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Abstract 

Background: While alignment has traditionally been the primary approach for estab-
lishing homology prior to phylogenetic inference, alignment-free methods offer a sim-
plified alternative, particularly beneficial when handling genome-wide data involving 
long sequences and complex events such as rearrangements. Moreover, alignment-
free methods become crucial for data types like genome skims, where assembly 
is impractical. However, despite these benefits, alignment-free techniques have 
not gained widespread acceptance since they lack the accuracy of alignment-based 
techniques, primarily due to their reliance on simplified models of pairwise distance 
calculation.

Results: Here, we present a likelihood based alignment-free technique for phylo-
genetic tree construction. We encode the presence or absence of k-mers in genome 
sequences in a binary matrix, and estimate phylogenetic trees using a maximum 
likelihood approach. A likelihood based alignment-free method for phylogeny estima-
tion is implemented for the first time in a software named Peafowl, which is available 
at: https:// github. com/ hasin- abrar/ Peafo wl- repo. We analyze the performance of our 
method on seven real datasets and compare the results with the state of the art 
alignment-free methods.

Conclusions: Results suggest that our method is competitive with existing alignment-
free tools. This indicates that maximum likelihood based alignment-free methods may 
in the future be refined to outperform alignment-free methods relying on distance 
calculation as has been the case in the alignment-based setting.
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Background
A phylogenetic tree depicts the evolutionary history of a given set of species. Efficient 
and accurate construction of phylogenies from genome data is one of the most impor-
tant problems in biology and is a major research focus in bioinformatics and system-
atics. Phylogeny construction methods can be broadly classified into two groups: 
distance based and character based. Distance based methods compute the distances 
from the genomic sequences of each pair of species to construct a distance matrix. Tree 
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construction algorithms are then applied to this matrix to estimate the tree topology. 
Popular distance based methods include UPGMA [1], neighbor-joining [2], etc. They are 
fast and can handle many sequences but their performance is dependent on the accu-
racy of the distance matrix. Character based methods, on the other hand, make use of 
the sequences typically in the form of a multiple sequence alignment (MSA). Maximum 
parsimony [3] is a character based approach where a character matrix is taken as input 
and the best tree under the maximum parsimony criterion is the one that minimizes the 
number of changes in the nucleotide sequences over time. Maximum likelihood [4], a 
probabilistic character based approach, uses specific models of sequence evolution to 
find a tree that maximizes the likelihood of observing the set of input sequences. This 
approach is quite realistic in nature and suitable for species that vary widely in terms of 
similarity unlike the maximum parsimony approach.

Previous studies indicate that, in general, maximum likelihood approaches are supe-
rior in terms of performance over distance based methods. Maximum likelihood based 
methods were observed to estimate correct trees better than the neighbor joining 
method when the underlying assumptions behind the methods are not satisfied [5]. In 
addition, maximum likelihood based methods are also more robust than distance based 
methods using least square criterion [6].

However, in the alignment-based paradigm, both distance based and character based 
approaches require prior alignment of input sequences. The quality of alignment greatly 
affects the resulting phylogeny. Sequence alignment is memory and time consuming, and 
hence is difficult to scale to large sequences and whole genomes. Moreover, finding an 
optimal multiple sequence alignment is known to be computationally intractable as the 
number of possible alignments increases exponentially with increasing sequence lengths 
[7]. Furthermore, alignment-based methods assume a preserved linear order of homol-
ogy, and therefore the presence of rearrangement events, such as translocation, inver-
sion, etc. within whole genome sequences complicates sequence alignment—making it 
even more challenging to construct accurate phylogenetic trees from whole genomes [7].

To overcome the aforementioned difficulties, phylogenetic analyses that are not con-
fined to alignment needs are gaining increasing attention, saving substantial time and 
memory in the phylogeny estimation process. The methods are collectively known as 
alignment-free methods. They are robust to rearrangement events and suitable for phy-
logeny estimation from large sequences and even whole genomes. However, despite 
their practical advantages, alignment-free techniques have not demonstrated the same 
level of accuracy as alignment-based methods. It is important to acknowledge that we do 
not anticipate alignment-free methods to match the accuracy of alignment-based meth-
ods, particularly when dealing with small, rearrangement-free sequences such as single 
genes. This is because alignment-free methods still require effective strategies for han-
dling homology, a challenge that is no less complex than alignment itself.

A multitude of recently developed alignment-free methods have been comprehen-
sively reviewed in [8, 9]. Among these, co-phylog [10] searches for short alignments of 
fixed length in the sequences allowing a mismatch in the middle. Evolutionary distances 
are calculated from these sub-sequences, followed by tree generation. andi [11] looks 
for mismatches surrounded by long exact matches. Counts of mismatches are used to 
estimate the number of substitutions between two sequences. Mash [12] is based on 
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the MinHash technique to find representative sketches of sequences from which Jac-
card indices are estimated as a distance measure. Multi-SpaM [13] uses the Space Word 
Match (SWM) [14] approach to identify quartet groups, i.e. a group of four space words 
with matching nucleotides at the match positions and probable mismatches at the don’t 
care positions.

However, despite their potential, alignment-free methods have not yet been found 
to be as accurate as alignment-based methods. Majority of the alignment-free meth-
ods developed so far are distance based and hence do not allow model based phylog-
eny estimation that are known to be more robust than the former. Höhl and Ragan [15] 
proposed a Bayesian approach for phylogeny inference based on the existence of k-mers 
(contiguous subsequences of length k) in the sequences.

In this paper, motivated by the observation that methods using maximum likelihood 
outperform distance based methods in the alignment-based setting, we present an align-
ment-free method for phylogenetic tree construction that utilizes maximum likelihood 
estimation. We first construct a matrix encoding the presence or absence of k-mers 
within the sequences, and then use an existing model for binary traits to construct a 
phylogeny that maximizes likelihood. The method is implemented in a tool called Pea-
fowl (Phylogeny Estimation through Alignment Free Optimization With Likelihood). 
We analyze the performance of our method by applying it on seven real datasets, includ-
ing datasets from the AFproject [9] which is widely used for assessing alignment-free 
tools.

Methods
An overview of phylogenetic tree estimation using Peafowl is shown in Fig. 1. The 
method consists of four major steps. First, the set of k-mers present in each input 
sequence is generated. Second, a binary matrix is constructed, which encapsulates the 
presence or absence of the k-mers within the sequences. Third, a suitable value of k 

Fig. 1 Overview of phylogenetic tree estimation using Peafowl. At the beginning, k-mers of various sizes 
are listed from the input sequences using the k-mer counting tool Jellyfish. Then separate binary matrices are 
produced using these k-mers. From the binary matrices of different k-mer sizes, an appropriate k-mer length 
( kentropy ) is chosen based on cumulative entropy values. Lastly, the binary matrix corresponding to kentropy is 
provided as input to RAxML for the estimation of the phylogenetic tree
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is chosen based on entropy values. Finally, a phylogenetic tree is constructed using 
maximum likelihood estimation. A sketch of the steps is presented in Algorithm  1 
and described in more detail in the following sections.

Algorithm 1 Phylogeny estimation using Peafowl 

Generating k‑mers

The first step in Peafowl is to generate the lists of k-mers present in the input 
sequences. k-mers are generated from the input DNA sequences using Jellyfish [16] 
for odd values of k ranging from 9 to 31 (more details in Subsection Finding an 
appropriate k-mer length). As DNA is double-stranded and the sequences in the two 
strands are complements of each other, the input sequences can be from one strand 
or from both. In the latter case, it is more appropriate to consider a k-mer and its 
reverse complement as the same during counting, usually referred to as canonical 
counting. In the former case, a k-mer and its reverse complement can be treated inde-
pendently, commonly known as non-canonical counting. Our method is designed to 
work in both possible modes, allowing the user to choose how reverse complements 
should be treated during the k-mer counting step. However, all the results shown in 
this paper except one (see Subsection Horizontal gene transfer (HGT)) are obtained 
using the canonical counting mode as the assembled sequences may correspond to 
either strand of DNA.
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Generating binary matrices

The next step is to construct a binary matrix denoting whether the generated k-mers are 
present in the given sequences or not. This matrix consists of only 0’s and 1’s. Its rows and 
columns represent the k-mers and the input species, respectively. An entry in the matrix 
contains 1 if the k-mer representing the row (or its reverse complement) exists in the 
sequence of the species representing the column and 0 otherwise. One such matrix is pro-
duced for each value of k. We use hashing for this particular task. k-mers are read from a 
file, and a unique index is generated for each of them. The k-mers are inserted into a hash 
table along with the identification numbers of species they come from. The hash table indi-
ces are accessed one after another while placing an appropriate value in the desired position 
of the matrix.

Finding an appropriate k‑mer length

A number of approaches have been proposed by researchers to choose a proper k-mer 
length for alignment-free analysis. [17] applies a logarithmic function on input sequence 
lengths to calculate a suitable value of k. The limitation of this selection process is that it 
does not take into account how closely related the species are. Slope-SpaM [18] analyzes 
match probability to calculate lower and upper bounds on k-mer length. However, it does 
not serve the need for a specific value of k that our model requires. More specifically, our 
target is to find a value of k that would capture the most informative binary matrix for tree 
generation.

The genetic diversity among the different genome sequences can be modeled by the con-
cept of entropy [19]. This concept has been previously used by several other sequence anal-
ysis approaches [20, 21]. We utilize this in our method for k-mer length selection (Fig. 2). 
k-mers that can be found in almost all the species introduce many 1 s in the matrix, while 
rare ones introduce many 0 s. k-mers that do not fall in either of these extremities provide 
comparatively more information. A binary matrix rich in these types of k-mers will capture 
the relationship between species better than the others. Since entropy can capture the ran-
domness in a system, we use this metric to compare the information content of the binary 
matrices, and choose an appropriate k-mer length. Cumulative entropy for a binary matrix 
is calculated using the following equation.

where

Centropy = −

q∑

i=1

∑

x∈{0,1}

pri(x) log pri(x)

pri(x) =

∑m
j=1 1Xri ,j

=x

m

Fig. 2 Choosing k-mer lengths. Existence of k-mers depends on the length. In this figure, the k-mer AT of 
length 2 is found in all 3 taxa. However, the k-mer ATA GCG C of length 7 is found only in the source taxon (T1)



Page 6 of 14Zahin et al. BMC Bioinformatics           (2025) 26:77 

Here, q represents the number of k-mers used for entropy calculation, and m repre-
sents the total number of species. Xi,j represents the state of an entry in the matrix cor-
responding to the ith row and the jth species, and can take values of either 0 or 1. Again, 
1Xi,j=x = 1 if Xi,j = x , and 0 otherwise. The equation adds the entropy values of q ran-
domly selected rows [r1, r2, . . . , rq] to get the cumulative entropy ( Centropy ) for a binary 
matrix. Here, q is empirically chosen to be 5000.

Empirical evidence suggests that k values less than 9 cause k-mers to be excessively 
abundant, while those greater than 31 often lead to the presence of k-mers in only one 
or a few sequences [18]. For even values of k, a k-mer and its reverse complement may 
become the same causing inconsistency in the non-canonical counting mode [22]. To 
address these issues and to reduce the computational complexity, binary matrices are 
created for odd k-mer lengths ranging from 9 to 31. Centropy values from different k-mer 
lengths are compared and the value of k resulting in the maximum entropy is selected to 
be the most suitable one. We refer to this length as kentropy.

Generating phylogenetic trees

Once we have obtained kentropy , the final step is to construct a tree from the binary 
matrix corresponding to this length. This is done by providing the concerned matrix 
as input into a widely used tool for maximum likelihood phylogeny estimation named 
RAxML [23]. We use an existing model of substitution for binary traits BINGAMMA for 
our method. It is defined for binary data and assumes a gamma prior on the site muta-
tion rates. The model takes in binary sequences and outputs an estimated tree topology, 
assuming sites to be independent. However, in reality, one character substitution in a 
sequence affects a number of neighboring k-mers at that site. This is why we focus on 
tree topology for now and leave branch length estimation as future work.

Implementation

Peafowl is implemented using C++ and shell scripts. In addition, it uses Jellyfish 2.2.4 
for k-mer counting. A rigorous comparison of k-mer counting methods is presented by 
Zhang et al. [24]. We choose Jellyfish [16] on the basis of this comparison. The tool is 
fast, supports dynamic memory and is preferable for large genome sequences.

Peafowl also uses RAxML 8.2.4 for phylogeny estimation. RAxML stands for Ran-
domized Axelerated Maximum Likelihood [23]. It is a popular phylogenetic analysis 
software that can handle large datasets and is useful for maximum likelihood based phy-
logeny inference.

Results
Datasets and benchmarking

We assess the performance of our method using seven real datasets. First, we analyze a 7 
Primates dataset [8] and a Drosophila dataset from [25]. The 7 Primates dataset contains 
full mitochondrial genome sequences of 7 primates, and the Drosophila dataset consists 
of real genome skims of 14 Drosophila species subsampled to 100 Mb. We selected these 
datasets as the reference trees for these species are well established.

Next, we analyzed datasets from the AFproject [9] that have been widely used for 
benchmarking alignment-free methods. We selected the five real datasets under the 
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Genome-based Phylogeny and Horizontal Gene Transfer categories that had assembled 
genomes. They include assembled sequences of 29 E.coli/Shigella strains [10], assembled 
mitochondrial genomes of 25 fish species of the suborder Labroidei [26], full genome 
sequences of 14 plant species [27], full genome sequences of 27 E.coli/Shigella strains 
[28], and full genome sequences of 8 Yersinia strains [28].

Genome sequences, benchmark trees, and results of the last five datasets were 
obtained from the AFproject [9]. For the primates and Drosophila datasets, sequences 
and the benchmark trees are obtained from [8] and [25], respectively. The primary per-
formance metric used throughout this paper is the Robinson Foulds (RF) [29] distance. It 
gives a measure of the distance between two trees by counting the number of dissimilar 
partitions. The distance is divided by the maximum possible RF value to obtain the nor-
malized RF distance (nRF). The smaller this score, the more congruent the estimated 
and the reference trees.

Our method is run on these datasets (except one) with the-r parameter (canonical k-
mer counting) i.e. reverse complements are considered the same k-mer. The tree cor-
responding to kentropy is treated as the final tree. The nRF distance between this tree and 
the reference tree is compared to those achieved by state-of-the-art methods from the 
AFproject [9]. The benchmarked methods include FFP [30, 31], co-phylog [10], Mash 
[12], Skmer [25] FSWM/Read-SpaM [32, 33] andi [11], phylonium [34], Multi-SpaM 
[13], and CAFE-cvtree [35]. It has been observed that no single method benchmarked by 
AFproject [9] achieves the best scores across all datasets. The aforementioned methods 
include the top performers.

Some of the benchmarked tools generate a distance matrix as output and not a phy-
logenetic tree. Therefore, for the 7 primates and Drosophila datasets, we apply neigh-
bor-joining and UPGMA implementation of MEGA-X [36] on the distance matrix to get 
the estimated trees, and find the RF distances using PHYLIP [37]. nRF values of bench-
marked tools reported here are from trees produced by neighbor-joining. Results from 
UPGMA are available in the supplementary materials. We limit the scope of our work to 
phylogenetic trees upto a maximum of 30 species.

Selection of k‑mer lengths

We first explore how the estimated trees vary with different k-mer lengths. The variation 
of nRF and entropy with change in k-mer size for the 7 Primates and Drosophila datasets 
are illustrated in Fig. 3. Similar plots for the remaining datasets are shown in Supple-
mentary Figures S1–S5. We observe that, for the 7 Primates dataset, the minimum nRF 
distance of 0 and the maximum entropy is obtained when k equals 9. In all cases, we find 
that the lowest nRF distances occur at the k-mer lengths with the highest entropy i.e. 
kentropy . We observe that in Fig. 3a there is a drop in nRF at k=23. This might be because 
the dataset contains only seven species, so a change in a single branch leads to a substan-
tial decrease in the nRF value. In the subsequent sections, we only report nRF distances 
corresponding to the tree obtained using kentropy.

7 Primates and drosophila datasets

The nRF distances for Peafowl and other methods for the 7 Primates and Drosophila 
datasets are demonstrated in Fig. 4 and Supplementary Table S1. Peafowl along with a 
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few other methods (e.g., andi, Multi-SpaM, FFP) correctly reconstructed the reference 
tree. It is worth noting that highly accurate methods like Mash, Skmer, and co-phylog 
placed Gibbon as the sister to hominine (gorillas, chimpanzees, and humans) and thus 
failed to reconstruct the well-established (orangutan, (gorilla, (chimpanzee, human))) 
relationship (see Fig. 5a).

For the Drosophila dataset, the trees with the lowest nRF distances were obtained by 
Peafowl, Skmer and phylonium (Fig. 4). Both Peafowl and Skmer produced the same 
tree which differs from the reference tree in one branch (see Fig. 5b). Skmer and Pea-
fowl reconstructed the sister relationship of Drosophila mauritiana and Drosophila 
simulans which contradicts the reference tree supporting the (Drosophila mauritiana, 
(Drosophila simulans, Drosophila sechellia)) relationship.

An additional advantage of Peafowl is it allows generation of support values. 
Whereas most alignment-free tools produce only one tree, Peafowl can leverage 

Fig. 3 nRF and entropy vs. k-mer. Variation of normalized Robinson Foulds distance and entropy with 
change in k-mer length for a the 7-Primates dataset and b the Drosophila dataset. Diamond shaped markers 
represent values corresponding to kentropy

Fig. 4 Comparison of nRF distances. nRF distance comparison among Peafowl and state-of-the-art methods 
on the 7 Primates and Drosophila datasets
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RAxML to produce bootstrap values, enhancing confidence in the results. Supple-
mentary Figures S12 and S13 show the consensus trees for the primate and Drosoph-
ila datasets respectively along with the bootstrap support values generated using the 
rapid bootstrapping option in RAxML.

Genome‑based phylogeny

The Genome-based Phylogeny group of the AFproject [9] includes assembled 29 
E.coli/Shigella strains [10], assembled mitochondrial genomes of 25 fish species of the 
suborder Labroidei [26], and full genome sequences of 14 plant species [27]. A com-
parison of the nRF distances achieved by various methods is shown in Fig.  6. Pea-
fowl attains nRF values of 0.23, 0.05, and 0.36 on these datasets, respectively.

Fig. 5 Analysis of the Primate and Drosophila phylogenies. The internal branches in the estimated trees that 
are not found in the reference trees are shown in red. a The trees estimated by Peafowl (which is identical to 
the reference tree [8]), Skmer, and Mash. b The trees estimated by Peafowl and Skmer in comparison to the 
reference tree

Fig. 6 Comparison of nRF distances on the AFproject datasets. nRF distance comparison among Peafowl 
and several different methods on real datasets from AFproject. Exact values can be found in supplementary 
materials
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On the 25 Fish dataset, our method is one of the best performing tools, achieving the 
lowest nRF distance of 0.05 along with Mash and FSWM. Estimated and reference trees 
for fish genome are shown in Supplementary Figure S6.

However, on the 29 E.coli/Shigella and the 14 plant datasets, Peafowl is outper-
formed by other methods. The best performing method on the 29 E.coli/Shigella data-
set is phylonium whereas co-phylog, Mash and Multi-SpaM generate the most accurate 
trees on the 14 plant dataset.

Estimated and reference trees for the 29 E.coli and 14 plant datasets are available in 
Supplementary Figure  S7 and S8. It is worth noting that the reference tree for the 29 
E.coli dataset was constructed using an alignment-based approach from the assembled 
genomes [10] and has not been thoroughly validated subsequently. For the plant dataset, 
the kentropy value in Peafowl was calculated based on running the method over a k-mer 
range of 9 to 17 instead of 9 to 31 to avoid resource exhaustion. Results are not included 
in the entropy variation plot for k equals 9 and 17 due to the presence of all 1’s in the 
binary matrix, resulting in zero entropy and computational limitation, respectively.

Horizontal gene transfer (HGT)

This category of data from the AFproject [9] includes full genome sequences of 27 E.coli/
Shigella strains [28] and 8 Yersinia strains [28]. These two datasets are known to have 
undergone extensive genome rearrangements [9]. They exhibit horizontal gene transfer 
properties that may cause distant species to show sibling-like properties (such as similar 
k-mers).

The performance of various alignment-free tools on the Yersinia dataset is shown in 
Fig. 6. An observation was made previously [9] that whole-genome analysis tools tend to 
construct trees relatively discordant to the reference tree on Yersinia sequences than tra-
ditional approaches. This seems true for Peafowl as well, with an nRF of 1 on this data-
set. The best performing method in this dataset is CAFE-cvtree. However, most tools 
perform poorly in this case, with only two having an nRF value below 0.8. It has been 
conjectured that the complex nature of the genus and substantial rearrangement events 
may promote this discrepancy [9].

We further explored this issue and noted that the eight Yersinia genomes are very 
similar in sequence but share genome rearrangements, and the reference tree was con-
structed using genomic inversion events inferred from a whole-genome alignment 
[28]. Since in the canonical counting mode, k-mers and their reverse complements are 
counted together, inversion events are undetected except at the two ends of the inver-
sions. So, we also run our method without the-r parameter i.e. perform non-canonical 
counting, implying that k-mers and their reverse complements are treated as separate 
entities by the counting tool. Remarkably, with the non-canonical counting mode, Pea-
fowl reconstructed a tree that is identical to the reference tree (Fig. 7, Supplementary 
Figures S9, S10).

Supplementary Tables  S2 and S3 report the entropy and nRF values (corresponding 
to the highest entropy) achieved by Peafowl in the canonical and non-canonical set-
tings, respectively. We observe that the entropy values in the non-canonical mode are 
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substantially higher than those in the canonical mode for the Yersinia dataset. On the 27 
E.coli/Shigella dataset, our method achieves nRF distance of 0.17, but the best perform-
ers include co-phylog, andi and phylonium with an nRF of 0.08 (Fig. 6). Estimated and 
reference trees for E.coli/Shigella are shown in Supplementary Figure S11.

Runtime and memory usage

All the datasets are run in an AMD Ryzen 9 7950X 16-Core Processor machine with 64 
GB RAM. Table  1 summarizes the unzipped size of the datasets used, corresponding 
runtime, and peak memory usage by Peafowl. Values for the plant dataset are corre-
sponding to a k-mer range of 9 to 17. A breakdown of runtimes of various steps of Pea-
fowl as well as the dimensions of the k-mer presence/absence matrices are provided in 
Supplementary Table S4.

Conclusions
In this paper, we presented Peafowl, an alignment-free method for phylogeny estima-
tion using maximum likelihood. It circumvents the complexity of multiple sequence 
alignment and combines the merits of maximum likelihood estimation in tree 

Fig. 7 Analysis of the Yersinia phylogenies. a The tree estimated by PEAFOWL with non-canonical counting 
mode, which is identical to the reference tree. b Peafowl-estimated tree with canonical mode of counting. 
The branches in the estimated tree that differ from the reference tree are shown in red

Table 1 Runtime and peak memory usage of Peafowl 

Dataset Size Time Peak 
memory 
usage (GB)

7 Primates 114 Kb 36 sec 5

14 Drosophila 2.1 Gb 25 hour 16 min 12 sec 23

25 Fish 411 Kb 1 min 12 sec 5

14 Plant 4.47 Gb 8 hour 18 min 0 sec 40

29 E.coli 137 Mb 1 hour 20 min 24 sec 6

27 E.coli 128 Mb 1 hour 38 min 24 sec 6

8 Yersinia 35.7 Mb 28 min 12 sec 6
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construction. We evaluated the performance of Peafowl on seven real datasets and 
compared the results with the state of the art alignment-free methods. We observe that 
Peafowl generates trees with the lowest nRF distances in three of the datasets, while 
phylonium acheives the lowest nRF in four datasets (Figs. 4 and 6). Moreover, the tree 
estimated by Peafowl on one other dataset (Yersinia dataset) matches the reference 
tree when it is run in a mode suited to capture inversions. Our experimental results sug-
gest that the performance of various methods may substantially vary across different 
datasets. Therefore, selecting suitable methods becomes particularly challenging when 
the data are heterogeneous, which is often so for genome-scale phylogenetic data. Con-
sequently, alignment-free tree estimation, far from being a “solved problem”, merits fur-
ther attention and improvements.

Peafowl has several limitations and can be extended and improved in a number of 
ways. First, it does not work well if the species are distant since very few k-mers are 
conserved across the species in this case. Its performance also suffers if sequences con-
tain considerable missing regions. In the future, these issues may be addressed. Second, 
the current version works on assembled sequences or genomes. A future direction will 
be to extend it to support phylogeny estimation from unassembled sequencing reads. 
Third, trees are presently estimated using an existing model for binary traits based on 
presence or absence of k-mers, and actual counts are ignored. As such, the estimated 
branch lengths are often inaccurate. In the future, models suitable for k-mer counts may 
be developed, which may then be utilized to accurately infer branch lengths. Finally, our 
tool is substantially slower than distance-based alignment-free methods which limited 
our experiments to datasets containing up to 30 taxa. We find that the step that com-
bines the Jellyfish generated k-mer lists of different species into the k-mer presence/
absence matrices for various values of k to select the k-mer length corresponding to the 
maximum entropy takes most of the time. A future direction will be to resolve this issue 
to accommodate larger taxonomic groups. Moreover, a sketch-based approach such as 
Mash [12] can be explored and only a subset of k-mers may be considered.
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