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Introduction
Plants have the natural ability to sense their surrounding environment [1], commonly 
known as stress. Stress can be biotic or abiotic and commonly coexist in nature and 
can be brought on by a wide range of conditions, including heat, cold, toxicity, drought, 
flooding, and damage from pathogens and predators, as well as by photosynthesis [2]. 
Plants respond uniquely to different stresses, resulting in a complex signaling network 
that controls and mediates their biosensory systems. In the literature, signaling refers to 
the production of various chemicals for molecular communication, initiating multiple 
activities inside and outside the plant [3]. Plants use hormones as signaling molecules 
to control internal activities and transfer stress responses between different parts [4]. 
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Hormones like ethylene, salicylic acid, and jasmonic acid play a vital role in responding 
to biotic stress. In contrast, abscisic acid (ABA) is critical in maintaining seed dormancy, 
preventing germination, regulating growth, stomatal closure, fruit abscission, and medi-
ation of stress responses [5]. PYR1, a member of the PYR/PYL/RCAR (Pyrabactin resist-
ance, Pyrabactin resistance-like, and Regulatory Component of ABA Receptors) family, 
functions as an ABA receptor, crucial for perceiving ABA during biotic stress. It upregu-
lates transcriptionally and activates downstream signaling via ABA-activated SnRK2 
(SNF1-Related protein kinase 2) protein kinases. PYR/PYL/RCAR receptors detect ABA 
intracellularly, forming ternary complexes with PP2Cs (Protein Phosphatase 2C) and 
SnRK2s to initiate ABA signaling. PYLs, PP2Cs, and SnRK2s are the core components of 
this pathway [6] presented in Fig. 1.

Molecular signaling in living cells, particularly in plants, has garnered significant 
attention for uncovering natural communication principles and advancing nano-net-
working techniques in agriculture. The interdisciplinary field of Molecular Communi-
cation (MC) formalizes this concept by exploring how molecules, cells, or bacteria can 
function as precise nanoscale transmitters and receivers of information [7–9]. Synthesiz-
ing, emitting, accumulating, and transforming biological responses are all accomplished 
through a mathematize biochemical mechanism in MC [10]. This interdisciplinary study 
harmonizes signals with biological systems for efficient, low-energy dissemination, sug-
gesting that all living things can be seen as nanomachines. Bacterial-based research, 
using genetically engineered bacteria (GEB) for detection purposes, paves the way for 
advancements in nano communication and bacteria as signal transceivers [11–13].

Monitoring abscisic acid (ABA) levels is vital for identifying stress and enabling timely 
interventions to boost resilience and productivity. Researchers focus on controlling 
hormone action to improve stress tolerance and crop quality [14–16]. Several detec-
tion techniques have been developed, including surface-enhanced Raman spectroscopy 
(SERS) [17], laser-induced breakdown spectroscopy (LIBS) [18], and localized surface 
plasmon resonance [19] developed to investigate plant diseases, the impact of chemical 
sprays, the detection/behavior of plant hormones, and their role in plant growth through 
the analysis. For instance, Raman spectroscopy efficiently detects nutritional stress in 
plant vascular tissue [20]. Furthermore, a SERS substrate has been developed for detect-
ing ABA, which relies on a monolayer of gold nanoparticles coated in silver [21], and 
an ultra-sensitive detection technique for ABA using SERS was discussed in [22]. Other 

Fig. 1 Structure of ABA-PYR1/PP2C interactions a golden PYR1 confirmation while b in green bounded with 
ABA and c ABA-PYR1/PP2C complex
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techniques involved using dual-functional SERRS with a fluorescent aptamer sensor uti-
lize charged gold nanorods [23], while biosensor development techniques using PYR/
PYL receptor-based systems in yeast rely on plant-derived ABA sensing mechanisms 
[24]. These systems employ ABA-induced protein dimerization between PYR/PYL 
receptors and PP2C phosphatases to generate a detectable signal, such as fluorescence, 
enabling high-throughput screening and fine-tuned regulation in engineered strains. 
Current plant hormone detection methods are limited in their selectivity to identify 
particular hormones within specific plant tissues and during specific developmental 
stages. Remote sensing and precision agriculture technologies have been discussed in 
[25], but these methods require special control systems, high power consumption, and 
time-consuming procedures. Although, biosensors have made significant progress, 
most rely heavily on fluorescence-based readouts, which require external excitation and 
are susceptible to photobleaching, limiting their robustness and scalability in certain 
applications.

Inspired by the study of plant signaling and MC [3], a novel concept emerges amal-
gamating bacterial cells’ innate communication strategies with plants’ molecular-level 
communication mechanisms, thus birthing a novel communication paradigm. Current 
bacterial-based simulators excel in controlled lab settings, focusing on bioengineered 
entities aligned with traditional communication paradigms [26–28]. Our endeavor 
encompasses the internalization of E. coli bacteria within plants [29], harmonizing it 
with MC [7–9], and accentuating the engineering of plant-based communication. This 
research proposes a cost-effective biological sensor to detect plant stress hormones 
using engineered bacteria with self-propulsion, operating without external power. Cen-
tral to this sensor is detecting abscisic acid (ABA), a critical molecule in plant stress 
regulation. Merging insights from myriad research fronts, we introduce bacterial-based 
molecular communication into crops, thereby devising biological sensors. Following, a 
comparison of existing techniques for detecting plant hormone ABA with the proposed 
sensor highlighting stating gaps in existing systems and the specific properties of sensor 
is presented in Table 1.

The envisioned sensors, outlined in Fig.  2, emanate from tailored modifications of 
genetically engineered bacterial cells [30–32], sensitizing them to ABA and enabling 
them to emit light upon ABA exposure. Our choice of the widely studied and easily 
manipulated E. coli as the reference organism for this sensor attests to its potential, typi-
cally 2 µm long and 0.5 µm wide. E. coli’s adaptability and ease of cultivation position it 
as an optimal choice [33]. E. coli’s capacity to act as an endophyte within plant tissues 
further underscores its utility, offering the potential to reside within plants without caus-
ing harm [34]. The proposed sensor will be able to detect ABA in diverse stress con-
ditions, including drought and pathogen response, within a modeled response time of 
431.52 s.

Our research leveraged MATLAB simulations to comprehend bacterial movement 
across distinct plant segments. Taking hydroponic tomato plant as model, these simula-
tions are systematically divided into five discrete phases, i.e., bacterial diffusion within 
cell walls of plant root, examining bacterial diffusion through a tunnel-like shoot in the 
presence of advection, scrutinizing the diffusion of attractants within a leaf-like porous 
medium, exploring bacterial movement influenced by chemotactic signal concentration 
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Table 1 Comparison of existing ABA detection techniques with proposed biosensor

Feature Existing systems Contributions of Our Work

Sensitivity and detection time Limited sensitivity to low ABA con-
centrations

Improved sensitivity to ABA-enriched 
regions through bacterial chemotactic 
simulation

Detection times often exceed several 
minutes, especially under field condi-
tions

Can achieved a faster response time of 
431.52 s, addressing detection delays

Bacterial mobility Restricted bacterial mobility in plant 
tissues; biosensors confined to static 
environments

Integration of chemotactic movement 
simulation to model bacterial behavior 
in dynamic plant environments

Power demands High power requirements for fluo-
rescence- and spectroscopy-based 
detection systems

Focused on approaches suitable for in 
planta applications, reducing reliance 
on external power

Mathematical modeling Limited use of dynamic mathemati-
cal models for bacterial movement 
and interaction with attractants

First to utilize advection–diffusion 
equations and chemotaxis PDEs to 
predict bacterial movement and 
response times

Field applicability Not practical for remote or in planta 
field applications due to complexity 
and power demands

Designed to function effectively in 
plant environments, enhancing usabil-
ity in remote and field conditions

Cost and time Creating samples and experimental 
chemicals repeatedly incurs higher 
costs

In contrast, the sensor, once devel-
oped, possesses self-replicating 
capabilities, significantly reducing both 
cost and time

Fluorescence and luminescence Most existing biosensors utilize 
yeast, where genetically encoded 
(modified) circuits are designed to 
detect ABA via fluorescence. These 
systems require external excitation to 
produce a measurable signal

The proposed biosensor suggests 
engineering E. coli to trigger lumines-
cence, enabling the generation of a 
quantifiable signal without the need 
for external excitation

Fig. 2 Proposed model of genetically engineered bacteria as a bioluminescent biological sensor, presenting 
its states before and after attachment of ABA
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gradients, and simulating sensor’s response time for detected hormone. Figure 3 encap-
sulates and visualizes these simulation phases. Figure 3a demonstrates the Transmission 
(Tx) process (bacterial internalization in plant roots), whereas Fig. 3b depicts the propa-
gation in the channel (bacterial movement through plant shoot). Figure  3c shows the 
reception (Rx) at a desired location (bacteria’s chemotactic behavior towards the attract-
ant concentration).

Design of proposed bacterial‑based sensors
Genetically engineered bacteria (GEB) have been adapted to exhibit desired traits or 
functionalities, including sensing and responding to diverse stimuli [11–13]. Genetically 
engineered live cells can produce a physical signal responding to specific compounds or 
stress conditions [31]. This is achieved by fusing luciferase genes with target-activated 
promoters. When the target is present, it induces the promoter, leading to luciferase 
transcription and a dose-dependent luminescent signal [32]. For bacterial luciferase, 
the co-transcription of substrate-generating genes eliminates the need for external 
substrates. Bioluminescence as a reporter negates the necessity for an excitation light 
source, unlike fluorescence-based sensing [35, 36]. Building upon the innovative con-
cept of bacterial-based biological sensors, the proposed model harnesses the remark-
able capabilities of genetically engineered E. coli bacteria to function as highly sensitive 
detectors within the domain of plant biology. This novel sensor design capitalizes on 
the intricate interplay between molecular interactions and cellular processes, enabling 
the identification and response to specific analytes. In alignment with this exploration, 
our study introduces an innovative biological sensor model centered on the genetic 

Fig. 3 Schematic representation of the network modeling for a luminescent ABA biosensor system in plants. 
The model involves three key steps: a Transmission (Tx)—Internalization of engineered E. coli (PYR1) through 
plant roots facilitated by secreted proteins; b Propagation through Channel—Movement of biofilms and ABA 
(Abscisic Acid) through xylem vessels, aided by water transport; c Reception (Rx)—Localization at the target 
site, where chemotactic response ensures desired biosensor functionality
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manipulation of E. coli bacteria. One recent achievement in plant synthetic biology is 
the autonomous bioluminescence reporter system created by [37] This approach allows 
for the reliable quantification of gene expression. This system does not require exter-
nal luciferase substrates because it uses Neonothopanus nambi’s bioluminescence 
pathway. This makes it an economical option for processing multiple samples at once. 
The introduction of luciferase reporters controlled by stress-responsive promoters sig-
nificantly improves the detection capabilities of ABA biosensors, as reported in “Ares 
genetic screening procedures” [38]. The evaluation and comparison of different reporter 
systems, including GUS, LUC, and GFP, are presented in [39], further emphasizing the 
importance of selecting the appropriate reporter system for specific applications to 
develop efficient ABA biosensors.

In our proposed model, E. coli bacteria are genetically modified to express a specialized 
protein with a distinct affinity for abscisic acid (ABA). This protein is then imbued with 
bioluminescent properties through the controlled activation of Lucifer molecules via 
quorum sensing mechanisms. The outcome is a modified E. coli strain that adeptly iden-
tifies ABA presence in plant organisms, promptly emitting a bioluminescent response. 
Our approach outlines a comprehensive sequence of steps for this achievement. To real-
ize this vision, plasmids emerge as valuable vectors, serving to introduce genes responsi-
ble for ABA receptors and luciferase enzymes into the bacteria. Leveraging the inherent 
chemotactic behavior of bacteria, these modified E. coli strains autonomously gravitate 
toward ABA sources within plant tissues. A protein with high affinity and specificity for 
ABA, PYR1, a plant abscisic acid (ABA) receptor, has a malleable ligand-binding pocket, 
as discussed in [40] proposed for quickly creating biosensors that facilitate to enable the 
function of sense response. High-density mutagenesis of PYR1’s has been used to create 
a library of stable double mutants, enabling the identification of more ligands. The ABA 
sensing system operates through a naturally occurring chemically induced dimerization 
(CID) mechanism where PYR1 recognizes the ligand, leading to the formation of a stable 
PYR1-ligand–protein phosphatase (PP2C) complex that inhibits phosphatase activity. 
The phosphatase acts as a coreceptor, lowering ligand off rates and boosting apparent 
affinity up to ~ 100-fold, enabling micromolar PYR1 ligand-binders to act as nanomo-
lar sensors in the presence of phosphate. Different innovative design techniques, such 
as Rational Design [41] and De Novo Design [42], can be employed to identify nucleic 
acid sequences with robust ABA-binding capabilities. By binding to its intended target 
molecule, this protein enables the bacteria to sense and interact with the specified ana-
lyte effectively. Nature offers an array of luciferases and associated luciferins, bearing 
witness to the independent evolution of bioluminescence more than 40 times [43]. The 
genetic basis for this phenomenon is encoded within the lux operon, encompassing the 
luxCDABE genes. These genes orchestrate the synthesis of bioluminescent proteins and 
their accompanying substrates [44]. A quorum-dependent bioluminescent response can 
be achieved by harnessing quorum-sensing system genes, such as luxI and luxR. LuxI 
generates a signaling molecule, while LuxR, functioning as a transcriptional regulator, 
responds to the presence of this signal. The architecture of our system necessitates an 
intricate interplay, where the ABA-bound protein triggers the quorum sensing mecha-
nism, ultimately inducing the activation of bioluminescent gene expression. The culmi-
nation of our proposed model involves the creation of a sophisticated genetic construct 
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encompassing the protein sequence, the quorum sensing apparatus, and the biolumines-
cence-related genes. This construct is meticulously tailored with appropriate promot-
ers and regulatory components to ensure precise expression and regulation within E. 
coli. Facilitated by methods such as recombinant DNA technology [45], electroporation 
[46], or heat shock transformation [47], the genetic construct is seamlessly introduced 
into the E. coli strain. Following successful integration, rigorous experimentation can be 
undertaken to ascertain the modified bacteria’s proficiency in ABA detection and sub-
sequent bioluminescent response. The words ‘biosensor’ and ‘bacterial’ may be used 
interchangeably. The terms “engineered bacteria” and “modified bacteria” will be used 
interchangeably throughout the manuscript to convey the same meaning.

Material and method
Model for bacterial diffusion/internalization

This section discusses the simulation’s analytic modeling, the diffusion equation, and 
advection, providing a comprehensive understanding of the processes involved. The sup-
plementary material under supplementary Sect.  1 describes a fundamental approach 
adopted for bacterial diffusion in plants, including attractant diffusion and its impact on 
bacterial movement.

Modeling the bacterial diffusion into plant root

The initial phase of our investigation employs a computational simulation to explore 
the diffusion and advection of engineered E. coli-PYR1 within a plant root cell, which is 
modeled to represent the root of a hydroponic plant. Bacterial internalization in hydro-
ponic plant roots is a process by which bacteria penetrate the root surface and enter the 
root cells. This can occur through natural openings, such as root caps, lateral root emer-
gence zones, root hairs, hydathodes, and mycorrhizal associations, or wounds caused by 
insects, animals, or mechanical damage [48]. Another hypothesis for its internalization is 
that it can naturally internalize into plant tissues in the rhizophagy process. Rhizophagy, 
or the “rhizophagy cycle,” is a phenomenon by which plant roots cultivate bacteria on 
their root surface, internalize them into root cells, and extract nutrients from them by 
subjecting them to superoxide produced by root cells [49–52]. This process involves the 
participation of plant-derived cell wall degrading enzymes that loosen cell walls, allow-
ing microbes to permeate plant root cells. Experimental studies with Arabidopsis thali-
ana and Lycopersicon esculentum inoculated with E. coli revealed heightened expression 
of cellulases in plants exposed to bacteria. The significance of this finding lies in the 
potential of cellulases to degrade cell walls, which could facilitate bacterial entry [49].

Once inside the plant cells, bacteria can become endophyte, microorganisms that live 
within plant tissues without causing apparent harm to the host. Endophytic bacteria 
can establish mutualistic, commensal, or pathogenic interactions with plants, depend-
ing on various factors such as bacterial strain, plant species, environmental conditions, 
and plant defense responses. Endophytic bacteria can also influence plant growth, 
development, nutrition, and stress tolerance by producing phytohormones, solubilizing 
phosphate, fixing nitrogen, producing siderophores, inducing systemic resistance, and 
degrading pollutants [53, 54].
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Escherichia coli can also produce indole acetic acid (IAA), a phytohormone that can 
promote root development and growth [55]. As discussed earlier, it is generally con-
sidered that E. coli is a bacterium associated with animal microbiomes or a pathogen 
that causes foodborne diseases. According to a study, plants can establish symbiotic 
associations with E. coli, where the bacterium is internalized into seedling tissues. This 
may improve seedling development and nutrient status and protect plants from disease 
agents. These findings contradict the general assumption that E. coli is mainly an animal-
associated symbiotic or pathogenic bacterium or simply a contaminant of crop plants 
[34]. The simulation setup for the engineered E. coli-PYR1 is delineated in supplemen-
tary Sect. 2 of the supplementary document.

Role of advection on bacterial diffusion through the shoot (channel‑like) of plant

During the travel toward the different parts of the plant [29, 56], while sensing the ABA, 
this part of the simulation approximates the bacterial diffusion associated with advec-
tion through a one cm-long channel that we relate to the plant’s shoot. In this part of the 
simulation, we add advection as an instantaneous factor of water uptake as xylem flow 
velocity 0.54 mm/s [57] by the plant during the running phase of bacteria that helps it to 
move from one point to another in less time and simulates the advection–diffusion of a 
concentration of E. coli in the channel-like shoot. The parameters defined at the begin-
ning of the simulation code are:

D: Diffusion coefficient of E. coli in the bulk fluid.
v : Velocity of water in mm/s.
L : Channel Length in µmeters.
r: Channel Radius in µmeters.
ve : Velocity of E. coli in µm/s.
Referring to Eq. (S-2), in supplementary document Sect. 2, the diffusion coefficient D 

can be assumed constant. Finally, we arrive at the simplified advection–diffusion equa-
tion for the given scenario:

where Ce : E. coli concentration, t  : time, D: diffusion coefficient of E. coli, x; distance 
along the channel, y: radial distance from the channel center, v: velocity of water in the 
channel, ve : velocity of E. coli.

and

The discretized differential equation solved in the code using the finite difference 
method is provided in the supplementary document under Supplementary Sect. 3.

Attractants’ diffusion in leaf and chemotactic behavior of E. coli (Against spatially varying 

concentrations of attractant)

The third part of the simulation involves modeling the spatially varying concentration 
of an attractant, such as aspartate, in a porous medium taken to a plant leaf and the 
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chemotactic behavior of E. coli in this domain. This is achieved by solving a partial dif-
ferential equation (PDE). The simulation assumes a domain size of 60 µm and a rate of 
attractant production Q =  10−11 mol/s. The initial condition posits a higher concentra-
tion of the attractant in the center of the domain. Other parameters incorporated in the 
model include the diffusion coefficient of the attractant and the bacterial speed. The 
simulation performs a diffusion process for aspartate, a well-known attractant for E. coli, 
by calculating an effective diffusion coefficient for the porous medium. This effective dif-
fusion coefficient is a function of the medium’s porosity, tortuosity, and constrictivity, 
and it is used to compute the concentration of attractant molecules at specific points 
within the porous medium, in this case, a leaf. The porosity (ε), tortuosity (τ), and con-
strictivity ( ∁ ) of the porous medium were given constant values of 0.35, 2.11, and 1, 
respectively [58]. The diffusion coefficient of aspartate in water at 25℃ is approximately 
7.32 ×  10−10  m2/s. However, within the porous medium, this diffusion coefficient is gen-
erally lower than its value in the bulk fluid due to the tortuous and constricted nature 
of the porous pathways, according to [59] and [60]. With these constants in place, the 
effective diffusion coefficient Deff  The amount of attractant in the porous medium will 
be computed per Eq. (S-3) of the supplementary document Sect. (2).

where Deff  : the effective diffusion coefficient of aspartate in the porous medium  (m2/s), 
Dbulk : the diffusion coefficient of aspartate in the bulk fluid  (m2/s), ε: the porosity of the 
porous medium, τ: the tortuosity of the porous medium, ∁ : the constrictivity factor of 
the porous medium.

The PDE under consideration in this simulation is a convection–diffusion equation. 
This equation serves to model the spatiotemporal distribution of the attractant concen-
tration within the domain, reflecting its distribution over space and time:

where c is the concentration of the attractant, ‘t ’ is time, D is the diffusion coefficient of 
the attractant, v is the velocity of the bacteria, and Q is the rate of attractant production. 
To simulate bacterial movement, the code considers two distinct phases, i.e., tumbling 
and running. The movement behavior is influenced by the attractant concentration gra-
dient, wherein in the tumbling phase (0.75 s), E. coli does the random movement with-
out responding to the attractant gradient. They move toward the attractant gradient 
during the running phase (1.25 s) [11].

Sensor’s response time

Biosensors, on the other hand, offer the potential for rapid, sensitive, and specific 
detection of detected enzymes (in our case, it is ABA) in real-time [61, 62]. The detec-
tion time indicates how quickly a sensor can respond to the presence of a target plant 
hormone (ABA in our case); rapid detection is crucial for decision-making and inter-
vention. To explain the dynamics of a biosensor system, the mathematical model 
used is a set of ordinary differential equations (ODEs) [63]. Model parameters follow 
biological processes such as ABA production and degradation, receptor binding and 
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dissociation, mRNA and protein dynamics, and the final bioluminescence output. The 
model also includes stochastic variations and dependencies on environmental factors 
like temperature, pH, and ionic strength described in [31, 32, 37–39]. This approach is 
commonly used for modeling biochemical reaction networks and sensor systems. In 
addition to ODEs, we include the Hill equation [64, 65] in our model to incorporate 
nonlinear biological responses, which is critical for accurately describing the behavior 
of real biosensor systems. It strikes a nice compromise between simplicity and the 
ability to capture complicated biological events, making it an effective tool for biosen-
sor modeling and design. Comprehensive mathematical modeling is presented in the 
supplementary document under Supplementary Sect. 4.

Results and discussion
Diffusion time of engineered E. coli‑PYR1 for plant root

As delineated in Supplementary Section 2, the simulation begins with defining param-
eters such as diffusion coefficient, cell radius, growth rate, and temperature range 
depicted in Fig. 4. In this graphical representation, the x-axis signifies the time, show-
ing how the bacterial position changes over time. The y-axis denotes atmospheric 
temperature, and the z-axis quantifies the bacterial position for engineered E. coli-
PYR1 to traverse through the plant root cells. The z-axis also extends in both positive 
and negative directions, where the negative portion of the z-axis represents bacterial 
positions closer to the root surface. In contrast, the positive part represents positions 
farther away from the root surface.

Moreover, the simulation of bacteria diffusion was conducted by updating the bac-
teria’s position based on a diffusion process, causing it to move randomly over time. 
The growth rate accounted for the bacteria’s exponential growth. Temperature was 
randomly selected from a range, and the bacterial concentration was modeled using a 
diffusion equation that considered the position of the bacteria and time.

Fig. 4 Illustrating the relationship between temperature and bacterial position. Each data point represents 
the position of the bacteria in plant roots under a randomly selected temperature condition, and the average 
time taken by Engineered E. coli-PYR1 is approximately 1220.12 s
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Supplementary Figs. S1 and S2 highlight the correlation between temperature and 
position, bacteria’s movement, and their concentration over time. Each data point on 
the plot of Fig. S1 represents a specific time instance, where the bacteria’s position is 
plotted against the corresponding temperature. It can be noted that bacterial concentra-
tion is higher at higher temperatures. In Fig. S2a, we can observe the dynamic behavior 
of bacteria as they diffuse towards the plant root. The illustration shows the position of 
the bacteria changes over time due to the effects of diffusion. Bacteria tend to move ran-
domly, resulting in a continuous change in their position. The positive bacterial position 
indicates concentration near the root cells, while the negative position indicates that 
the bacteria is away from the root. Figure S2b depicts bacterial concentration over time. 
Bacterial concentration increases exponentially as they undergo growth and prolifera-
tion. This growth is governed by the growth rate constant (k) , which represents the frac-
tion of bacteria that divide and multiply per unit of time.

Effect of advection on engineered E. coli‑PYR1 movement

A model presented in Fig. 5a demonstrates the diffusion of bacteria through the shoot. 
Shoot (Referred to as channel in the later discussion), with simulation results highlight-
ing the significance of advection in the distribution and movement of E. coli within the 

Fig. 5 a Model of: A schematic representation of Engineered E. coli-PYR1 diffusion through the shoot in the 
xylem vessel of a plant. The diagram highlights the interaction between water/sap transport and bacterial 
dynamics. Bacteria move along the flow of water or sap within the xylem, encountering obstacles such as 
cell walls b Effect of advection on E. coli’s speed over time under two conditions: with advection (red line) 
and without advection (blue line). Advection notably increases the initial bacterial speed due to fluid flow 
in the xylem, with a sharp decay over time. In the absence of advection, bacterial movement relies solely on 
diffusion, resulting in consistently low speed throughout the time period
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channel. The modeled simulation (“Role of advection on bacterial diffusion through 
the shoot (channel-like) of plant” Section) illustrates role of advection as it predomi-
nantly facilitates bacteria’s downstream movement and dispersion. In its absence, dif-
fusion becomes the primary driver, resulting in a notably slower rate of bacterial spread. 
The consequential influence of advection on the bacteria’s velocity is further detailed 
in Fig. 5b. It can be observed that the presence of advection enhances the downstream 
spread and expedites the bacteria’s overall colonization of the channel, resulting in a 
marked increase in the bacteria’s spatial coverage and velocity within the channel.

Spatial and temporal variations refer to fluctuations in concentration distribution 
across locations and periods. Initially, diffusion regulates behavior, leading to homog-
enization. Over time, advection becomes significant, accelerating bacterial spread and 
expanding spatial coverage. The interaction between diffusion and advection shapes 
bacterial colonization and dispersion’s geographical and temporal patterns. Advec-
tion enhances velocity, while diffusion aids dispersion and blending. The simulation 
highlights the significance of incorporating advection factors into investigations about 
the motion and dispersion of E. coli or other microbes in plant shoots. Based on the 
study’s results, the graphic indicates that when exposed to advection, E. coli can reach 
a speed of 21.65 µm/s, whereas it can only reach a speed of 0.866 µm/s when advection 
is absent. The plot provides valuable information about the behavior of bacteria in con-
strained flow systems and emphasizes the critical role of advection in influencing bacte-
rial motility.

Attractant diffusion and bacterial mobility concerning attractant concentration

The designed MATLAB code simulates and visualizes the dynamics of bacterial move-
ment in response to an attractant concentration gradient. Supplementary Sect.  3.5 
states that the value of the effective diffusion coefficient of the attractant for the porous 
medium is inversely proportional to the higher porosity, tortuosity, and constrictivity 
factors. Therefore, the factors mentioned above reduced the available pore space and 
increased the complexity of the pore geometry for diffusion. The diffusion coefficient of 
aspartate in water at 25°C is approximately 7.32 ×  10−10  m2/s. To make our model more 
realistic, we consider the porosity, tortuosity, and constrictivity of the porous medium 
and the pore size as important components of our simulation [58]. Using Eq.  (2) for 
aspartate and putting values of ε = 0.35, τ = 2.11, and ∁ = 1 in it, we get

The effective minimum value of the diffusion coefficient will be 
Deff  = 1.2142 ×  10−10  m2/s, and for the ε = 0.45, τ = 2.77 and ∁ = 3,

The effective maximum value of the diffusion coefficient will be Deff  = 3.56 ×  10−10  m2/s.
Figure 6 effectively showcases the spatial and temporal distribution of the attractant 

concentration. The concentration of the attractant tends to increase around the middle. 
Over time, due to diffusion, this concentration spreads outward, reducing its intensity 
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·
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/
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in the center and increasing towards the domain’s edges. Showing this in a mesh grid is 
a graphical representation that depicts the concentration values at various points along 
the x-axis and times along the y-axis. The z-axis indicates the attractant’s concentration, 
measured in units of moles per cubic meter (max 1 mol/m3 after 02 s). The contour lines 
superimposed on the surface offer supplementary understanding regarding the levels of 
concentration observed at different time intervals. The surface displays color variation 
corresponding to the attractant concentration degree.

Figure 7 illustrates the simulated locomotion patterns of E. coli bacteria in response to 
the spatial gradient of attractant concentration at a production rate of  10−11 mol/s within 
the domain of 60 µm. The observed lag in bacterial movement reveals that E. coli doesn’t 
respond instantaneously to alterations in the attractant concentration. This delay implies 
the presence of internal processing or assessment phases within the bacteria, preced-
ing adjustments to their locomotion. The bacterial motility is characterized by distinct 

Fig. 6 Attractant concentration over time and space

Fig. 7 Engineered E. coli-PYR1 bacteria running/tumbling movement concerning attractant concentration
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phases: a ‘tumbling’ phase, lasting approximately 0.75 s, and a ‘running’ phase, enduring 
for roughly 1.25 s. During the ‘running’ phase, the bacteria exhibit directional movement 
towards increasing attractant gradients, resulting in a more structured, linear motion 
pattern. In contrast, the ’tumbling’ phase is marked by stochastic, non-linear move-
ments, causing the bacteria to adopt more dispersed spatial arrangements. This phase 
introduces stochastic perturbations to bacterial motility.

Consequently, negative values on the z-axis within the mesh plot during the tumbling 
phase may indicate inherent irregularities in natural bacterial movement. In the context 
of this simulation, such negative values suggest movements of the bacteria in a direction 
opposing the gradient of the attractant concentration. In this framework, the mesh plot 
visually delineates the spatiotemporal patterns of E. coli movement, where the x-axis 
represents physical coordinates, the y-axis signifies time, and the z-axis quantifies the 
bacteria’s positional changes in response to the attractant gradient. After 2 s, the attract-
ant was most concentrated at 1 mol/m3, and the calculated absolute distance covered by 
E. coli was 10 µm.

Figure S3 shows a scatter plot where each point represents the position of the engi-
neered E. coli-PYR1 at a particular time. The color of each point indicates the attractant 
concentration at that position and time. Based on the defined parameters, the simula-
tion shows that engineered E. coliPYR1 traveled approximately 4.76µm from a lower to 
a higher attractant concentration at a calculated speed of 1.0 ×  10−9 m/s over about 476s.

Response time for engineer E. coli‑PYR1‑biosensor

Our simulations capture several crucial characteristics in the setting of a biosensor, as 
described in “Sensor’s response time” Section and modeled in supplementary section 4. 
The sensor’s sensitivity is influenced by the binding kinetics of ABA and its receptor, a 
key parameter considered in the model. The total reaction time of the biosensor, defined 
by the sequence of events from ABA binding to bioluminescence production, highlights 
the intricate interplay of molecular events that can be tailored to specific applications.

For instance, in real-world agricultural scenarios, the detection of ABA—a key phy-
tohormone regulating plant responses to water stress—has critical implications for 
drought-resilient crop management. By simulating how the biosensor responds to vary-
ing ABA concentrations, we provide insights into its potential application in monitoring 
water-stress levels in crops such as wheat, maize, and rice. An increase in the sensor’s 
detection limit, as suggested by the model, may enhance its utility for early-stage stress 
detection in plants under marginal drought conditions.

Furthermore, the model’s use of Hill equations to capture non-linear responses mir-
rors the behavior of actual biosensors, which can accommodate varying sensitivity levels 
under different physiological conditions. This approach also aids in optimizing the bio-
sensor for specific stress scenarios, such as drought gradients in arid zones. For example, 
the surface mesh visualizations of detection times provide actionable data for selecting 
threshold bioluminescence intensities and initial ABA concentrations that correspond to 
faster detection in stressed crops. The shorter detection times (depicted in blue to green 
colors) can inform biosensor deployment strategies, such as real-time monitoring dur-
ing critical growth stages.
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By linking these findings to practical agricultural challenges, such as water-use effi-
ciency or stress management in high-yielding crop species, our study establishes a robust 
framework for the translation of biosensor simulations into field-ready applications. By 
manipulating different factors within this mathematical framework, biosensor designs 
can be optimized to obtain certain performance features, such as lower detection limits, 
faster detection times, or greater specificity (Fig. 8).

Comparative analysis of the simulation results with the experiment data

The proposed biological sensor model represents an innovative stride towards inex-
pensive, advanced sensing technologies. It involves engineering E. coli bacteria with 
receptors derived from PYR1, a plant ABA receptor. The detection system is coupled to 
a luciferase enzyme, which catalyzes a luminescence reaction when ABA binds to the 
receptors, thereby signaling the presence of ABA. Simulation models illustrate the pro-
posed biosensor’s capabilities in that it achieves an average response time of 431.52 s, 
which is in line with the experimental setup discussed in [31]. Further, the study [32], 
stated that amplification of the signal is required to lower the detection time of a whole 
cell biosensor. This implies that lower concentrations (near the detection limit) would 
require longer detection times [66]. The simulated results in Fig. 9 show the detection 
time against the different concentrations of ABA, aligned with the experimental data 
presented in the previous studies. At lower concentrations (near the detection limit), the 
detection time increases significantly, which are indicative of lower concentrations of 
the analyte (ABA). This is because lower luminescence outputs near the detection limit 
necessitate more time to achieve a measurable signal above the noise threshold.

The calculated time to traverse plant roots during the rhizophagy process is approx-
imately 1220.12  s. We have modeled the impact of water flow in the xylem causes 
advection to increase bacterial movement up to 21.65 µm/s, overcoming diffusion con-
straints in shoots is based on the studies of plants [29]. Referring to Fig. S3, our model 

Fig. 8 Engineered E. coli-PYR1 biosensor’s response time calculation. 3D figures have been developed to 
understand the link between the higher time-dependent concentration of ABA and the response time. 
Lower detection time has been shown with the dark colors and vice versa. The average total time taken by 
bacteria to respond is calculated as 431.52 s
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incorporates not only the innate bacterial properties but also the environmental factors 
to simulates the its behavior making our model more robust than presented in [11]. The 
simulated results exhibit sensor’s chemotactic behavior in response to attractant con-
centration gradients in plant leaves, moving around 4.76µm in response to different 
attractant levels, producing at a rate of  10−11 mol/s and accomplishing this within an 
average time duration of 460  s. These techniques can be expanded to deploy multiple 
sensors for detecting various plant hormones, enhancing early stress detection and plant 
monitoring.

The biosensor’s ability to monitor ABA levels provides practical applications in early 
detection of drought and salinity stress, enabling timely interventions and optimized 
irrigation strategies to reduce crop losses. The insights into detection times and biolumi-
nescence thresholds offer precise, actionable data tailored to specific agricultural stress 
scenarios, making the biosensor a valuable tool for precision agriculture.

Incorporating deep learning and AI into biosensor design further enhances its poten-
tial by optimizing parameters such as binding kinetics and detection thresholds, ena-
bling real-time adaptation to environmental changes. AI-driven predictive models 
support multi-analyte detection, while advanced techniques like reinforcement learning 
and generative adversarial networks (GANs) accelerate the discovery of novel designs 
and improve signal amplification. Integration with IoT platforms provides actionable 
insights for smart agriculture applications, including stress mitigation and precision 
irrigation.

Conclusion
Our research proposes an innovative biological sensor for detecting plant hormones 
engineered to mitigate the stochastic behavior inherent in natural systems. The pro-
posed biological sensor model represents an innovative stride towards inexpensive, 

Fig. 9 Comparison of the response time of the sensor against the different concentrations of ABA and with a 
whole cell heavy metal biosensor
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advanced sensing technologies. Our biological sensor model involves engineering E. coli 
bacteria with receptors derived from PYR1, a plant ABA receptor. The detection system 
is coupled to a luciferase enzyme, which catalyzes a luminescence reaction when ABA 
binds to the receptors, thereby signaling the presence of ABA.

Simulation models illustrate the sensor’s capabilities as it achieves an average response 
time of 431.52 s and can traverse plant roots in approximately 1220.12 s during the rhiz-
ophagy process. Water flow in the xylem creates an advection that speeds up bacterial 
movement up to 21.65 µm/s, overcoming diffusion constraints in shoots. Additionally, 
the bacteria exhibited chemotactic behavior in response to attractant concentration gra-
dients in plant leaves, moving around 4.76 µm in response to different attractant levels, 
producing at a rate of  10−11 mol/s and accomplishing this within an average time of 460 s 
with speed of 1.0 ×  10−9. These techniques can be expanded to deploy multiple sensors 
for detecting various plant hormones, enhancing early stress detection and plant moni-
toring. This approach promises to improve agricultural management and resource effi-
ciency significantly. Our ongoing efforts include leveraging deep learning and artificial 
neural networks to refine sensor design and deepen our understanding of ABA signal-
ing. Collaborative efforts can further refine the design, leading to enhanced and reliable 
results through experimental validation and field implementation.
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