. Our study yielded several important findings:

• While it is generally recognized that algorithm accuracy improves with an increas-
ing number of samples, our analysis identifies a threshold, beyond which additional 
samples offer diminishing returns. As demonstrated in Figure 4, prediction accuracy 
plateaus when the sample size exceeds 20–30. This finding is particularly significant 
in the microbiome field, where obtaining samples is both costly and difficult, as it 
provides valuable guidance on the minimum sample size required for effective cross-
validation.

• The selection of an algorithm should depend on the specific dataset being examined 
and the research question being addressed, as the choice of algorithm can signifi-
cantly impact the structure of the resulting microbial network.

• LASSO and GGM demonstrated the highest accuracy for inferring co-occurrence 
networks in the Amgut1, crohns, and iOral real microbiome composition datasets 
that we examined.

• Our proposed cross-validation method proved effective for both training (e.g., select-
ing optimal correlation thresholds) and testing the performance of various network 
inference algorithms.

• The Yeo-Johnson transformation, combined with standard scaling, substantially 
enhanced the prediction accuracy on the test set compared to standard scaling alone.

These findings highlight the importance of careful algorithm selection and data preproc-
essing in microbial network inference studies.

Future directions

For future research, we are considering several avenues:

• Using equation (4) for training GGMs as well as testing, which we expect to be more 
accurate than employing the maximum likelihood approach to estimate the precision 
matrix.

• Generalizing our proposed cross-validation methods to more complex data with sev-
eral qSIP features like the abundance, growth rate, death rate, and carbon uptake of 
micro-organisms [69].

• Exploring deep learning approaches for network inference  [70]. Neural networks, 
particularly graph neural networks (GNNs) [71], could be adapted to learn from both 
abundance data and network structure simultaneously. Our cross-validation frame-
work could be extended to evaluate these approaches, addressing challenges of lim-
ited sample sizes and high dimensionality.

• Our proposed cross-validation method, designed for microbial association net-
work inference, has broader implications for various applications in bioinformatics. 
Although our current work focuses on taxa as nodes in the network, where associa-
tions are inferred based on microbial data, the same principles and algorithms could 
be effectively applied to other contexts where entities are represented as nodes such 
as:
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• Drug repurposing: Our method could potentially improve the validation of 
computational drug repurposing models, as discussed by Thafar et  al.  [72]. 
In this context, drugs would replace taxa as nodes, and the validation of drug 
repurposing models would benefit from our rigorous cross-validation strategy. 
This could lead to more reliable predictions of potential new uses for existing 
drugs.

• Drug-drug interaction prediction: The cross-validation approach might 
enhance the performance evaluation of models predicting drug-drug interac-
tions, similar to the work by Feng et al. [73]. This could contribute to improved 
patient safety and more effective combination therapies.

• RNA N6-Methyladenosine modification site prediction: Our method could be 
adapted to improve the validation of models predicting RNA modification sites, 
as explored by Fu et  al.  [74]. This could advance our understanding of post-
transcriptional regulation mechanisms.

The potential applications of our cross-validation scheme in these areas underscore 
the broad relevance of our work beyond microbial network inference. By providing 
a more robust evaluation framework, our method could contribute to increased reli-
ability and reproducibility across various bioinformatics domains. In conclusion, this 
study demonstrates the effectiveness of cross-validation for evaluating and comparing 
microbial network inference algorithms. Our findings indicate that both LASSO and 
GGM are dependable and effective for inferring co-occurrence networks. The pro-
posed methodology not only improves the reliability of microbial network inference 
but also has potential applications in other areas of bioinformatics and computational 
biology. Future work will focus on refining these methods and exploring their broader 
applicability in the field.
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