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Abstract 

Background: The binding between proteins and ligands plays a crucial role in the field 
of drug discovery. However, this area currently faces numerous challenges. On one 
hand, existing methods are constrained by the limited availability of labeled data, 
often performing inadequately when addressing complex protein-ligand interactions. 
On the other hand, many models struggle to effectively capture the flexible varia-
tions and relative spatial relationships between proteins and ligands. These issues 
not only significantly hinder the advancement of protein-ligand binding research 
but also adversely affect the accuracy and efficiency of drug discovery. Therefore, 
in response to these challenges, our study aims to enhance predictive capabilities 
through innovative approaches, providing more reliable support for drug discovery 
efforts.

Methods: This study leverages a pre-trained model with spatial awareness to enhance 
the prediction of protein-ligand binding affinity. By perturbing the structures of small 
molecules in a manner consistent with physical constraints and employing self-
supervised tasks, we improve the representation of small molecule structures, allowing 
for better adaptation to affinity predictions. Meanwhile, our approach enables the iden-
tification of potential binding sites on proteins.

Results: Our model demonstrates a significantly higher correlation coefficient in bind-
ing affinity predictions. Extensive evaluation on the PDBBind v2019 refined set, CASF, 
and Merck FEP benchmarks confirms the model’s robustness and strong generalization 
across diverse datasets. Additionally, the model achieves over 95% in classification ROC 
for binding site identification, underscoring its high accuracy in pinpointing protein-
ligand interaction regions.

Conclusion: This research presents a novel approach that not only enhances the accu-
racy of binding affinity predictions but also facilitates the identification of binding sites, 
showcasing the potential of pre-trained models in computational drug design. Data 
and code are available at https:// github. com/ MIALAB- RUC/ Sable Bind.
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Background
Protein-ligand binding affinity prediction plays a crucial role in drug discovery and 
development. Accurate estimation of the binding affinity between protein and ligand 
is essential for identifying potential drug candidates and optimizing their therapeutic 
efficacy. Traditional experimental methods for measuring binding affinities are time-
consuming, expensive, and often limited by the availability of target proteins [1, 2]. Con-
sequently, computational approaches have emerged as valuable tools to predict binding 
affinities, offering faster and more cost-effective alternatives.

In the early stages of computational biology, the exploration of protein-ligand binding 
affinity already begins. During this period, Quantitative Structure-Activity Relationship 
(QSAR) models play a central and dominant role in the field of drug design [3, 4]. Empir-
ical scoring functions are commonly employed to predict the binding affinity between 
protein targets and their ligands, with the goal of enhancing the success rate of drug 
design and reducing the cost of drug screening [5]. Widely used scoring functions, such 
as X-score [6] and Glide score [7], exemplify this approach. However, these methods suf-
fer from significant limitations, including high target dependency and poor sensitivity 
to analogs. This is primarily due to their reliance on simplistic mathematical models, in 
which the fine-grained differences in molecular interactions are often overlooked, and 
the flexibility of proteins and ligands cannot be effectively accounted for. As research 
progresses, Molecular Dynamics (MD) simulations gradually emerge as a more refined 
tool [8]. By solving the classical equations of motion, MD simulations model the time-
evolution of molecules, thereby capturing important details of the dynamic process. This 
enables a more accurate prediction of the thermodynamic characteristics of protein-
ligand binding, overcoming the limitations of traditional methods.

With the advent of deep learning and large-scale pre-trained models, protein-ligand 
binding affinity prediction has seen significant advancements. Techniques such as con-
volutional neural networks (CNNs) and graph neural networks (GNNs) prove highly 
effective in capturing the intricate spatial and topological features of proteins and 
ligands. These methods excel in learning from large-scale datasets, enabling improved 
accuracy and generalization in modeling complex molecular interactions. In CNN-based 
approaches, methods like KDEEP [9] leverage 3D voxelized representations to encode 
both proteins and ligands, capturing crucial geometric and chemical properties that con-
tribute to binding affinity. Pafnucy [10] also employs a deep convolutional architecture, 
processing 3D molecular complexes to extract spatial features across multiple convolu-
tional layers, thereby enhancing the prediction of binding affinity. Additionally, RosENet 
[11] integrates molecular mechanics with deep learning, using a series of 3D CNNs to 
represent proteins and ligands and combining geometric and energetic information for 
more accurate predictions. On the other hand, GNN-based approaches model molecu-
lar structures as graphs, where atoms are represented as nodes and bonds or interac-
tions as edges. This representation naturally captures the complex relationships within 
molecules. PotentialNet [12] uses graph convolutions to effectively learn both intramo-
lecular and intermolecular interactions, making it a powerful tool for binding affinity 
prediction. RTMScore [13] further refines this approach by incorporating residue-atom 
distance likelihood potentials and leveraging graph transformers to achieve state-of-the-
art performance. Similarly, PIGNet [14] employs gated graph attention networks (GATs) 
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to iteratively update node features, considering both covalent and intermolecular inter-
actions to predict binding affinity robustly.

Another significant advantage of deep learning models lies in the use of pre-trained 
models. Pre-trained models can learn complex relationships between proteins and 
ligands from large datasets and apply this knowledge to specific downstream tasks 
through transfer learning. Pre-trained models for small molecules have also demon-
strated great potential. These models leverage different levels of molecular representa-
tion, including 1D molecular sequences [15–17], 2D graph representations [18, 19], and 
3D structures [20]. By incorporating various forms of molecular representation, pre-
trained models capture diverse molecular features and can be applied in multiple con-
texts, such as property prediction [21–23], drug discovery [24, 25], and virtual screening 
[26]. 3D structural information is particularly advantageous for capturing real molecu-
lar conformations and interactions, especially in tasks involving protein-ligand binding. 
Models like Uni-Mol [27], BindNet [28], and Frad [29] have demonstrated widespread 
applications in protein-ligand prediction. Pre-trained models not only address the tradi-
tional reliance on limited experimental datasets but also generate more robust and com-
prehensive protein and ligand representations, significantly improving the accuracy of 
binding affinity predictions.

In summary, while significant progress has been made in protein-ligand binding affin-
ity prediction, several challenges remain. Current models still struggle with the scarcity 
of experimental data, especially for novel compounds and rare protein targets. Pre-
trained models offer a promising solution by leveraging large-scale data to generate 
more generalizable molecular representations.

This paper presents a novel approach for predicting protein-ligand binding affinity 
based on pre-trained models, aimed at capturing the intricate molecular interactions 
and structural characteristics that influence binding affinity, using only the overall pro-
tein structure without requiring specific binding pocket information. Specifically, we 
develop a pre-trained model tailored for molecules, which constructs a self-supervised 
task that accurately models the three-dimensional structure and distance information 
of these molecules, adhering to fundamental molecular physics principles. By integrat-
ing one-dimensional sequence information with three-dimensional structural data, our 
method not only achieves precise predictions of binding affinity but also provides pro-
found insights into protein binding sites, thereby offering new perspectives for drug 
design and molecular screening. We employ an innovative self-supervised learning 
strategy that enables the model to effectively capture diverse molecular features during 
the training process. Through extensive experimental evaluations on diverse benchmark 
datasets, we demonstrate the significant performance improvements of our pre-trained 
model over traditional computational methods.

Methods
Problem formulation

Given a protein P and a ligand L, we define:
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• Let P = {r1, r2, . . . , rn} be the set of residues in the protein, where ri ∈ R
n×20 , n is the 

total number of residues. The atomic coordinates of the residue are represented as 
xi,k ∈ R

3 where k denotes the index of the atoms within the residue.
• Let L = {a1, a2, . . . , am} be the set of atoms in the ligand, where m is the total num-

ber of atoms. Each atom aj is represented by one of the 26 predefined common 
atomic types. The spatial coordinates of the atom are denoted by xj ∈ R

3.

Our objective is to learn a model f : (P, L) → y that accurately predicts the protein-
ligand binding affinity y (Fig. 1b).

Molecular representation

Structure encoder

The spatial coordinates of the atoms in the ligand are first converted into a distance 
matrix D and a spatial position matrix P . The calculation of the distance matrix is 
defined as:

where xi and xj denote the coordinates of atoms i and j , respectively.
Next, we construct the spatial position matrix P to represent the relative positional 

relationships among the atoms.  As shown in Fig. 1c, this process begins by defining a 

(1)dij = �xi − xj�2

Fig. 1 Overview. a Pre-training phase for ligands: Atom types are encoded via a linear layer as input to the 
transformer, while atomic coordinates are represented using a distance matrix and a spatial position matrix, 
creating an initial pair representation that serves as attention bias. Pre-training involves three self-supervised 
tasks: classification head, distance head, and coordinate head. b Affinity prediction for unknown 
protein-ligand complexes: Initial representations for proteins and ligands are derived from the pre-trained 
model and concatenated to form the initial representation of the complex, which lacks relative positional 
information between the protein and ligand. This representation is updated through transformer layers to 
predict binding affinity values. c Generation of spatial position representations from atomic coordinates: 
The spatial Cartesian coordinate system for a given atom is defined by its neighboring atoms ( i − 1 , i, i + 1 ), 
allowing for the determination of the spatial positions of all other atoms
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local coordinate system for each atom based on its neighboring atoms. Specifically, we 
derive the following basis vectors from the coordinates of neighboring atoms:

We then apply the Gram-Schmidt process to orthogonalize these vectors:

Using these orthogonalized vectors, we establish a coordinate system that effectively 
represents the position of atom j within this frame. The resulting element Pij of the 
spatial position matrix thus captures the relative spatial positioning of the atoms in the 
ligand.

After discretizing the aforementioned matrices, we form the initial pair representation 
z
(0) through a combination of linear transformation and activation functions:

where ⊕ denotes the concatenation operation and σ is the activation function.

Backbone network

 We employ a standard Transformer architecture as the backbone network for our pre-
training model, as shown in Fig. 1a. The input to the Transformer consists of a sequence 
of atomic types represented by Eai , which are projected through a linear layer. Addition-
ally, we introduce a special token [CLS] , whose coordinates are set to the centroid of all 
atomic coordinates. The input vector is then fed into the Transformer.

The Transformer consists of L layers. For each layer l, the self-attention mechanism 
computes the attention weights as follows:

where Q(l) , K (l) , and V (l) are the query, key, and value matrices for layer l, respectively. 
Here, z(l) is a bias term capturing pairwise relationships and is updated at each layer as 
follows:

Ultimately, the model produces two types of representations from the output of the final 
layer: a single representation s and a pair representation z.

(2)

v1 = xi − xi−1,

v2 = xi+1 − xi,

v3 = xi+1 − xi−1.

(3)

u1 = v1,

u2 = v2 −
(v2 · u1)

(u1 · u1)
u1.

u3 = v3 −
(v3 · u1)

(u1 · u1)
u1 −

(v3 · u2)

(u2 · u2)
u2.

(4)z
(0) = Linear(σ (Linear(D⊕ P)))

(5)Attention(Q(l),K (l),V (l)) = softmax

(

Q(l)K (l)T

√

dk
+ z(l−1)

)

V (l)

(6)z(l) = z(l−1) + Attention(Q(l−1),K (l−1),V (l−1))
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Self‑supervised learning task

 During the training process, we do not introduce additional labels; instead, we 
employ a self-supervised learning approach through random masking of atomic types 
and the application of noise addition and denoising to atomic coordinates. Each train-
ing iteration involves randomly selecting varying proportions of atoms for the mask-
ing operation to enhance the model’s generalization capabilities. We utilize a noise 
addition method based on atomic potential energy gradients for perturbing atomic 
coordinates. The gradient of atomic potential energy represents the rate of change of 
potential energy in each direction, thereby reflecting the forces acting on the atoms. 
By adding noise along the direction of the potential energy gradient and adjusting the 
amplitude of the noise based on the magnitudes of interatomic interactions, our noise 
addition method is more consistent with physical laws, thereby avoiding non-physical 
variations introduced by simple random noise. This strategy not only enhances the 
physical consistency of the model but also effectively improves its learning capacity.

The potential energy V between two atoms can be described by the Lennard–Jones 
potential function:

where r is the distance between atoms, and ǫ and σ are parameters related to the types of 
atoms.

To calculate the gradient of the potential energy with respect to the atomic coordi-
nates x , we use the finite difference method:

where h is a small perturbation and ei is the unit vector in the direction of the i-th 
coordinate.

Based on the calculated gradient ∇V  , we introduce noise into the atomic coordi-
nates x as follows:

where η represents a scaled perturbation based on the gradient magnitude, and ξ is a 
small random noise term added to increase variability.

The denoising process utilizes a classification head to predict the probabilities of 
the atomic types, a distance head to recover the distance matrix, and a coordinate 
head to denoise the atomic coordinates.

Protein representation and integration

In this section, we outline the process of obtaining representations for proteins and 
their integration with ligands. First, we derive the single representation sligand and 
pair representation zligand for the ligand from the pretrained model designed for small 
molecules. The single representation of the ligand is defined as:

(7)V (r) = 4ǫ

[

(σ

r

)12
−

(σ

r

)6
]

(8)
∂V

∂xi
≈

V (x + hei)− V (x − hei)

2h

(9)xnoisy = x + η ·
∇V

�∇V �
+ ξ
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where m is the number of atoms in the ligand.
Next, we encode the sequence and structural information of the protein P using S

able [30], resulting in the protein’s single representation sprotein and pair representation 
zprotein:

The single representation of the protein is similarly defined as:

where n is the number of residues in the protein.
To generate the representation of the protein-ligand complex, we concatenate the rep-

resentation of the ligand and protein:

The pair representation for the complex zcomplex is structured as follows:

In this matrix, zligand encodes the interactions among the ligand’s atoms, while zprotein 
captures the interactions among the protein’s residues. The zeroes in the pair represen-
tation zcomplex serve as padding, representing the unknown interactions between the 
ligand and the protein chain. This padding ensures that the dimensions of the concat-
enated matrix align appropriately while indicating that there is no direct information 
available regarding the interactions between the ligand and the protein residues.

Model architecture

The representations of the ligand and protein, denoted as scomplex and zcomplex , are used 
as the input to our protein-ligand affinity prediction network. This process is similar 
to the ligand pretraining backbone network. In this model, the single representation 
scomplex is fed into a standard Transformer pipeline, while the pair representation zcomplex 
is incorporated as an attention bias into the attention mechanism.

The Transformer updates both scomplex and zcomplex through multiple layers, capturing 
interactions between the ligand and protein representations:

The updated supdatecomplex is passed through several Transformer layers to further capture the 
intricate ligand-protein interactions.

Subsequently, we extract the [CLS] tokens from both the ligand and protein, repre-
senting their global embeddings. These embeddings are concatenated as follows:

(10)sligand = [hL,[CLS], hL,1, hL,2, . . . , hL,m]

(11)sprotein, zprotein = Sable(P)

(12)sprotein = [hP,[CLS], hP,1, hP,2, . . . , hP,n]

(13)scomplex = [hL,[CLS], hL,1, hL,2, . . . , hL,m, hP,[CLS], hP,1, hP,2, . . . , hP,n]

(14)zcomplex =

[

zligand 0
0 zprotein

]

(15)s
update
complex, z

update
complex = Transformer(scomplex, zcomplex)
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The concatenated vector is then passed through a fully connected feedforward network 
with an activation function to predict the binding affinity:

where ŷ represents the predicted binding affinity, and σ is the activation function. The 
training objective is to minimize the Mean Squared Error (MSE) between the predicted 
and true binding affinities:

where S is the total number of training samples, ŷi is the predicted binding affinity for 
the i-th sample, and yi is the corresponding ground truth binding affinity.

We treat the binding site prediction as a binary classification task, where residues are 
classified as binding sites if their distance to any ligand atom is below a predefined 
threshold. To achieve this, we extract the protein representation supdateprotein from the updated 

complex representation supdatecomplex.
The classification is performed using the following equation:

Here, p̂ represents the predicted probability for each residue in the protein being a bind-
ing site. To train the model, we use a binary cross-entropy loss function:

where yi is the true label for residue i (0 for non-binding, 1 for binding), p̂ is the pre-
dicted probability for each residue, and N  is the total number of residues.

Results
Datasets

Ligand pre‑training datasets

The ligand pre-training dataset used in this study is sourced from the Uni-Mol  [27] pro-
ject, constructed from multiple public repositories. After normalization and deduplica-
tion processes, the dataset comprises approximately 19 million unique molecules. Each 
molecule features 10 distinct conformations, and during training, a random conforma-
tion is selected for each molecule to enhance variability.

Protein‑Ligand binding affinity datasets

The protein-ligand binding affinity datasets used in this study are primarily derived 
from the PDBBind Database [31, 32], which contains protein-ligand complex structures 
determined by X-ray crystallography. The binding affinities provided by PDBBind are 

(16)hconcat = [CLSligand, CLSprotein]

(17)ŷ = Linear(σ (Linear(hconcat)))

(18)LMSE =
1

S

S
∑

i=1

(ŷi − yi)
2

(19)p̂ = Linear
(

σ

(

Linear(s
update
protein)

))

(20)LBCE = −
1

N

N
∑

i=1

[

yi log(p̂)+ (1− yi) log(1− p̂)
]
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experimentally measured and presented in terms of inhibition constant ( Ki ), dissocia-
tion constant ( Kd ), or half-maximal inhibitory concentration (IC50), all in molar units. 
We employ the pK metric, defined as the negative logarithm of the binding affinity, 
which is consistent with approaches used in previous studies. Specifically, pK is calcu-
lated as follows:

PDBBind v2019 Refined Set consists of 4852 complexes, which are carefully curated 
based on several quality criteria, including a resolution of ≤ 2.5   Å, an R-factor ≤ 0.25 , 
and the absence of steric clashes or covalent bonds. Complexes with unreliable ligand 
binding data are excluded. To ensure the reliability of the evaluation and to avoid over-
fitting, we implement a protein sequence-based splitting strategy, which results in two 
distinct partitioning standards: one with a 30% sequence identity threshold and another 
with a 60% sequence identity threshold. These partitions are designed to prevent homol-
ogous proteins from appearing in both the training and test sets. Following the Atom3D 
[33] partitioning method, the dataset with a 30% sequence identity threshold contains 
3507 proteins in the training set, 466 proteins in the validation set, and 490 proteins in 
the test set. Similarly, using the 60% sequence identity threshold, the training set consists 
of 3678 proteins, the validation set contains 460 proteins, and the test set includes 460 
proteins. This partitioning strategy enables us to evaluate the model’s performance in a 
way that reflects its generalization ability across different protein families.

To improve the reliability and reproducibility of model evaluation, we implement ten-
fold cross-validation on both the LBA30 and LBA60 datasets. Taking the LBA30 dataset 
as an example, we first randomly divide the entire dataset (including the training, valida-
tion, and test sets) into 10 subsets of roughly equal size. In each round of cross-validation, 
we sequentially select one subset as the test set, another subset as the validation set, and 
combine the remaining 8 subsets to form the training set. By repeating this process, we 
train and evaluate the model multiple times, enabling us to assess the model’s performance 
stability and generalization ability across different data splits.

PDBBind v2020 General Set consists of 19,443 complexes. Following the data splitting 
strategy from TopoFormer, after excluding CASF-2007, CASF-2013, CASF-2016, and PDB-
Bind 2016 core set, the remaining 18,904 complexes are used as the training set for the 
model.

CASF Benchmark Dataset is an open-access benchmark dataset for evaluating the perfor-
mance of scoring functions. We select CASF-2007, CASF-2013 and CASF-2016 as bench-
mark test sets, which contain 195, 195 and 285 protein-ligand complexes, respectively. 
These complexes feature high-quality crystal structures and reliable binding constants.

Merck FEP Benchmark Dataset differs significantly from PDBBind in terms of its distri-
bution. Originally developed to assess free energy prediction models, this dataset focuses 
on evaluating the model’s ability to rank the relative binding free energies of ligands that 
bind to the same target and share a similar scaffold. The dataset includes 264 active ligands 
across 8 drug-related targets, with binding affinity data curated from relevant literature. 
We convert the binding free energy data into binding affinity values using the following 
formula:

(21)pK = − log10

(

Kd or Ki

1× 109

)
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where R is the gas constant, T is the temperature in Kelvin, and K is the dissociation 
constant. This dataset serves as an additional test set alongside the CASF benchmark 
dataset for evaluation of the PDBBind v2020 General Set.

Protein‑Ligand binding site datasets

The dataset for protein-ligand binding site prediction is derived from the PDBBind 
v2019 Refined Set, utilizing both the LBA30 and LBA60 datasets. Ten-fold cross-vali-
dation is applied to ensure robust evaluation and reproducibility of the model perfor-
mance. To facilitate binding site prediction, a residue is defined as a binding site if any 
heavy atom in the protein residue is within a predefined cut-off distance from the ligand. 
Specifically, the cut-off distance is set to 6Åin the main experiments. Additionally, abla-
tion studies are conducted using cut-offs of 4Åand 8Åto assess the sensitivity of model 
performance to varying proximity thresholds.

Evaluation metrics

To comprehensively assess the performance of our model, we employ several evaluation 
metrics, including the Root Mean Square Error (RMSE), Pearson correlation coefficient, 
Spearman correlation coefficient, and Area Under the Receiver Operating Characteristic 
Curve (AUC). The RMSE, Pearson, and Spearman coefficients are essential for quantify-
ing the predictive accuracy and the relationship between predicted and actual values in 
regression tasks, while AUC evaluates the model’s ability to predict binding sites.

The Root Mean Square Error (RMSE) is defined as follows:

where yi represents the actual values, ŷi denotes the predicted values, and n is the total 
number of samples.

The Pearson correlation coefficient is calculated as:

where ȳ and ¯̂y are the mean values of the actual and predicted outputs, respectively.
Finally, the Spearman correlation coefficient is given by:

where di is the difference between the ranks of the actual and predicted values, and n is 
the number of observations.

The AUC is calculated as follows:

(22)�G = −RT lnK

(23)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2

(24)r =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)

√

∑n
i=1(yi − ȳ)2

√

∑n
i=1(ŷi −

¯̂y)2

(25)ρ = 1−
6
∑

d2i
n(n2 − 1)
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where TPR (True Positive Rate) is defined as:

These metrics collectively provide a comprehensive evaluation of our model’s perfor-
mance in both regression and classification tasks.

Evaluation of model performance

Assessment on PDBBind v2019 refined set

To evaluate the performance of our model, we conduct experiments on datasets with 
different identity clustering thresholds from the refined set of PDBBind. We compare 
our method with a total of 11 methods in three categories: sequence-based, structure-
based, and pre-trained methods. SableBind achieves state-of-the-art Pearson corre-
lation coefficient and Spearman coefficient on the LBA60 dataset and outperforms 
sequence-based and structure-based methods in most metrics. While SableBind 
shows slightly inferior performance compared to BindNet on the LBA30 dataset, this 
is attributed to BindNet’s use of protein pocket data. This means that before predict-
ing the numerical value of protein-ligand binding affinity, it already has prior knowl-
edge of the binding site. In contrast, our model can predict protein-ligand binding 
affinity even when the binding site is unknown. Moreover, our model can provide 
insights into potential binding sites through analyzing various features and patterns 
without relying on pre-existing knowledge of specific binding locations.

To further assess the robustness of our model, we perform a ten-fold cross-valida-
tion on the LBA30 and LBA60 datasets to evaluate the impact of data partitioning on 
the results. For the LBA30 dataset, the cross-validation results show a lower standard 
deviation, indicating more consistent performance across different splits. Specifically, 
the standard deviation of Pearson’s correlation is 0.0617, RMSE is 0.0965, and Spear-
man’s correlation is 0.0597, suggesting that the model’s performance remains stable 
regardless of how the data is divided. For the LBA60 dataset, the standard devia-
tion of Pearson’s correlation is 0.0449, RMSE is 0.0899, and Spearman’s correlation is 
0.0465 in the ten-fold cross-validation. Compared to the LBA30 dataset, the results 
across different data splits are more consistent. However, the performance is notice-
ably lower than in the original specific data partitioning scenario. This is likely due 
to the random shuffling of data in the ten-fold cross-validation, which may result in 
training and testing sets that no longer contain pairs with high sequence identity. This 
reduces the model’s ability to leverage sequence similarity. Therefore, in the cross-
validation setup, the results for LBA30 and LBA60 become much closer, as the model 
relies more on other features beyond sequence similarity.

Despite these differences, the overall trend indicates that SableBind achieves high 
performance even in the absence of specific binding site knowledge and generalizes 
well across various data splits. The results are summarized in Table  1, and Fig.  2a 

(26)AUC =

∫ 1

0
TPR(x) dx

(27)TPR =
True Positives

True Positives+ False Negatives
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presents the marginal distribution histograms of predicted versus true values, illus-
trating the consistency and accuracy of our method across different data subsets.

Table 1 Performance comparison of various methods on LBA dataset under different protein 
sequence identity split settings

The methods are organized into three categories: sequence-based methods at the top, followed by structure-based 
methods, and finally pre-training approaches at the bottom. The best and second-best results are highlighted in bold 
and underlined, respectively. The results of SableBind-cross-validation are presented with a italic background, and are not 
included in the ranking for best results due to differing dataset partitioning

Method LBA30 LBA60

RMSE ↓ Pearson ↑ Spearman ↑ RMSE ↓ Pearson ↑ Spearman ↑

DeepDTA [34] 1.866 0.472 0.471 1.762 0.666 0.663

TAPE [35] 1.890 0.338 0.286 1.633 0.568 0.571

ProtTrans [36] 1.544 0.438 0.434 1.641 0.595 0.588

Atom3D-CNN [33] 1.416 0.550 0.553 1.621 0.608 0.615

Atom3D-ENN [33] 1.568 0.389 0.408 1.620 0.623 0.633

Atom3D-GNN [33] 1.601 0.545 0.533 1.408 0.743 0.743

Holoprot [37] 1.464 0.509 0.500 1.365 0.749 0.742

ProNet [38] 1.463 0.551 0.551 1.343 0.765 0.761

DeepAffinity [39] 1.893 0.415 0.426 – – –

SMT-DTA [40] 1.574 0.458 0.447 1.347 0.758 0.754

GeoSSL [41] 1.451 0.577 0.572 – – –

Uni-Mol [27] 1.434 0.565 0.540 1.357 0.753 0.750

BindNet [28] 1.340 0.632 0.620 1.230 0.793 0.788

SableBind 1.527 0.579 0.579 1.246 0.802 0.798
Cross-Validation 1.581 0.616 0.620 1.562 0.630 0.632

Table 2 Performance comparison on CASF-2007, CASF-2013, and CASF-2016 datasets

The methods are divided into three categories: traditional scoring functions (top), sequence-based methods (middle), and 
structure-based methods (bottom). The best and second-best results are marked in bold and underlined, respectively

Method CASF-2007 CASF-2013 CASF-2016

Pearson ↑ Pearson ↑ RMSE ↓ Pearson ↑ Spearman ↑

AutodockVina [42] – 0.54 – 0.604 0.528

Glide-SP [7] 0.343 0.452 – 0.513 0.419

Glide-XP [43] 0.457 0.277 – 0.467 0.257

ECIF [44] – – 1.169 0.866 –

CAPLA [45] – 0.770 1.200 0.843 –

SVSBI [46] – – – 0.832 –

KDEEP [9] – – – 0.701 0.528

Pafnucy [10] – 0.70 1.42 0.78 –

OnionNet-2 [47] – 0.821 1.164 0.864 –

GenScore [48] – – – 0.837 0.682

ConBAP [49] – – 1.127 0.864 0.719

PIGNet2 [50] – – – 0.747 0.651

TopoFormer-Seq [51] 0.836 0.817 – 0.865 –

SableBind 0.826 0.787 1.205 0.832 0.825
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Assessment on CASF benchmark

CASF is a key benchmark in the field of protein-ligand interaction prediction. To evalu-
ate the performance of SableBind and compare it with current state-of-the-art methods, 
we test it on the CASF-2007, CASF-2013, and CASF-2016 datasets.  The results, summa-
rized in Table 2, provide a comprehensive comparison across these datasets, highlight-
ing SableBind’s strengths and potential. While no method achieves perfect performance 
across all datasets and metrics, SableBind achieves SOTA in Spearman’s correlation on 
the CASF-2016 dataset and shows competitive results in other metrics, with a balanced 
overall performance.

Assessment on Merck FEP benchmark

To more accurately assess the model’s generalization ability, we choose the Merck FEP 
Benchmark for testing, which has a distribution that is completely different from PDB-
Bind. Unlike the high sequence similarity between the proteins in the CASF test set 
and those in the training set [59, 60], the Merck FEP Benchmark provides more diverse 
and complex protein-ligand interaction data, presenting a much more challenging task 
for the model. Thus, using the Merck FEP Benchmark enables a more effective evalua-
tion of the model’s performance and robustness across different data distributions.  The 
results of the evaluation on the Merck FEP Benchmark are summarized in  Table  3. 
On the 8 datasets covered by the Merck FEP Benchmark, SableBind achieves an aver-
age Pearson correlation coefficient of 0.479, ranking among the top methods, second 
only to GenScore, demonstrating strong competitiveness. In the eg5 dataset, SableBind 
achieves a Pearson correlation coefficient of 0.710, outperforming all other methods and 

Table 3 Performance comparison on the Merck FEP benchmark across 8 datasets, evaluated using 
Pearson correlation coefficients

The dataset sizes are indicated in parentheses. The methods are grouped into two categories: traditional scoring functions 
(top) and machine learning/deep learning methods (bottom). The best and second-best results are marked in bold and 
underlined, respectively

Method hif2a pfkfb3 eg5 cdk8 shp2 syk cmet tnks2 Average
(42) (40) (28) (33) (26) (44) (24) (27) (264)

X-Score [6] 0.224 0.430 − 0.316 0.406 − 0.030 0.689 0.531 0.669 0.325

Glide SP [7] 0.445 0.480 − 0.111 0.345 0.542 − 0.006 0.378 0.316 0.299

Glide XP [43] 0.410 0.513 0.017 0.617 0.490 0.124 0.165 0.582 0.365

AutoDock 4 [52] 0.376 0.530 − 0.397 0.629 0.609 0.544 0.324 0.558 0.397

Vina [42] 0.493 0.546 − 0.520 0.849 0.569 0.519 − 0.257 0.538 0.342

Vinardo [53] 0.371 0.515 − 0.475 0.782 0.490 0.379 − 0.359 0.305 0.251

SchNet [54] 0.103 0.242 0.361 0.334 0.078 0.281 0.233 0.231 0.232

Pafnucy [10] 0.224 0.430 − 0.316 0.406 − 0.030 0.689 0.531 0.669 0.325

PotentialNet [12] 0.247 0.344 0.416 0.168 0.029 0.173 0.283 − 0.001 0.207

GNN_DTI [55] 0.163 0.427 0.297 0.417 − 0.071 0.084 0.496 0.130 0.243

IGN [56] 0.207 0.292 0.022 0.362 − 0.200 0.098 0.670 0.077 0.192

�Lin_F9XGB [57] 0.480 0.603 − 0.099 0.826 0.640 0.103 0.077 0.458 0.386

GIGN [58] 0.303 0.427 0.183 0.290 0.371 0.012 0.35 − 0.038 0.238

GenScore [48] 0.455 0.635 0.293 0.693 0.489 − 0.001 0.773 0.598 0.492
ConBAP [49] 0.250 0.398 0.524 0.563 0.231 0.447 0.262 0.049 0.340

SableBind 0.428 0.485 0.710 0.555 0.440 0.189 0.631 0.391 0.479
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highlighting its advantage in more complex tasks. In contrast, among the 14 baseline 
methods, 11 show negative correlations on certain datasets, meaning that these methods 
fail to effectively predict protein-ligand interactions in these scenarios and even exhibit 
trends contrary to the actual results, severely impacting their reliability and effectiveness 
in practical applications. SableBind, on the other hand, maintains positive correlations 
across all test sets, showcasing its stability and adaptability in various protein-ligand 
interaction prediction tasks. This indicates that SableBind has strong generalization abil-
ity, particularly excelling in handling complex and challenging prediction tasks.

Assessment on bindind site prediction

Furthermore, to provide insights into binding sites alongside binding affinity pre-
dictions, we test the model’s capability in predicting these sites. Our ROC analysis 
yields values exceeding 95% for both LBA30 and LBA60 datasets, indicating robust 

Fig. 2 Overview of results from our binding affinity and binding site prediction analyses, comparing the 
LBA30 dataset on the left and the LBA60 dataset on the right. Panel a presents the marginal distribution 
histograms of predicted binding affinities, while panel b displays the Receiver Operating Characteristic (ROC) 
curves for protein-ligand binding site predictions. Panel c shows the results from ten-fold cross-validation on 
both LBA30 and LBA60 datasets
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predictive performance for identifying binding sites. To illustrate the effectiveness 
of binding site predictions, we visualize the results in Fig. 3. For residues predicted 
with a probability greater than 0.5, we classify them as binding sites, calculating the 
accuracy as the ratio of correctly classified residues to the total sequence length. We 
select the worst, medium, and best predicted proteins for visualization. For LBA30, 
the accuracy of the worst prediction is 77.94%. Among the 490 proteins in the test 
set, 459 have an accuracy of over 90%. For LBA60, the accuracy of the worst predic-
tion is 84.07%. Among the 452 proteins in the test set, 442 have an accuracy of over 
90%. Our model can always provide reliable predictions and useful insights for under-
standing protein-ligand interactions.

To more comprehensively assess the stability and generalization ability of the 
model, we perform ten-fold cross-validation on the LBA30 and LBA60 datasets. 
This validation simulates different data splits to examine the model’s performance 
on diverse datasets. The results show that the performance across both datasets is 
similar, indicating that the model maintains stable prediction performance on data-
sets with varying levels of sequence consistency. It also demonstrates strong robust-
ness and good adaptability to differences in dataset characteristics. Compared to 
the results obtained from the original splits, the model performs better in terms of 

Fig. 3 This case study illustrates the worst, intermediate, and best predictions of binding sites from two 
datasets. Protein structures are visualized in PyMOL and color-coded based on predicted probabilities, with 
red indicating higher confidence in binding site predictions and blue representing lower confidence. Ligands 
are rendered in gray

Table 4 Ten-fold cross-validation results for protein-ligand binding site prediction: Average AUC 
with standard deviation, and average F1 score with standard deviation for the LBA30 and LBA60 
datasets

Dataset Average AUC (Std) Average F1 Score (Std)

LBA30 0.976 (0.010) 0.752 (0.031)

LBA60 0.982 (0.002) 0.777 (0.018)
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average AUC and F1 scores during cross-validation. This indicates that the model can 
maintain high predictive accuracy across different data subsets, and its predictions 
exhibit lower variance, further confirming its strong generalization capability. There-
fore, the model provides reliable binding site predictions across various data distri-
butions, offering valuable support for protein-ligand interaction research. The results 
are summarized in Table 4 and Fig. 2c.

Experimental setup

The ligand pre-training phase utilizes a Transformer architecture comprising 15 layers, 
each equipped with 512 hidden units and 4 attention heads. The feed-forward network 
within each layer has a dimensionality of 2048, facilitating the model’s capacity to cap-
ture intricate relationships in the data. Pre-training is conducted over approximately 20 
epochs, with a batch size of 128, allowing for efficient data processing and convergence.

For optimization, we employ the Adam optimizer with parameter settings of β1 = 0.9 
and β2 = 0.99 . The initial learning rate is set to 1× 10−4 , accompanied by a warm-up 
period of 10,000 steps, followed by linear decay to stabilize training. Additionally, a 
weight decay of 1× 10−4 is applied to prevent overfitting. The training process is exe-
cuted on 8 NVIDIA A100 40GB GPUs, leveraging their computational power to handle 
the substantial model and dataset.

During the prediction phase for binding affinity, we adapt our model to a 4-layer 
Transformer configuration. In this stage, we reduce the batch size to 8, optimizing for 
lower memory consumption while maintaining effective learning. The learning rate 
is adjusted to 3× 10−4 , ensuring adequate convergence. This phase is executed on 2 
NVIDIA A100 40GB GPUs, enabling efficient processing of predictions while preserving 
computational resources.

Ablation study

To validate the effectiveness of each key component in our model and its contribution 
to overall performance, we conduct a series of detailed ablation studies. First, we inves-
tigate the impact of disabling distance information, spatial positional information, and 
structural information (with both distance and spatial positional information disabled) 
on model performance.  As shown in Table  5, the results demonstrate that structural 
information is crucial for the model, as it provides essential spatial constraints for accu-
rate predictions. Additionally, we examine the model’s performance in scenarios without 

Table 5 Ablation Study Results on the LBA30 Dataset, results in bold indicate the best performance 
for each column

Model configuration RMSE Pearson Spearman

Disabled distance information 1.522 0.454 0.455

Disabled spatial position information 1.577 0.445 0.438

Disabled structure information 2.088 0.435 0.430

w/o Ligand pre-trained model 1.578 0.453 0.435

w/o pre-trained model 1.639 0.390 0.420

SableBind 1.527 0.579 0.579
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ligand pre-training and without any pre-training of both proteins and ligands.   The 
results in Table 5 indicate the absence of ligand pre-training results in a significant drop 
in model performance, underscoring the effectiveness of the small molecule pre-training 
approach. Furthermore, when no pre-training is applied at all, the model’s performance 
deteriorates even further, highlighting the importance of pre-training in enhancing 
model capabilities. Pre-training facilitates better initialization parameters, accelerates 
convergence, and improves the model’s generalization ability. These ablation experi-
ments clearly illustrate that each critical component is indispensable within the model. 
Distance information, spatial positional information, structural information, and pre-
training all contribute significantly to the model’s performance. The synergistic interac-
tion of these components enables our model to achieve outstanding results in binding 
affinity prediction.

Furthermore, we conduct an ablation experiment on protein-ligand binding site 
prediction. As illustrated in Fig. 4, the ROC curves for the LBA30 and LBA60 data-
sets indicate that varying cut-off values have a relatively minor impact. This suggests 
that, within the examined range, changes in the threshold do not significantly alter 
the relationship between the true positive rate and the false positive rate. In contrast, 
the PR curves show more pronounced differences, highlighting that the precision-
recall trade-off is more sensitive to threshold variations. This discrepancy likely arises 
because ROC curves primarily focus on the overall discrimination capability of the 
model, while PR curves are more attuned to the balance between precision and recall. 
Consequently, different thresholds can affect the model’s ability to accurately classify 

Fig. 4 Ablation experiments for binding site prediction under different cut-offs and without pre-training 
models. Panel a illustrates the ROC curves for the LBA30 (left) and LBA60 (right) datasets, while panel b 
displays the corresponding PR curves. The “cut-off” refers to the predefined distance threshold for defining 
binding site residues, with values of 4Å, 6Å, and 8Åused in the experiments
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positive and negative examples, leading to more substantial shifts in precision and 
recall.

Moreover, when comparing the results obtained without pre-training (using a pre-
defined threshold of 6 angstroms) to those with pre-training, we observe a significant 
drop in performance. This clearly underscores the importance of our pre-training 
model, which provides crucial support for enhancing performance and generalization 
in binding site prediction. Notably, across all scenarios, our model consistently dem-
onstrates high classification performance, as evidenced by the overall trends in both 
the ROC and PR curves. Despite variations due to different thresholds, the model 
maintains robustness in distinguishing between positive and negative cases.

Conclusion
In this research paper, we present a novel method for predicting protein-ligand bind-
ing affinity based on pre-trained models. By integrating distance and spatial position 
information of ligands, our approach successfully predicts binding affinity values 
without prior knowledge of specific binding pocket information on the protein. Com-
pared to benchmark baselines, our method demonstrates superior correlation, high-
lighting its effectiveness in capturing the complexities of protein-ligand interactions.

The ablation experiments reveal that, without pre-training, various performance 
indicators of the model decline significantly, underscoring the crucial role of pre-
training in enhancing overall performance. The pre-trained model developed for 
ligands holds great promise for wide-ranging applications in molecular structure rep-
resentation learning and can be utilized for various downstream tasks, such as pre-
dicting molecular properties.

Looking ahead, our method is poised for further extension, enabling not only the 
prediction of binding affinity but also the accurate determination of protein-ligand 
complex structures through pair representation. This advancement broadens the 
applicability of our approach across diverse contexts. More importantly, we aim to 
unify the representations of biomolecules to dismantle the barriers between different 
biomolecular representations. By establishing a unified methodology for cross-molec-
ular scale pre-training, we can simultaneously capture interactions among diverse 
biomolecules and predict the binding of multiple biomolecules, thereby enhancing 
the model’s generalization capabilities.
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