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Introduction
Advanced sequencing technologies have significantly accelerated the discovery of 
genomic and transcriptomic sequences, leading to a substantial expansion of the known 
protein space [1]. Metagenomic approaches have been the primary contributors to this 
growth [2], with microbial protein sequences increasing by approximately 50% annu-
ally, as reported by the UniProt database [3]. Despite this surge, as of December 2024, 
less than 0.3% of the sequences deposited in UniProt (572,619 reviewed vs. 253,682,368 
unreviewed) have been manually annotated [3]. The key challenge remains the develop-
ment of bioinformatics tools capable of efficiently characterising and annotating these 
protein sequences at both the sequence- and site-specific levels to facilitate functional 
studies [4].

To facilitate the functional characterisation of protein sequences, various computational 
tools have been devised to query established biological databases for known properties 
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(e.g., amino acid physiochemical properties [5]) or to predict unknown attributes (e.g., 
protein–protein interaction sites [6] and variant effects [7]). Most of these tools focus on 
feature generation for a given set of protein sequences [8–12]. However, the datasets used 
are often pre-processed and generated independently from large-scale protein databases by 
separate tools [13] or custom scripts, resulting in a time-consuming workflow. Moreover, 
in the post-processing stage, integrating diverse protein features from multiple tools for 
machine learning and performance evaluation can be challenging. Currently, there are few 
tools that provide a comprehensive solution covering both pre- and post-processing stages 
of protein sequence analysis.

In this work, we describe PyPropel, a Python package designed to streamline the han-
dling of protein sequence data, with a focus on machine learning applications. PyPropel 
provides a wide range of functionalities to facilitate the pre-processing, structural and 
functional depiction, and post-processing of protein sequence data. In the pre-processing 
stage, it enables users to retrieve sequence and structural data while enhancing the quality 
of custom-built datasets, such as converting between interchangeable formats for multiple 
sequence alignments (MSAs) [14]. PyPropel can also query UniProt for structural and func-
tional information given protein entries (e.g., experimental evidence of binding sites) or 
generate annotations by reprocessing results from built-in functions or external tools (e.g., 
relative solvent accessibility [15]). Additionally, PyPropel supports the integration of protein 
features from multiple sources and allows for performance comparison in tasks involving 
single amino acid predictions (e.g. disordered sites [16]). By refining the processing work-
flow for protein sequencing data, PyPropel complements existing bioinformatics tools and 
enhances protein functional research.

Implementation

PyPropel is designed modular and scalable, offering bioinformatics researchers seam-
less integration with external computing libraries and tools. For instance, protein entries 
screened by other tools (e.g., TMKit [17], a tool we previously developed for transmem-
brane proteins) can be effortlessly passed into PyPropel for sequence and structural data 
generation and quality control within a Jupyter notebook or a Python script. Protein fea-
tures are organised in a two-dimensional Python list, allowing for easy inclusion or exclu-
sion of specific features as required. This flexible architecture supports the training of 
machine learning models under various criteria, simplifying the process of comparing 
results with baseline models.

Results
Overview of PyPropel

PyPropel offers a suite of functions for pre-processing, characterising, and post-processing 
protein sequence, structural, and functional data (Fig. 1). When used in conjunction with 
TMKit, PyPropel provides a comprehensive workflow for preparing and generating protein 
datasets and feature sets required for machine learning studies.
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Pre‑processing sequence and structural data

Retrieval and quality control of sequence and structural data.

PyPropel automates the bulk retrieval of topological records in XML formats [18, 19] 
and Protein Data Bank (PDB) structures [20] based on a list of protein entries, fol-
lowed by comprehensive quality control. During this process, the structural data is 
assessed to ensure exclusion of HETATM atoms and the absence of unknown amino 
acids (i.e., annotated as UNK in PDB files). PyPropel also facilitates the seamless 
extraction and conversion of sequences across multiple formats, ensuring accurate 
residue numbering and consistent tracking. Additionally, PyPropel optimises the 
computationally intensive task of identifying discrepancies between large protein 
lists, enabling the comparison of tens of millions of protein identifiers to be com-
pleted within seconds.

Fig. 1  Overview of main characteristics of PyPropel, including (a) batch operation of data, (b) dataset 
preprocessing, (c) distance calculation, (d) feature generation, (e) performance evaluation, and (f) feature 
vector support. a. PyPropel functions robustly in file I/O operation and batch-processes multiple kinds of 
files. b. PyPropel can automate the generation of datasets once a list of molecular identifiers is supplied. 
c. It contains functions to calculate distance between amino acid residues to label samples for structural 
bioinformatics. This is an important step to generate ground-truth labels for machine learning. d. At the core 
of PyPropel is the module for feature generation, which helps the structural and functional characterisation 
of protein sequences, particularly facilitating sequence-based prediction problem studies. Once labels and 
features are generated, the data can directly be passed on to machine learning libraries (e.g. scikit-learn, 
with two examples demonstrated on PyPropel’s documentation) to train models. Finally, PyPropel supports 
the calculation of evaluation metrics of model performance. f. Note that PyPropel supplies various vectors 
to accommodate the features of individual residues, entire protein sequences, or residue pairs. PyPropel is a 
cross-platform tool implemented with Python. The asterisk (*) represents the reliance of feature generation 
on external files
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Distances between residues at intra‑ and inter‑protein levels

Calculating residue distances within or between protein chains and complexes is cru-
cial for identifying functionally and structurally significant residues [21]. In the absence 
of experimental evidence for functional sites, residues that are spatially proximal at the 
inter-protein level are often inferred to be potential interaction sites [6, 22]. By applying 
a distance cutoff, residues can be categorised as interacting or non-interacting. Distance 
measurements can be made using heavy atoms (i.e., non-hydrogen) [23] or Cα atoms [24] 
allowing for precise identification of protein–protein interactions within complexes. 
This facilitates the generation of a list of interaction sites and their respective distances.

Characterisation of protein sequences

Intrinsic protein features

PyPropel provides various features that capture multiple aspects of protein sequences, 
including compositional, conservation, length, positional, profile, relative solvent acces-
sibility (RSA), physicochemical, and secondary structure properties. These features are 
applicable to entire protein sequences, multiple sequence alignments (MSAs), and indi-
vidual amino acid sites. Some, such as 23 physicochemical properties derived from exist-
ing literature [5, 25–28], are permanently integrated within PyPropel, while others, like 
RSA, are dynamically calculated using outputs from external tools. This extensive range 
of features enables detailed analysis and modelling of protein characteristics, supporting 
a broad spectrum of functional and structural studies.

Extract experimental evidence using UniProt databases

UniProt is a comprehensive repository of protein sequences, as well as structural and 
functional annotations, providing data on transmembrane segments, multiple protein 
identifier versions, experimentally resolved structures, and binding sites. However, bulk 
access to this information via the webserver or public API can be inefficient. To over-
come this limitation, we developed a module within PyPropel that facilitates the rapid 
extraction of UniProt data, either at the species level or for customized proteins sets, 
significantly streamlining the retrieval process for large-scale analyses.

Post‑processing sequence and structural data

Feature extraction

Protein features in PyPropel are derived from various sources and are organised in a 2D 
list, allowing for flexible inclusion or exclusion of different feature categories. Features 
can be assigned to single or pairwise sites within specific regions, such as transmem-
brane segments of interests (Table  1). Additionally, a sliding window centred at each 

Table 1  Summary of assembling features using feature vectors for prediction problems

Level Feature vector Sliding 
window

Example of application

Single site Certain segment/whole sequence Yes Protein interaction site identification

Pairs of sites Certain segment/whole sequence Yes Protein interaction interface identification

Protein N/A No Protein target identification
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selected site can be applied to characterise the surrounding sequence context. The effec-
tiveness of this approach has been demonstrated for assigning features to residues for 
site interaction prediction [29].

Performance evaluation of site‑wise prediction problems

Evaluating the performance of machine learning models is crucial for assessing their 
predictive accuracy and practical utility. We developed a versatile module that generates 
a comprehensive set of evaluation metrics, such as precision and recall, specifically for 
site-wise prediction tasks. This module has been applied to assess the performance of 
protein–protein interaction site predictions and is adaptable to other site-wise predic-
tion problems, such as identifying disordered residues or assessing the effects of residue 
variants. It provides a robust framework for evaluating predictive performance across 
diverse biological contexts.

Visualisation

In the current version of PyPropel, we provide simple functions to visually interpret sev-
eral biological properties. For example, we show the conservation profiles of six example 
proteins calculated by Jensen-Shannon divergence [30] (see examples in Supplementary 
Fig.  1). Additionally, the module can be used to plot evaluation metrics for machine 
learning models and offers flexibility and scalability for both biological property visuali-
zation and model performance assessment.

Comparison of characteristics with related work

By benchmarking the functionalities of Python-based tools in protein science, we found 
that most of them work exclusively for feature extraction, especially based on protein 
sequences rather than protein structures and/or homologous sequences (Table 2). These 
types of data contain informative features for machine learning [31, 32]. For example, 
evolutionary information derived from homologous sequences is useful to deduce the 
conservation of functionally and/or structurally important amino acid sites [33]. In 
PyPropel, we design modules to systematically extract evolutionary profiles from homol-
ogous sequences and generate the features based on protein structures (3di-encoded 
sequences and states [34] and relative solvent accessibility [35]). In addition, many of the 
tools hold versatile functionalities for processing DNA and RNA sequences (e.g. PyBi-
oMed [36] and scikit-bio [37]) and a minority of them gain capability to provide end-
to-end analysis workflows to allow for the transition from raw data to machine learning 
applications (e.g. ProPythia [38] and iLearnPlus [9]).

Validating the reliability of PyPropel

To gain an understanding of the computational efficiency of PyPropel, we managed to 
evaluate the runtime of generating three commonly seen features derived purely from 
protein sequences, including the composition of amino acids (20 dimension), dipeptides 
(400 dimension), and tripeptides (8000 dimension). Our results demonstrate that PyPro-
pel is among the fastest tools, for example, consuming 1.437 s to generate the tripeptide 
composition of 10 proteins (Supplementary Fig. 2). In addition, to gain an understand-
ing of the quality of analysis results of PyPropel, we calculate the physical distances of 
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residues (residing in chain A) away from other residues (residing in other chains) in 
human calcium homeostasis modulators (PDB code: 6UIW). Our results suggest that 
the interaction interfaces determined based on the distances highly agree with the true 
landscape of interactions in the native structure (Supplementary Fig.  3). Moreover, to 
increase the usability of PyPropel, we showcased two end-to-end analysis pipelines in its 
documentation for predicting interaction sites and drug target interactions, showing the 
high compatibility of PyPropel with other protein sequence and structural analysis tools 
(such as TMKit [17] and PyBioMed [36]).

Conclusion
PyPropel streamlines both the pre- and post-processing of protein sequence data, opti-
mising workflows for bioinformatics and machine learning applications. By integrating 
functionalities such as automated data retrieval, structural and functional annotation, 
and the assembly of multisource protein features, PyPropel improves the efficiency of 
dataset generation and model evaluation. Its ability to seamlessly combine pre-pro-
cessing, annotation, and feature extraction from diverse tools addresses a gap in cur-
rent bioinformatics pipelines, providing a comprehensive solution for large-scale protein 

Table 2  Comparison of functionalities between different Python-based analysis tools

Tool Working 
mode

Sequence 
type

Statistical 
analysis / 
machine 
learning

MSA 
analysis

Dataset 
generation

Feature 
extraction

Protein 
structural 
analysis

Reference

propy Python 
inline

Protein N/A N/A N/A Yes N/A [39]

protPy Python 
inline

Protein N/A N/A N/A Yes N/A [40]

PyBi-
oMed

Python 
inline

Protein, 
DNA, RNA, 
small mol-
ecules

N/A N/A N/A Yes N/A [36]

Protein-
Flow

Python 
inline

Protein N/A N/A Yes Yes Yes [41]

peptides.
py

Python 
inline

Protein N/A N/A N/A Yes N/A [42]

ProPythia Python 
inline

Protein Yes N/A N/A Yes N/A [38]

scikit-bio Python 
inline

Protein, 
DNA, RNA

Yes Yes N/A Yes N/A [37]

PyPropel Python 
inline

Protein N/A Yes Yes Yes Yes –

PyFeat Com-
mand 
line

Protein, 
DNA, RNA

N/A N/A N/A Yes N/A [43]

iFeature Com-
mand 
line/
web-
server

Protein N/A N/A N/A Yes N/A [8]

iLearn web-
server

Protein, 
DNA, RNA

Yes N/A N/A Yes N/A [10]

iLearn-
Plus

web-
server

Protein, 
DNA, RNA

Yes N/A N/A Yes N/A [9]
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sequence analysis. The lack of extracting structure-based features is current limitations 
of PyPropel, which will be addressed for future iterations. As protein data continues 
to expand, PyPropel offers a valuable resource to accelerate functional research and 
enhance the characterization of protein sequences, particularly at the sequence- and 
site-specific levels.

Availability and requirements
Project name: PyPropel. 

Project home page: https://​github.​com/​20031​00127/​pypro​pel
Operating system(s): Windows, macOS, Linux.
Programming language: Python.
Other requirements: Python 3.10 or higher, Numpy 2.0.1 or higher, Pandas 2.2.2 or 

higher, Seaborn 0.13.2 or higher, Matplotlib 3.9.1 or higher, Biopython 1.84, Scikit-learn 
1.5.1.

License: GPL3.0 License.
Any restrictions to use by non-academics: None.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​025-​06079-3.
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