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Abstract 

The human microbiome is the collection of microorganisms living on and inside of our 
bodies. A major aim of microbiome research is understanding the role microbial com-
munities play in human health with the goal of designing personalized interventions 
that modulate the microbiome to treat or prevent disease. Microbiome data are chal-
lenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. 
Analysis is further complicated by the steps taken to collect and process microbiome 
samples. For example, sequencing instruments have a fixed capacity for the total num-
ber of reads delivered. It is therefore essential to treat microbial samples as composi-
tional. Another complicating factor of modeling microbiome data is that taxa counts 
are subject to measurement error introduced at various stages of the measurement 
protocol. Advances in sequencing technology and preprocessing pipelines coupled 
with our growing knowledge of the human microbiome have reduced, but not elimi-
nated, measurement error. Ignoring measurement error during analysis, though com-
mon in practice, can then lead to biased inference and curb reproducibility. We 
propose a Dirichlet-multinomial modeling framework for microbiome data with excess 
zeros and potential taxonomic misclassification. We demonstrate how accommodating 
taxonomic misclassification improves estimation performance and investigate differ-
ences in gut microbial composition between healthy and obese children.
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Introduction
Communities of microorganisms, referred to as microbiomes, are found almost eve-
rywhere on Earth, including on and inside our bodies, plants, animals, soil, oceans, 
and the atmosphere. Improving our understanding of the role of microbiota and their 
interactions with their hosts and other microbes has implications for a variety of fields, 
including human health and nutrition, medicine, ecology, agriculture, forensics, and 
exobiology. Microbiome datasets typically take the form of an N × T  matrix of counts, 
where N represents the number of observations and T represents the number of unique 
microbial taxa. The conventional approach for obtaining taxa counts is to sequence the 
16S rRNA gene, as it contains well-conserved and hypervariable regions to differentiate 
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different species [1]. Then, sequenced reads are clustered into operational taxonomic 
units, or OTUs, using 97% or 99% similarity thresholds and classified to a reference 
database (e.g., GreenGenes, SILVA, RDP, NCBI) using various methods [2–9]. More 
recently, researchers have promoted the use of amplicon sequence variants (ASVs) 
instead of OTUs as the unit of analysis in microbiome research [10–13]. These denoising 
approaches provide exact sequence variants instead of clustering sequences into OTUs 
to account for sequencing errors and can distinguish sequence variants differing by as 
little as one nucleotide. The strength of ASVs is that they provide a higher resolution to 
the data, are consistent labels which can be compared across studies, and have demon-
strated equivalent or improved sensitivity and specificity as OTU-based methods [13]. 
Microbial count datasets are then used to generate inference for a variety of research 
aims, including estimating the relative abundances of microorganisms present in the 
host, determining whether species abundances vary across groups (latent or observed), 
and/or training models to predict phenotypic outcomes using information contained in 
the composition of the microbiome, among others [14–24].

Microbiome data are inherently challenging to analyze due to their high-dimension-
ality (i.e., 100s or even 1000s of taxa), overdispersion (i.e., large within- and between-
subject variability), and zero-inflation (i.e., larger number of zero reads observed than 
expected under distributional assumptions). Analysis is further complicated by the steps 
taken to collect and process microbiome samples [25, 26]. For example, sequencing 
instruments have a fixed capacity for the total number of reads delivered. It is therefore 
essential to treat microbial samples as compositional multivariate count data, where the 
relative abundances of the taxa sum to one [27]. Another complicating factor of mode-
ling microbiome data is that taxa counts are subject to measurement error introduced at 
various stages of the measurement protocol [28–30]. For example, clustered sequencing 
reads are subject to misclassification due to sequencing errors, and taxonomic allocation 
is sensitive to the clustering method and reference database used. Even in ASV studies, 
bacterial genomes may have multiple 16S rRNA genes that are not identical, which could 
lead to splitting a single genome into multiple clusters, and the 16S rRNA gene may not 
contain all necessary genetic variation underlying ecological and evolutionary differ-
ences to differentiate between species [13, 31, 32]. While it is now standard for micro-
biome analyses to accommodate high-dimensionality, overdispersion, zero-inflation, 
and the compositional structure characteristic of microbial data (though oftentimes not 
simultaneously), potential misclassification of the observed reads is typically ignored, 
which can bias downstream inference, underestimate parameter uncertainty, and curb 
reproducibility. In this work, we introduce a scalable Bayesian modeling framework 
that simultaneously accommodates the aforementioned challenges in microbiome data 
analysis.

In practice, zero reads in microbiome data can occur in two different ways: (1) the 
organism is not present in the sampling region and therefore the probability of occur-
rence is zero (i.e., structural zero) and (2) the organism is present but was not sampled 
(i.e., at-risk zero). A common technique for modeling zero-inflation in microbial count 
data is to construct a two-component mixture of a point mass at zero and a sampling 
distribution for the counts (e.g., Poisson or negative binomial distributions in the uni-
variate setting), where a latent at-risk indicator is introduced to differentiate between 
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at-risk and structural zeros [16, 21, 23, 33–35]. To model zero-inflation in multivariate 
count data, researchers typically link zero-inflated univariate count models together by 
embedding latent parameters which control the dependence structure between counts 
[36, 37]. [38] recently introduced a zero-inflated Dirichlet-multinomial (ZIDM) model 
for handling excess zeros in multivariate compositional count data collected in microbi-
ome research settings, which differs from previous methods for modeling zero-inflation 
by assuming a mixture distribution on the count probabilities as opposed to the sam-
pling distribution.

While potential misclassification of microbial taxa is typically ignored in microbiome 
studies, researchers have investigated the effects of measurement error on inference 
[29]. For example, [28] demonstrate how measurement error in 16S rRNA gene stud-
ies can bias inference and diminish the replicability of measured differences between 
samples. [35] model microbial counts with a zero-inflated Poisson-gamma model, which 
introduces a multiplicative factor for the rate parameter in the Poisson distribution to 
accommodate the deviation of observed abundances to unobserved true abundances. 
[39] propose a log-error-in-variable regression model for handling measurement error in 
compositional regression settings (i.e., when microbiome data are treated as covariates).

Outside of microbiome research studies, there are numerous existing approaches for 
modeling misclassification in multivariate count data which have been applied in vari-
ous settings [40–46]. The typical approach for modeling potential misclassification is 
to assume the observed classification of each observation follows a multinomial distri-
bution given the true (latent) classification. Recently, this technique has been used to 
model potential misclassification in ecological multispecies occupancy models [44–46]. 
However, these methods are not designed to accommodate the compositional and/or 
high-dimensional structure of multivariate count data found in microbiome research 
settings.

A major challenge in modeling misclassification in count data is that the model is not 
identifiable without additional information about the misclassification process beyond 
the observed data [40]. In some research settings, validated or true classifications may 
be available for a subset of the data which can be used to inform misclassification rates 
in the model in a semi-supervised setting [47]. When validation data are not available, 
Bayesian methods are commonly preferred over frequentist alternatives to incorporate 
prior information regarding misclassification rates [40, 42, 47].

In this study, we investigate differences in the gut microbial composition of obese and 
healthy children and adolescents [48]. To this end, we propose a scalable zero-inflated 
Dirichlet-multinomial regression model which accommodates potential misclassifica-
tion to investigate the relation between covariates and the true, unobserved microbial 
counts. Specifically, we take a hierarchical approach that assumes the true microbial 
abundances follow a zero-inflated Dirichlet-multinomial distribution which incorpo-
rates covariate associations with the true taxa counts and the at-risk probabilities. We 
then construct a confusion matrix to model the probability of the observed microbial 
taxa given the learned, true classifications. To accommodate high-dimensional set-
tings, we extend the model with sparsity-inducing priors to identify covariates associ-
ated with the probability of an at-risk observation and the microbial taxa. In addition to 
providing relative abundance estimates that accommodate classification uncertainty for 
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downstream analysis, our analysis reveals key insights into the relation between obesity 
and microbial composition.

The rest of this work is organized as follows. In Sect.  Model, Notation, and Infer-
ence  we introduce our framework for modeling zero-inflation and misclassification in 
microbiome data and discuss recommendations for prior specification and posterior 
inference. Section Synthetic Data Evaluation provides a simulation study to evaluate how 
the proposed modeling framework performs in the presence of varying levels of mis-
classification, overdispersion, and sparsity. In Sect. The Effect of Obesity on the Com-
position of the Human Microbiome we investigate the relation between obesity and the 
human gut microbiome using our modeling framework. We provide concluding remarks 
in Sect. Conclusions.

Model, notation, and inference
In this section, we first introduce pertinent notation and then detail our approach for 
modeling potential misclassification of and zero-inflation in microbial count data, which 
we refer to as MicroMiss. Thereafter, we discuss posterior sampling and inference.

Let the C-dimensional vector yil represent the observed taxon classification for the lth , 
l = 1, . . . , żi , organism of the ith , i = 1, . . . ,N  , host, where yilc = 1 indicates the observed 
organism was classified as the cth taxon and 0 otherwise. Let the T-dimensional vector zil 
represent the organism’s true classification, where zilt = 1 indicates the organism truly 
belongs to the tth taxon group and 0 otherwise. In this analysis, we assume T = C , and 
the ordering of the taxa is the same in yil and zil.

To model the true (latent) classifications of each organism, we assume

where �i is a host-specific T-dimensional vector of true relative abundances. A 
standard approach for accommodating overdispersion in microbiome studies is to 
assume the relative abundances follow a Dirichlet distribution [15, 49]. Specifically, 
we let �i ∼ Dirichlet (γ i) , where γ i represents a T-dimensional vector of concentra-
tion parameters. We introduce covariates into the model for the relative abundances 
by setting log(γit) = x′iβγt

 with βγtp ∼ Normal (µγ , σ
2
γ ) and xi a P-dimensional, 

p = 1, . . . ,P , host-specific set of covariates including an intercept term. When 
there is a large number of taxa and/or covariates, researchers typically induce spar-
sity on their relations [15, 38, 50]. To accommodate sparse settings, we alternatively 
place spike-and-slab priors on βγt

 , similar to [15, 18, 24, 38, 51]. Specifically, we let 
βγtp |ζγtp , σ

2
γ ∼ ζγtp ·Normal(0, σ 2

γ )+ (1− ζγtp) · δ0(βγtp) , where ζγtp ∈ {0, 1} is a latent 
inclusion indicator and δ0(·) is a Dirac delta function, or point mass, at 0. We then 
assume ζγtp ∼ Beta-Binomial(aγ , bγ ), where aγ and bγ can be set to impose various levels 
of sparsity in the model. Since the regression coefficients are taxon-specific, this mode-
ling framework provides inference on the association between covariates and each taxon. 
However, inference on a covariate’s association with a taxon’s relative abundance is not 
straightforward, as it is indirectly modeled through the concentration parameters. We 
discuss this in more detail in Sect. Posterior Sampling and Inference.

(1)zil |�i ∼ Multinomial(1,�i),
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In order to accommodate zero-inflation in the Dirichlet distribution, we reparameter-
ize �i as a set of independent, zero-inflated gamma random variables, αi , normalized by 
their sum (i.e., zil |αi ∼ Multinomial(1,

αi
ᾱi
) ), where

ᾱi =
∑T

t=1 αit , and ζit is a latent at-risk indicator that differentiates between at-
risk observations and structural zeros, similar to [38]. We assume the latent at-
risk indicators ζit |βηt

, xi ∼ Bernoulli (ηit) , where logit(ηit) = x′iβηt
 , xi is a set of 

host-specific covariates including an intercept term, and βηt
 are the corresponding 

taxon-specific regression coefficients. Here, ηit is interpreted as the at-risk probability, 
and βηt

 represent log odds ratios for an at-risk observation which are taxon specific. 
We let βηtp ∼ Normal (µη, σ

2
η ) . Similarly, we can  induce sparsity in βηt

 by assuming 
βηtp |ζηtp , σ

2
η ∼ ζηtp ·Normal(0, σ 2

η )+ (1− ζηtp) · δ0(βηtp) , where ζηtp ∈ {0, 1} is a latent 
inclusion indicator. We then assume ζηtp ∼ Beta-Binomial(aη , bη ) and refer to the spar-
sity-induced version of the model as MicroMissS.

To model the observed reads, we assume

where θ t is a C-dimensional vector of observed taxa probabilities. We assume the 
observed classification probabilities depend on the true taxon classification of each 
organism, zilt = 1 , with θ t ∼ Dirichlet (νt) , where νt is a C-dimensional vector of taxon-
specific concentration hyperparameters. For notational purposes, let θ = (θ ′1, . . . , θ

′
T )

′ 
represent a confusion matrix which maps the potential misclassification in the data. 
Since read-level validation data are not available to inform θ , prior information regard-
ing taxonomic misclassification will be incorporated through the specification of νt.

Prior specification for misclassification

In this section, we discuss different approaches for specifying the hyperparameters νt . 
Under the proposed modeling framework, the probability of correct classification of 
the tth taxon a priori is νtt/

∑C
c=1 νtc . Thus, a simple and intuitive way of specifying νt 

is to set each νtc = 1 and increase νtt to the desired probability of correct classification. 
For example, if C = 51 and νtt = 50 , then the probably of correct classification would 
be 0.50, and the probability of misclassifying a tth taxon as a cth taxon for t  = c is 0.01. 
An alternative approach is to incorporate prior knowledge when assigning classification 
probabilities. For example, if the OTUs are aggregated at the genus level, one may place 
a very small probability of misclassification to genera that belong to different families. 
Caution is advised when taking this approach as it assumes some level of accuracy for 
OTU classification as well as the taxonomic structure, which is somewhat contradictory 
as the classifications are assumed to contain errors. Note that by assuming θ t is shared 
across all observations, the model borrows information across observations to inform 
the misclassification probabilities.

Posterior sampling and inference

For inference, we implement a Metropolis-Hastings within Gibbs algorithm to sample 
the resulting posterior distribution, which is outlined below in Algorithm 1 and detailed 

(2)αit |ζit , γit ∼ ζit Gamma (γit , 1)+ (1− ζit)δ0(αit),

(3)yil |θ t , zilt = 1 ∼ Multinomial (1, θ t),
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in the Supplementary Information. The full joint distribution (see Fig. 1 for a graphical 
representation) is defined as

For efficient sampling, we introduce auxiliary parameters µi|ᾱi ∼ Gamma (żi, ᾱi) and 
a latent set of auxiliary parameters ωζit ∼ PG (1, 0) , where PG represents a Pólya-
gamma distribution, following [38] and [52], respectively. Additionally, we repa-
rameterize θtc = atc/āt and assume atc ∼ Gamma (νtc, 1) with auxiliary parameter 
ut ∼ Gamma (

∑N
i=1

∑żi
l=1

I(zilt = 1), āt) and āt =
∑C

c=1 atc . This enables efficient sam-
pling of θ t using a similar data augmentation approach as that introduced for �i.

In microbiome studies, it is common to observe millions of reads for a given sample. 
Since we model potential misclassification at the read level, our approach can quickly 
encounter storage and computing limitations when applied to even moderately sized 
datasets. To improve the scalability of the model, we propose block updates for the 
latent classifications with corresponding yilc = 1 , which we denote zic , instead of updat-
ing the latent classifications individually. Specifically, we update the latent indicators 
at the observation level from a Multinomial(

∑żi
l=1 I(yilc = 1),�i ⊗ θ c) , where I(·) is an 

indicator function and ⊗ represents an element-wise product. Let the vector of latent 
classifications zi =

∑C
c=1 zic . In settings where the true relative abundances and/or 

(4)

N
�

i=1



p(µi|ᾱi)

żi
�

l=1

p(yil |θ t , zil)p(zil |�i)

T
�

t=1

p(αit |ζit ,βγt
, xi)p(ζit |βηt

, xi)p(ωζit )





×

T
�

t=1

�

p(βηt
)p(βγt

)p(ut |āt)

C
�

c=1

p(atc)

�

.

Fig. 1 Graphical representation of the proposed MicroMiss model. Note that auxiliary parameters and 
hyperparameters have been suppressed for clarity. N - total observations; ż i - total reads per observation; T  
- true number of taxa; C - observed number of taxa.
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the classification probabilities are modeled at the read level, it is no longer possible to 
aggregate the latent classifications without requiring substantial computing resources or 
resorting to approximate techniques for inference.

The main outcomes of interest in this analysis are the estimated relations between 
observed covariates and the probability of an at-risk observation as well as the true rela-
tive abundances. In the proposed model, βηtp is interpreted as the expected change in log 
odds ratio of an at-risk observation for a one unit increase in the corresponding covari-
ate holding all else constant, and exp(βγtp) is interpreted as the multiplicative change in 
the concentration parameter γt for a unit increase in xp holding all else constant. While 
oftentimes overlooked in practice, the relation between covariates and relative abun-
dances is more complicated, due to the fact that covariates are potentially related to 
each compositional element, as described in [53]. Thus the multiplicative effect on the 
tth relative abundance for a one unit increase in the pth covariate for the ith observation 
is defined as

where x(p)i = (xi1, xi2, . . . , xip + 1, . . . , xiP)
′ . It is clear that the effect of the pth covariate 

on the tth relative abundance depends not only on its corresponding regression coeffi-
cient, βγtp , but also its effect on the other relative abundances and their corresponding 
concentration parameters. As such, we may observe a decrease (increase) in the tth 
relative abundance with an increase in xp , even if βγtp > 0 ( βγtp < 0 ). In sparse settings 
where xp is associated with only the tth compositional element, then the direction of βγtp 
matches the multiplicative effect on the corresponding relative abundance. For infer-
ence on these quantities, the posterior means of the MCMC samples are calculated and 
95% credible intervals are constructed using the empirical quantiles. Estimates of the 
true relative abundances for each observation can be obtained by normalizing the vector 
αi over its sum for each MCMC iteration and the averaging over samples. Additionally, 
estimates of the confusion matrix θ can be obtained similarly given at.

(5)πt(xip) =
�t(x

(p)
i )

�t(xi)
= exp(βγtp)

∑T
s=1 exp(x

′
iβγs

)
∑T

s=1 exp(x
(p)′
i βγs

)
,
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Algorithm 1 MCMC sampler for the MicroMiss model

Synthetic data evaluation
In this section, we investigate how ignoring misclassification in multivariate composi-
tional count data can bias inference for the relation between observed covariates and 
relative abundances. Data are generated similar in structure to the application study with 
varying levels of misclassification, overdispersion, and sparsity. We compare the estima-
tion results of our approach, MicroMiss, to those obtained with a naive zero-inflated 
Dirichlet-multinomial (ZIDM) regression model, which accommodates excess zeros but 
not misclassification [38], and a Dirichlet-multinomial regression model [54]. Addition-
ally, we compare MicroMissS to three alternative Bayesian methods designed for sparse 
settings: ZIDMbvs [38], DMBVS [15], and a zero-inflated negative binomial regression 
model with sparsity-inducing priors (ZINB) [21]. The MicroMiss, ZIDM, and DM mod-
els with and without variable selection priors were implemented in R using Rcpp to 
improve computation time [55].

Specifically, we generated N = 50 observations of żi = 10,000 total reads to classify 
into C = 50 taxa groups. We assumed that the true number of compositional elements, 
T, matches the potentially observed number of taxa, C. Observation-specific at-risk 
indicators were sampled from a Bernoulli distribution with the at-risk probabilities set to 
exp(βηt0 + βηt1xi1)/(1+ exp(βηt0 + βηt1xi1)) , where xi1 was generated from a standard 
normal for each observation. The true classification of each read was generated from a 
Multinomial(1,ψ∗

i ) , where ψ∗
i ∼ Dirichlet (γ ∗

i ) , γ ∗
it =

γit
∑T

s=1 γis

1−d
d  , 

γit = exp(βγt0 + βγt1xi1) , and overdispersion parameter d ∈ {0.01, 0.05, 0.10} so that the 
model assumptions did not match the true data generation process. We set 50% of the 
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covariate associations to zero in both levels of the model. When active, the correspond-
ing regression coefficients βηt1 and βγt1 were set to ±1 with equal probability. The inter-
cept terms βηt0 = βγt0 = 0 . To demonstrate how the model performs in sparse settings, 
we generated data similar to the above, but instead only allowed regression coefficients 
βηt1 and βγt1 for t = 1, . . . , 10 to be non-zero with 0.50 probability. The data were gener-
ated with T = C = 50 and T = C = 250 to further assess the scalability of the methods. 
In all settings, the observed classifications were generated from a Dirichlet-multinomial 
model with a similar overdispersion parameter as above. We set the off-diagonal ele-
ments of the concentration parameter matrix, νtc = 1 . The diagonal elements were then 
set to mimic varying levels of misclassification for each compositional element (i.e., 
vtt = ptt ∗ T/(1− ptt) ), where ptt is the assumed probability of correct classification. 
This assumes that the true counts for a compositional element were misclassified with 
equal probability.

All methods were run for 5000 iterations treating the first 2500 as burn-in and thin-
ning to every 5th iteration, providing 500 MCMC iterations for inference. We assumed 
non- or weakly-informative priors with µη = µγ = 0 and σ 2

η = σ 2
γ = 5 . We set the 

hyperparameters νtt = 100 and νtc = 1 , representing around a   0.70 probability of cor-
rect classification a priori when C = 50. To initialize each model, we set the true counts zi 
to the observed counts yi . Regression coefficients were initialized at zero with auxiliary 
parameters ωζit set to one. The at-risk indicators ζit and αtc were also set to one. Auxiliary 
parameters ut and µi were randomly initialized from a Gamma(1,1).

We evaluated the models’ estimation performance in four settings. In the first, we 
assumed no misclassification, which we refer to as the Null setting. We then investigated 
the model with increasing levels of misclassification. Specifically, we assumed each taxon 
was misclassified with 0.05 probability (Low), 20% of the observations were misclassified 
with 0.25 or 0.15 probability and the remaining 60% with 0.05 probability (Medium), and 
20% of the observations were misclassified with 0.15 or 0.05 probability and the remain-
ing 60% with 0.25 probability (High). In each setting, the models were evaluated in terms 
of the average absolute value of the bias for the regression coefficients and 0.95 cover-
age probabilities in the at-risk portion of the model and the concentration parameters. 
Results were separated by active (i.e., βηt1 ,βγt1  = 0 ) and non-active (i.e., βηt1 ,βγt1 = 0 ) 
regression coefficients. Additionally, we evaluated the models’ average absolute value of 
the bias and coverage probability for πt(xip) in Eq. 5 and computation time. The simu-
lated average πt(xip) was 1.13, ranging from around 0.15 to 5. Results we report below 
were obtained by averaging over 50 replicated datasets for each setting (Table 1).

In the Null setting, we observed similar performance between MicroMiss and 
ZIDM, with the proposed approach having slightly better estimation performance for 
the effects on the concentration parameters and πt(xip) . The DM regression model 
performed considerably worse when estimating the non-zero regression coefficients 
associated with the concentration parameters and πt(xip) , since it ignores potential 
zero-inflation. As the misclassification probabilities increased, the estimation perfor-
mance of the models decreased for non-zero regression coefficients in the at-risk por-
tion of the model and concentration parameters, with the proposed method always 
outperforming ZIDM and DM. However, ZIDM’s estimation performance for zero 
effects on the at-risk probabilities improved with higher misclassification. A similar 
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trend was observed for all methods with respect to the zero effects on the concen-
tration parameters. Intuitively when potential misclassification is present, the signal 
between covariates and taxa counts is biased towards the null for all associations, 
which reflects the improved performance for zero effects by the alternative models 
in some settings. The proposed method was able to maintain coverage for regres-
sion coefficients associated with the probability of an at-risk observation, obtaining 
roughly 93% coverage. Additionally, MicroMiss held above 70% coverage for πt(xip) 
regardless of the amount of misclassification. ZIDM’s and DM’s coverage were con-
siderably lower for πt(xip) and largely affected by misclassification. With more 
overdispersion (Supplementary Tables S1 and S2), we observed a similar pattern in 
estimation performance. However, in the setting with the highest amount of overd-
ispersion (i.e., d = 0.10 ), MicroMiss also obtained better estimation performance for 
zero effects on the at-risk probabilities with increased misclassification compared to 
ZIDM. On average, DM, ZIDM, and MicroMiss took 6, 16, and 70 seconds to run 
5000 iterations on an Intel Xeon Bronze 3204 1.9 GHz processor with 16 GB RAM in 
all simulation settings, respectively.

To evaluate the models’ variable selection performance in sparse settings, we calcu-
lated the sensitivity (1 - false negative rate) and specificity (1 - false positive rate) for 

Table 1 Simulation results: estimation performance for N = 50 observations, żi = 10,000 reads, 
T = 50 compositional elements at varying levels of misclassification, and with overdispersion 
parameter d = 0.01

ABS, absolute value of the difference between the estimated and true parameters; COV, 0.95 coverage probabilities

Null

βηt1  = 0 βηt1 = 0 βγt1  = 0 βγt1 = 0 πt(x ip)

ABS COV ABS COV ABS COV ABS COV ABS COV

MicroMiss 0.352 0.945 0.271 0.929 0.115 0.685 0.144 0.761 0.115 0.886

ZIDM 0.350 0.946 0.270 0.934 0.261 0.543 0.209 0.621 0.151 0.565

DM – – – – 0.796 0.087 0.182 0.909 0.565 0.391

Low

βηt1  = 0 βηt1 = 0 βγt1  = 0 βγt1 = 0 πt(x ip)

ABS COV ABS COV ABS COV ABS COV ABS COV

MicroMiss 0.354 0.941 0.288 0.927 0.273 0.610 0.164 0.851 0.216 0.776

ZIDM 0.720 0.847 0.468 0.956 0.911 0.000 0.124 0.915 0.625 0.216

DM – – – – 0.797 0.005 0.081 0.984 0.561 0.246

Medium

βηt1  = 0 βηt1 = 0 βγt1  = 0 βγt1 = 0 πt(x ip)

ABS COV ABS COV ABS COV ABS COV ABS COV

MicroMiss 0.359 0.941 0.304 0.938 0.304 0.571 0.157 0.894 0.249 0.728

ZIDM 0.859 0.938 0.291 0.990 0.871 0.012 0.173 0.752 0.603 0.208

DM – – – – 0.774 0.005 0.076 0.983 0.547 0.234

High

βηt1  = 0 βηt1 = 0 βγt1  = 0 βγt1 = 0 πt(x ip)

ABS COV ABS COV ABS COV ABS COV ABS COV

MicroMiss 0.392 0.942 0.358 0.924 0.344 0.485 0.155 0.931 0.278 0.691

ZIDM 0.974 0.974 0.181 0.998 0.789 0.007 0.126 0.830 0.563 0.211

DM – – – – 0.758 0.006 0.073 0.984 0.539 0.223
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βηt1 and βγt1 , defined as Sensitivity = TP
FN+TP and Specificity = TN

FP+TN  , where TN, TP, 
FN, and FP represent the true negatives, true positives, false negatives, and false posi-
tives, respectively. Additionally, we evaluated the models’ average absolute value of 
the bias and coverage probability for πt(xip) and computation time. With T = C = 50 
(Supplementary Table S3), we found that ZIDMbvs was unable to identify any non-
zero βηt1 in the presence of misclassification. Whereas MicroMissS was able to obtain 
a sensitivity around 0.75 and specificity above 0.70 in all settings. Note that DMBVS 
and ZINB do not perform selection on covariates potentially associated with the 
probability of an at-risk observation. For βγt1 , we observed a decrease in sensitivity 
with more misclassification for MicroMissS. Similar results were observed for ZINB. 
However, as the amount of misclassification increased, MicroMissS was able to obtain 
a higher specificity than ZINB. ZIDMbvs and DMBVS tended to underselect βγt1 with 
misclassification present. Given the improved selection performance, the proposed 
MicroMissS model also obtained the best estimation and coverage performance for 
πt(xip) . In settings with T = C = 250 , we observed a similar pattern in selection 
performance for βηt1 (Supplementary Table  S4). For βγt1 , the proposed method was 
outperformed by ZINB in terms of sensitivity as it tended to overselect. As a result, 
ZINB had the lowest specificity among all models. We also observed that despite the 
improved selection performance of MicroMissS compared to ZIDMbvs and DMBVS, 
the two alternative methods were able to obtain better estimation results for πt(xip) . 
We attribute this result to the alternative methods obtaining better specificity levels 
in the presence of misclassification as the regression coefficients are biased towards 
the null when misclassification is ignored. With T = C = 50 , we observed similar 
computation times in the sparse and non-sparse settings for all methods. In the high-
dimensional settings (i.e., T = C = 250 ), ZINB, DMBVS, ZIDMbvs, and MicroMissS 
took roughly 120, 25, 60, and 900 seconds to run 5000 MCMC iterations, respectively.

Sensitivity analysis

In this section, we evaluate the sensitivity of the proposed model to hyperparameter spec-
ification. To assess the model’s sensitivity to hyperparameter settings, we set each of the 
hyperparameters to default values and then evaluated the effect of manipulating each term 
on parameter estimation using data simulated similar to the Medium setting. The model 
was evaluated with different hyperparameter settings for νtt and the variance of the regres-
sion coefficients ( σ 2

η  and σ 2
γ).

We observed similar performance for the proposed method with νtt = 10 and 100 in 
terms of absolute error and coverage probability for non-zero effects on the at-risk prob-
abilities (Table 2). With larger νtt , the results between MicroMiss and ZIDM should agree, 
as the probability of misclassification is negligible. This occurred with νtt = 1,000 in this 
setting. We also observed that the average absolute bias increased with νtt for zero effects 
on the at-risk probabilities and relative abundances with coverage probabilities remaining 
relatively unaffected. Lastly, we found a slight reduction in performance as the variance of 
the regression coefficients increased for all metrics.
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The effect of obesity on the composition of the human microbiome
Maintaining a healthy gut microbiota can potentially help prevent or alleviate obesity 
and other metabolic diseases [56, 57]. However, the relation between the composition 
of the gut microbiome and obesity is often inconsistent across studies [58]. The goal 
of this analysis is to investigate the effect of obesity on the composition of the micro-
biome in a cohort of children and adolescents while accounting for potential zero-
inflation and misclassification of microbial counts. The data investigated in this study 
were first published in [48] and made available at [59]. Prior to analysis, the microbial 
samples were processed similar to [60], where samples with less than 100 reads and 
OTUs with less than 10 reads were removed. Additionally, OTUs with less than 1% 
non-zero reads were excluded from this analysis. For analysis, the taxa counts were 
then aggregated at the genus level, with any OTUs that were not annotated removed 
prior to analysis. After processing the data, there were N = 41 individuals (16 healthy 
and 25 obese) with C = 97 different compositional elements. Of these individuals, 18 
were female (44%), and the average (SD) age was 13.4 (2.8) years old. This dataset con-
tained up to 50% zero reads at the genus-level.

To analyze these data, we set νtt = 500 with νtc = 1 , and σ 2
γ = σ 2

η = 1 . Since there 
were 97 compositional elements, this assumes that the probability of correct classifi-
cation for each taxon was roughly 0.85 a priori, with the probability of misclassifica-
tion equally spread across the other OTUs. The model was initialized similar to the 
simulation study. Disease status (Obese = 1, Healthy = 0) was included in both levels 
of the model (i.e., at-risk probability and the true (latent) relative abundances). The 
MCMC algorithm was run for 10,000 iterations, treating the first 5000 as burn-in and 
thinning to every 5th iteration, leaving 1000 MCMC samples for inference. Conver-
gence and mixing of the models was visually inspected using traceplots. A random 
subset of these are found in the Supplementary Information for reference (Figure S1).

Figure 2 presents the estimated average relative abundances at the family level for 
obese and healthy participants using the proposed MicroMiss model. Table 3 presents 
the estimated average relative abundances at the genus level for obese and healthy 
participants using the proposed MicroMiss model as well as the ZIDM model (which 
does not accommodate potential misclassification) for comparison. For ease of expo-
sition, only the genera with an estimated relative abundance of more than 0.01 in 
either the obese or healthy groups are included. A typical downstream analysis of 
estimated relative abundances is to perform differential abundance (DA) testing to 

Table 2 Sensitivity results for Medium scenario: estimation performance for N = 50 observations, 
żi = 10,000 reads, and T = 50 compositional elements at varying levels of misclassification

ABS, absolute value of the difference between the estimated and true parameters; COV, 0.95 coverage probabilities

Hyperparameter βηt1  = 0 βηt1 = 0 πt(xip)

Setting ABS COV ABS COV ABS COV

νtt = 10 0.466 0.893 0.302 0.947 0.630 0.560

νtt = 1000 0.904 0.793 0.446 0.982 0.623 0.559

σ 2
η = σ 2

γ = 1 0.440 0.853 0.268 0.954 0.620 0.554

σ 2
η = σ 2

γ = 10 0.514 0.877 0.330 0.930 0.629 0.569
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determine if the relative abundances of certain microorganisms are different across 
groups [61]. For reference, differential abundance testing was performed using a rank 
sum test after applying a centered log ratio transformation to the estimated relative 
abundances [62]. Supplementary Table  S5 presents similar findings as Table  3 but 
with the centered log ratio transformed relative abundances. We observe stark differ-
ences in the relative abundances of the two groups, specifically for Lachnospiraceae 
and Prevotellaceae. Genus Bacteriodies was most abundant in both healthy (25.1%) 
and obese (27.1%) participants, and Prevotella was enriched for those with obesity. 
We also observed a higher relative abundance of Blautia in healthy (17.3%) partici-
pants versus obese (4.2%).

Of interest in this analysis is the estimated multiplicative effect of being obese versus 
healthy on the relative abundance of each taxon. Figure 3 presents the estimated effects 
using MicroMiss and ZIDM and corresponding 95% credible intervals on the log scale. 
As mentioned previously, the effect of disease status on a given OTU depends on its 

Fig. 2 Posterior relative abundance estimates for obese and healthy participants aggregated at the family 
level obtained with MicroMiss

Fig. 3 Posterior estimates of the log multiplicative effect of being obese versus healthy for the relative 
abundance of each taxon using the proposed MicroMiss and ZIDM models. Dot represents the posterior 
mean with error bars capturing the 95% credible intervals
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Fig. 4 Posterior estimates of at-risk log odds ratios for obese versus healthy participants for each taxon using 
the proposed MicroMiss and ZIDM models. Dot represents the posterior mean with error bars capturing the 
95% credible intervals

Table 3 Average posterior relative abundances estimated with the proposed MicroMiss and ZIDM 
models for healthy and obese participants

Only genera with relative abundances above 0.01 for obese or healthy groups are presented. P-values were obtained from a 
rank sum test on the centered log ratio transformations of relative abundances at the genus level

Family Genus MicroMiss ZIDM

Obese Healthy p value Obese Healthy p value

Acidaminococcaceae Acidaminococcus 0.0059 0.0129 0.789 0.0056 0.0122 0.103

Succiniclasticum 0.0018 0.0106 0.012 0.0017 0.0099 0.454

Aerococcaceae Facklamia 0.0000 0.0172 < 0.001 0.0000 0.0160 < 0.001 

Bacteroidaceae Bacteroides 0.2709 0.2510 0.316 0.2632 0.2447 0.019

Bifidobacteriaceae Bifidobacterium 0.0183 0.0307 0.109 0.0178 0.0300 0.008

Campylobacteraceae Campylobacter 0.0217 0.0006 < 0.001 0.0213 0.0007 < 0.001 

Clostridiales Incertae Sedis 
XI

Anaerococcus 0.0202 0.0057 < 0.001 0.0197 0.0056 < 0.001 

Finegoldia 0.0271 0.0002 < 0.001 0.0264 0.0004 < 0.001 

Peptoniphilus 0.0426 0.0077 < 0.001 0.0417 0.0077 < 0.001 

Incertae Sedis XI Murdochiella 0.0034 0.0106 < 0.001 0.0034 0.0101 0.003

Lachnospiraceae Anaerostipes 0.0081 0.0230 0.030 0.0092 0.0249 < 0.001 

Blautia 0.0417 0.1728 < 0.001 0.0382 0.1548 < 0.001 

Coprococcus 0.0047 0.0105 0.019 0.0060 0.0116 0.004

Lachnospiracea Incertae 
Sedis

0.0061 0.0164 0.005 0.0099 0.0265 < 0.001 

Roseburia 0.0209 0.0558 0.019 0.0210 0.0556 < 0.001 

Ruminococcus 0.0079 0.0156 0.033 0.0093 0.0177 < 0.001 

Porphyromonadaceae Parabacteroides 0.0192 0.0169 0.612 0.0191 0.0170 0.262

Porphyromonas 0.0434 0.0024 < 0.001 0.0423 0.0024 0.001

Prevotellaceae Prevotella 0.2189 0.0412 0.001 0.2189 0.0412 0.001

Rikenellaceae Alistipes 0.0080 0.0240 0.045 0.0083 0.0238 0.003

Ruminococcaceae Clostridium IV 0.0031 0.0126 0.010 0.0038 0.0141 < 0.001 

Faecalibacterium 0.0597 0.1091 0.004 0.0588 0.1057 < 0.001 

Ruminococcus 0.0185 0.0219 0.250 0.0179 0.0212 0.012

Veillonellaceae Dialister 0.020 0.013 0.310 0.020 0.013 0.621

Megamonas 0.0003 0.0314 < 0.001 0.0003 0.0295 0.128

Megasphaera 0.0123 0.0097 0.336 0.0115 0.0092 0.209
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effect on the other OTUs in the model as well as their relative abundances. Thus, there 
may not be a one-to-one relationship between the estimated regression coefficients 
associated with the concentration parameters (available in Supplementary Information 
Figure S2) and the true relative abundances. In this analysis, we observed 2 genera-obe-
sity associations in which the corresponding 95% credible intervals did not contain a 
multiplicative effect of 1; Blautia and Megamonas. Recently, Blautia was found to be 
inversely related to visceral fat accumulation in adults [63] and depleted in obese chil-
dren [64]. Megamonas was found to be positively associated with obesity in Chinese 
[65] and Taiwanese adults [66]. Our post-hoc DA found Megamonas depleted in obese 
participants. With the ZIDM model, which does not accommodate classification uncer-
tainty, we observed associations between Anaerostipes, Bacteroides, Blautia, Campylo-
bacter, Clostridium XlV, Faecalibacterium, Finegoldia, Oscillibacter, Peptoniphilus, and 
Roseburia and obesity. While a majority of the estimated relations between different 
genera and obesity were similar with both models, a few flipped directions. Interestingly, 
obesity was positively associated with the relative abundance of Blautia using the ZIDM 
model, but we observed a negative relation with MicroMiss. Recall that we also observed 
Blautia enriched for the healthy group. These seemingly conflicting results highlight 
the importance of considering potential misclassification as well as the compositional 
structure of the microbiome data when performing analysis, especially in regression 
settings where covariates are potentially associated with multiple taxa. Said differently, 
when evaluating the effect of a covariate on a particular relative abundance, it is often 
not possible to “hold all else constant” as other relative abundances may also depend on 
the given covariate. 

Our modeling framework simultaneously provides inference on the relation between 
obesity status and at-risk probabilities (Fig.  4). We observed a positive association 
between obesity and at-risk observations in Anaerococcus, Finegoldia, Murdochiella, 
Peptoniphilus, and Prevotella. Prevotella is commonly found to be associated with obe-
sity and has shown a positive association in weight loss studies [65, 67]. We estimated 
the relative abundance of Prevotella in the obese group as 21.9%, whereas it was only 
4.1% in the healthy group. With the ZIDM model, we observed associations between 
obesity and the at-risk probability of Anaerococcus, Leuconostoc, Mobiluncus, Porphy-
romonas, Prevotella, and Weissella. The proposed model’s estimated credible intervals 
were typically larger than the ZIDM model, as expected from the results on simulated 
data.

We further analyzed the application data with the sparsity-induced version of our 
model, MicroMissS. Using non-informative prior probabilities of inclusion (i.e., 
aη = bη = aγ = bγ = 1 ), MicroMissS found that obesity status was associated with the 
probability of an at-risk observation for Acidaminococcus, Akkermansia, Anaerosporo-
bacter, Bacteroides, Barnesiella, Bifidobacterium, Blautia, Clostridium sensu stricto, 
Coprococcus, Gemmiger, Haemophilus, Odoribacter, Prevotella, Pseudoflavonifractor, 
and Ruminococcus. The proposed model also identified associations between obesity sta-
tus and the concentration parameters for Anaerosporobacter, Blautia, Clostridium IV, 
Faecalibacterium, Gemmiger, Lachnospiracea incertae sedis, and Megamonas. Apply-
ing the ZINB model to the data, over half of the taxa were found to be associated with 
obesity status using a non-informative prior probability of inclusion. Reducing the prior 
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probability of inclusion to 0.001, the model similarly identified Blautia, Clostridium 
IV, Faecalibacterium, Gemmiger, and Lachnospiracea incertae sedis as associated with 
obesity status, in addition to 17 other taxa. These results were not surprising as ZINB 
tended to identify more associations than MicroMissS in simulation. In terms of com-
putation time, the proposed MicroMiss and MicroMissS models took roughly 5 minutes 
to generate the 10,000 MCMC samples, whereas ZIDM and ZINB took 1 min and 30 s, 
respectively.

Lastly, we performed a sensitivity analysis in order to assess how the results may 
change when ν is specified using phylogenetic information and with higher levels of mis-
classification artifically introduced into the observed counts. See section S3 in the Sup-
plementary Information for more details.

Conclusions
In this work, we proposed a Bayesian zero-inflated Dirichlet-multinomial regression 
model for microbiome data with potential taxonomic misclassification. Our framework 
treats zero-inflation as a model selection problem and accommodates uncertainty in 
observed taxa counts by assuming they are realizations from the true (unobserved) clas-
sifications through a taxon-specific Dirichlet-multinomial model. Our approach is scal-
able, handles the complex structure of microbial count data, and allows covariates to be 
associated with the at-risk probabilities as well as the concentration parameters for the 
latent relative abundances. Additionally, it is agnostic to the procedures used to collect 
and process the observed taxa counts and can flexibly incorporate information regarding 
the structure of the data that may inform potential misclassification patterns. Through 
simulation and real data analysis, we demonstrate how ignoring misclassification can 
affect inference on covariates’ associations.

As a first attempt at modeling misclassification in microbiome data, we assume that 
misclassification rates are shared across individuals, borrowing information across 
observations for inference. An extension of this work is to modify the misclassification 
probabilities to vary at the host, or even read level. For example, the model could be 
specified so that reads with similar sequences may be misclassified with a larger prob-
ability. While this would provide more nuanced inference, it would also greatly increase 
an already large parameter space. Relatedly, future extensions could explore incorporat-
ing covariate information to inform potential misclassification probabilities when avail-
able. While developed for microbiome data analysis, the proposed modeling framework 
is generally applicable to other classification settings in which zero-inflation and poten-
tial misclassification are present. Lastly, an active area in microbiome research is devel-
oping personalized interventions to help moderate the composition of the microbiome 
to improve health outcomes. Given the high variability of microbiome samples within 
and between individuals, a future next step would be to adapt the model to handle time-
varying and individual-level effects following [68].
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