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Abstract 

Background: Multi-omic studies provide comprehensive insight into biological 
systems by evaluating cellular changes between normal and pathological conditions 
at multiple levels of measurement. Biological networks, which represent interactions 
or associations between biomolecules, have been highly effective in facilitating omic 
analysis. However, current network-based methods lack generalizability to accommo-
date multiple data types across a range of diverse experiments.

Results: We present AMEND 2.0, an updated active module identification method 
which can analyze multiplex and/or heterogeneous networks integrated with multi-
omic data in a highly generalizable framework, in contrast to existing methods, which 
are mostly appropriate for at most two specific omic types. It is powered by Random 
Walk with Restart for multiplex-heterogeneous networks, with additional capabilities 
including degree bias adjustment and biased random walk for multi-objective module 
identification. AMEND was applied to two real-world multi-omic datasets: renal cell 
carcinoma data from The cancer genome atlas and an O-GlcNAc Transferase knock-
out study. Additional analyses investigate the performance of various subroutines 
of AMEND on tasks of node ranking and degree bias adjustment.

Conclusions: While the analysis of multi-omic datasets in a network context is poised 
to provide deeper understanding of health and disease, new methods are required 
to fully take advantage of this increasingly complex data. The current study combines 
several network analysis techniques into a single versatile method for analyzing bio-
logical networks with multi-omic data that can be applied in many diverse scenarios. 
Software is freely available in the R programming language at https:// github. com/ 
sambo yd0/ AMEND.

Keywords: Biological networks, Active module identification, Multi-omic data 
integration

Introduction
High-throughput technologies provide granular information on molecular activity, 
offering insight into the mechanisms that drive biological processes and diseases. Omics 
data derived from these technologies have led to increased understanding of biological 
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systems [1–3]. Given the complex regulatory mechanisms underlying cellular activity, 
which span from epigenomic to post-translational modifications (PTM), it is advanta-
geous to obtain measurements on multiple molecular types to provide a more holistic 
view of this multifaceted landscape. Multi-omic data are increasingly being employed in 
biological research, which simultaneously addresses limitations inherent to single omic 
technologies and presents novel problems of data integration. Varying coverages, differ-
ent data distributions, missingness, and noise present obstacles to the joint analysis of 
multi-omic data [4].

Molecular interaction networks (or graphs) have proved highly effective in their ability 
to decipher omics data [5, 6]. These networks contain nodes, which represent biological 
entities (e.g., proteins), and edges, which represent associations between entities (e.g., 
participation in a shared signaling pathway). Molecular measurements can be mapped to 
nodes and edges of the network to which graph-theoretic tools can be applied for diverse 
tasks including feature ranking [7], patient stratification [8], active module identifica-
tion [9, 10], and data integration [11]. Many network-based methods rely on network 
diffusion, a mathematical framework for determining node importance in which prior 
knowledge of node importance is quantified and diffused across the network such that 
large diffusion scores reflect node proximity in the network to nodes who themselves are 
proximal to nodes with large prior importance [12]. Network diffusion approaches have 
been widely applied to the problem of multi-omic data integration, with most methods 
implementing the integration step prior to or after diffusion [13]. However, this pre-
cludes the direct influence of nodes of one data type on the diffusion scores of nodes of 
another data type. Additional pre- or post-processing steps, required to ensure proper 
integration before or after diffusion and often tailored to specific combinations of omics 
data, also limit these methods’ generalizability. Conversely, integration during diffusion 
only requires that the data be transformed to node-wise, stochastic vectors (a require-
ment inherent to all diffusion methods).

Network-based multi-omic data integration necessitates the creation of more complex 
graphs to which the data can be mapped. We employ the terms multiplex and hetero-
geneous to describe these complex graphs. A multiplex graph comprises several layers, 
which are subgraphs sharing a common node type but having different edge types or 
different data types mapped to nodes. This diverges slightly from common usage of mul-
tiplex, which traditionally refers to a graph with layers representing different edge types 
only. For example, a multiplex protein–protein interaction (PPI) network could contain 
two layers: one containing physical interactions between proteins, and the other con-
taining functional associations between proteins, with edges linking common proteins 
to connect the layers. A heterogeneous graph consists of several components, which are 
subgraphs representing one of several node types. A heterogeneous graph can consist 
of both mono- and multi-plex components. For example, a heterogeneous graph could 
contain a PPI component and a metabolite-metabolite interaction (MMI) component, 
with protein-metabolite edges connecting them.

This paper re-introduces the AMEND algorithm (Active Module identification 
with Experimental data and Network Diffusion), an iterative active module identi-
fication method that obtains node weights through network diffusion, filters out low-
weight nodes to get a subnetwork, scores the subnetwork based on experimental and 
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topological information, and then uses this subnetwork for the next iteration until an 
optimal subnetwork is found (Fig. 1A) [9]. AMEND is now equipped with Random Walk 
with Restart for Multiplex-Heterogeneous Graphs (RWR-MH), a versatile network dif-
fusion method that allows for seamless multi-omic data integration on multiplex-het-
erogeneous graphs with fine control over integration dynamics. Further improvements 
of AMEND include multi-objective learning through a biased random walk process and 
degree bias mitigation to attenuate the influence of ‘hub’ nodes in the network (Fig. 1B). 

Fig. 1 AMEND Capabilities and Workflow: A The basic workflow of the AMEND algorithm. It finds 
successively smaller subnetworks that are optimal in terms of experimental and connectivity information, 
stopping when the subnetwork reaches a user-defined size. B The newest version of the AMEND algorithm 
offers several new features, including methods for multiplex-heterogeneous graphs, biased random walk, and 
degree bias mitigation
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These new capabilities are tested on tasks of node ranking, degree bias adjustment, and 
active module identification using pathway data, gene expression data, and multi-omic 
datasets from The Cancer Genome Atlas renal cell carcinoma project (TCGA-KIRC) 
[14] and an O-GlcNAc Transferase (OGT) knockout study. Together, these features 
make AMEND a highly generalizable tool that can accommodate a wide range of molec-
ular interaction networks and multi-omic datasets.

Materials and methods
Random walk with restart for multiplex/heterogeneous networks

Random Walks (RW) are mathematical models of stochastic processes on graphs. They 
allow a probabilistic characterization of the location of a ‘random walker’, a hypotheti-
cal agent that traverses the graph according to transition probabilities in a discrete-time 
process until convergence. Higher probabilities of the agent being at a node reflect higher 
importance. For RWs on graphs, there exist well-defined probabilities of transitioning 
between any node pair. These are usually defined by graph topology and do not depend 
on the history of the random walker’s trajectory in the graph, making RWs instances of 
Markov chains. These transition probabilities for a graph with N  nodes are represented 
by the transition matrix MN×N = (mij) whose ijth element gives the probability of the 
random walker transitioning from node j to nodei , with columns summing to one. The 
transition matrix is usually constructed by column-normalizing the adjacency matrix 
A = (aij) of the graph. For a diagonal matrixD , containing column sums ofA , transition 
matrix M can be defined as M = AD−1 . For prior probabilities of the random walker 
starting on each node, given by the stochastic vectorp0 , also called the seed vector, the 
evolution of a RW can formally be defined by iterative matrix multiplication, given by

This formula is used to update pi until convergence. The seed vector represents a pri-
ori knowledge of node importance and often requires normalization. This discrete pro-
cess converges to a stationary probability pTSD = [s1, . . . , sN ] , where sj =

∑

iaij
∑

i

∑

kaik
 , 

regardless of the starting vector p0 [15]. Therefore, stationary distribution probabilities 
are functions of node degree, and their independence from the seed vector in classic RW 
necessitates alterations to the updating formula if we want seed vectors to be relevant.

Random Walk with Restart (RWR) is a modification of RW [16]. It introduces the 
restart probability, which is the probability of the agent ‘restarting’ the random walk on 
its starting node. It governs the extent of network smoothing of the seed values. This is 
mathematically represented as

with r as the restart probability parameter.
While this formulation of RWR is appropriate for simple graphs, it is not sufficient 

for more complex graphs comprising multiple node, edge, or seed value types. We 
employ the terms multiplex and heterogeneous to describe these complex graphs. A 
multiplex graph comprises several layers, which are graphs sharing a common node 
type but having different edge types or different seed value types. A heterogeneous 

(1)pi = Mpi−1

(2)pi = (1− r)Mpi−1 + rp0
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graph consists of several components, which are graphs representing one of sev-
eral node types. A heterogeneous graph can consist of both mono- and multi-plex 
components.

To account for this increased complexity, new protocols for constructing the transi-
tion matrix and seed vector are warranted. Without modification, Eq. 2 would cause 
seed vectors of different sizes and potentially disparate data types to be normalized 
together, in addition to the disruption of local diffusion dynamics by normalizing 
the graph adjacency matrix as a whole rather than each layer and component inde-
pendently. RWR was generalized to heterogeneous graphs of two components by Li 
and Patra (2010), and further generalized to multiplex-heterogeneous graphs of two 
components—one monoplex and one multiplex—by Valdeolivas et  al. (2019) This 
was improved upon by Baptista et al. (2022) with MultiXrank, which performs RWR 
on multiplex-heterogeneous graphs with arbitrary numbers of components and lay-
ers. These methods introduce two new classes of parameters to RWR; seed weight 
parameters govern the weight given to the seed vectors of individual layers and com-
ponents, while cross-talk parameters, or jump/switch probabilities, control the extent 
of cross-talk between different layers and components by specifying the probability of 
the random walker ‘jumping’ from its current layer/component to another by taking 
a bipartite edge. Despite its improvements, MultiXrank does not calculate transition 
rates by normalizing layers of multiplex components independently, which disrupts 
local diffusion dynamics. Furthermore, their parameterization leads to inconsistent 
behavior across the parameter space for cross-talk parameters (see Results).

Here we briefly present a re-parameterization of RWR for multiplex/heterogeneous 
graphs that includes further generalizations compared to MultiXrank, which we call 
RWR-MH. The essential difference is in how the transition matrix is constructed from 
the adjacency matrix. First, the intra-layer, inter-layer, and inter-component adjacency 
matrices are column-normalized independently (Fig. 2). Then, crosstalk parameters are 
applied to the transformed matrix such that all columns sum to one. Refer to Additional 
File 1 for more detailed information on the transition matrix construction process.

Fig. 2 Transition matrix construction: diagram outlining the major steps in transition matrix construction for 
RWR-MH. See Additional File 1 for more details
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In addition to the new protocol for transition matrix construction, RWR-MH also 
involves further generalizations for the seed vector p0 , which is defined as

where  uT
κ  represents the seed vector for component κ with seed weight parameter ηκ , 

under the constraint 
∑N

i=1ηi = 1, ηi ≥ 0∀i . Component-wise seed vectors are further 
defined by

where µT
κl is the seed vector of layer l , component κ with seed weight parameter τκl . These 

are under the constraints 
∑Lκ

i=1
τκi = 1, τκi ≥ 0∀i , and 

∑nκl
i=1(uκl)i = 1, (uκl)i ≥ 0∀i . This 

allows different data types to be normalized independently and mapped to each layer 
and also enables control over their relative importance, thereby facilitating multi-omic 
integration. Following these steps for transition matrix and seed vector construction 
enables the same updating formula in Eq.  2 to be used for multiplex-heterogeneous 
graphs of an arbitrary number of components and layers. RWR-MH is embedded in the 
AMEND algorithm.

Biased random walk

A biased random walk (BRW) is any random walk in which there are non-uniform tran-
sition probabilities from a node to its neighbors. For our purposes, the definition of a 
biased random walk is restricted to be a random walk in which node-wise, non-neg-
ative values are applied to the adjacency matrix in such a way that nodes with larger 
values have increased incoming transition probabilities. Given an adjacency matrix 
AN×N = (aij) and a vector of non-negative values µT = [µ1, . . . ,µN ] , A is right-multi-
plied by a diagonal matrix B with elements from µ to yield

This matrix A′ is then column-normalized to create transition matrix M whose ijth ele-
ment gives the probability of transitioning from node j to node i and is denoted as

Therefore, the value µi increases the transition rate from node j to node i relative to 
the µ values of the neighbors of node j . In other words, the extent to which µ increases 
transition rates to target nodes depends on the local neighborhood of the source node. 
The vector µ can also be used to incorporate negative evidence to decrease transition 
rates to undesirable nodes. BRW can easily be extended to Biased Random Walk with 
Restart (B-RWR), which follows the same steps as above for transition matrix calcula-
tion. By incorporating both the seed vector p0 and the BRW attribute vector µ , B-RWR 
becomes a multi-objective learning algorithm.

B-RWR is embedded in the AMEND algorithm, alongside RWR-MH, in two distinct 
ways. First, users can explicitly provide a non-negative, numeric vector representing µ . 
Second, users can provide nodes of interest, represented by node set V  , from which µ is 

(3)pT0 =
[

η1u
T
1

η2u
T
2

· · · ηNu
T
N

]

(4)uT
κ =

[

τκ1u
T
κ1 τκ2u

T
κ2 · · · τκLκu

T
κLκ

]

(5)A′ = BA

(6)mij =
µiaij

∑

l µlalj
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set to be a decreasing function of distance in the graph from nodes in V  , thereby favor-
ing transitions to nodes that are closer to these nodes of interest. In this scenario, the ith 
element of µ is given by

where di is the mean distance from node i to nodes in V  , and k is a scaling factor.

Degree bias adjustment methods

In general, degree is highly relevant for determining node importance, and methods such 
as RWR learn from node degree by design. However, in the context of PPI networks, 
which suffer from technical and study biases, degree is a corrupt metric, and this calls 
for the development of methods that attenuate degree influence. Although various per-
mutation-based approaches have been introduced [7, 17], these are too computationally 
intensive for use in the iterative AMEND algorithm. This study compares three degree 
bias adjustment methods: Stationary Distribution Scaling (SDS), Bistochastic Scaling 
(BS), and Inflation-Normalization (IN). All three rely on the logic that the stationary dis-
tribution of a transition matrix is a good proxy for the amount of degree influence on the 
diffusion scores of each node. This is justified since the stationary distribution probabil-
ity is a function of node degree.

SDS, previously introduced as the Eigenvector Centrality method by Erten et  al. 
(2011), involves scaling diffusion scores by stationary distribution probabilities. The 
modified diffusion score p′ for node i is given by

for unadjusted diffusion score pi from RWR and stationary distribution probability si . 
This favors nodes with smaller stationary distribution probabilities, and hence, nodes 
with smaller degree.

BS and IN are two novel degree bias adjustment methods that act directly on the tran-
sition matrix of a random walk, rather than by adjusting diffusion scores post-hoc. Both 
attempt to manipulate the transition matrix such that the entropy of its stationary dis-
tribution is maximized. Maximizing the entropy of the stationary distribution–which is 
a function of degree–homogenizes the influence of degree on diffusion scores. Bisto-
chastic Scaling, as the name suggests, scales the transition matrix to be approximately 
bistochastic, which is a matrix with row and column sums all equal to one and possesses 
the property of having a principal eigenvector with maximum entropy [18]. The scaled 
matrix can now be used in any network diffusion method relying on a transition matrix, 
such as RWR. By scaling the transition matrix to be approximately bistochastic, BS 
increases the entropy of the stationary distribution, thereby mitigating degree influence 
on diffusion scores.

IN relies on different mechanisms to achieve the same goal of BS, namely the max-
imization of the entropy of the stationary distribution. IN borrows from the inflation 
operator of the Markov Clustering algorithm [19]. Elements in each row of the tran-
sition matrix are raised to a certain positive power, which is a function of the station-
ary distribution probability associated with that row, and columns are subsequently 

(7)µi = e−k×di

(8)p′i =
pi

si
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re-normalized. This increases stationary distribution entropy by displacing incoming 
transition probabilities away from nodes as a function of their stationary distribution 
probability. As with BS, the modified matrix resulting from IN can be used in network 
diffusion methods such as RWR. See Additional File 1 for more details and pseudocode 
for IN and BS.

In addition to manipulating the transition matrix once it has been constructed, one 
can modify how the transition matrix is constructed from the adjacency matrix to com-
bat degree bias. Previous studies have introduced target-aware normalization proce-
dures that calculate transition rates as an inverse function of the degrees of the target 
and source nodes [7, 17, 20]. We introduce a closely-related procedure called penalized 
degree normalization, which first modifies the adjacency matrix and then is followed by 
classic degree normalization. Given an adjacency matrix A = (aij) , let D be a diagonal 
matrix with diagonal element djj =

∑

iaij . A modified adjacency matrix, A′ = (aij′) , is 
first calculated by

for penalization factor k > 0 , with the ijth element given by

Upon column-normalization, we obtain transition matrix M = (mij) whose ijth ele-
ment is given by

Therefore, penalized degree normalization is an instance of a biased random walk 
which penalizes transitions to nodes as a function of degree, with penalization factor k 
controlling the strength of this inverse relationship.

These degree bias adjustment methods and normalization procedures are imple-
mented in the AMEND algorithm. In the context of multiplex or heterogeneous graphs, 
the chosen degree bias adjustment method can be applied to specific components or lay-
ers as specified by the user. This capability allows for active module identification while 
attenuating degree influence on node selection.

Multiplex layer aggregation

In the AMEND algorithm, it is possible to collapse multiplex components such that the 
edge set of a user-specified primary layer is preferentially used during the maximum-
weight connected subgraph step. First, network diffusion with RWR-MH is run on the 
complete multiplex and/or heterogeneous network to obtain diffusion scores. Then, 
prior to the maximum-weight connected subgraph step, the specified multiplex com-
ponents are ‘collapsed’—as detailed in the subsequent paragraph—and diffusion scores 
are aggregated by some user-defined summary function (e.g., mean) for common nodes 
between layers within a multiplex.

(9)A′ = D−kA

(10)a′ij =
aij

dkii

(11)mij =
d−k
ii aij

∑

l d
−k
ll alj
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Consider a multiplex component with M layers, where layer l has node set 
Vl = {v1, . . . , vnl } and edge set El = {

(

vi, vj
)

; viandvjareconnected} , and the primary 
layer is specified to be layer α . The pseudocode below describes how to obtain the node 
and edge sets of the aggregated multiplex component.

Bipartite edges are preserved for the aggregated components. Upon obtaining a sub-
network from the maximum-weight connected subgraph solution, using the aggregated 
node and edge sets, the aggregated multiplex components are ‘expanded’ such that it 
contains the original layers with only nodes from the subnetwork and any edges between 
them.

Molecular interaction networks

Various molecular interaction networks were used throughout this study. A complete 
list of networks, their characteristics, and their uses are given in Additional File 2. The 
following will describe important pre-processing steps for the construction of multiplex/
heterogeneous networks used in the evaluation tasks presented in Results.

For evaluating the ability of RWR-MH to rank features from KEGG pathways, three 
primary networks were obtained, from which the multiplex/heterogeneous networks 
were constructed. The multiplex-heterogeneous graph was constructed by linking com-
mon proteins between the physical STRING PPI network and the functional graphite 
network, in addition to connecting the MMI network to this multiplex component using 
bipartite interactions from STITCH.

The TCGA-KIRC analysis involved a multiplex-heterogeneous network of 3 compo-
nents. The multiplex component, corresponding to the RNA-seq data, contained 4 lay-
ers which were connected through common gene-products. The miRNA component, 
corresponding to the miRNA-seq data, had no miRNA-miRNA interactions; however, 
miRNA-mRNA interactions from miRTarBase were used to connect the miRNA compo-
nent to the layers of the RNA-seq component. The third component consisted of genes, 
to which methylation data from the TCGA-KIRC project were mapped. This methyla-
tion component only contained bipartite connections between common gene-products 
that it shared with the RNA-seq component, as well as between miRNAs of the miRNA 
component encoded by genes in the methylation component.
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The hepatocyte OGT-KO study also involved a multiplex-heterogeneous network con-
taining 4 components corresponding to transcriptomic, proteomic, phospho-proteomic, 
and metabolomic data. The transcriptomic, proteomic, and phospho-proteomic compo-
nents each contained two layers: a mouse PPI network of physical and functional inter-
actions from STRING, and a Network of Interactors and Substrates (NISE) for OGT in 
mouse liver. The STRING layer for each omic type was created by including the 1st order 
neighbors of the features captured in that omic assay. The NISE layer is a network con-
taining only proteins predicted to be interactors or substrates for OGT in mouse liver 
[21]. Within each multiplex component, inter-layer edges were created between com-
mon nodes. Similarly, the transcriptomic, proteomic, and phospho-proteomic compo-
nents were connected through common nodes. The metabolomic component consisted 
of 1-order neighbors of metabolites captured in the metabolomic assay. Bipartite con-
nections from STITCH were applied between the metabolomic component and all of 
the relevant nodes in the multiplex layers corresponding to the other omic types.

Experimental data

KEGG pathways, containing both genes and metabolites, were used to assess the effec-
tiveness of RWR-MH in node ranking. Only pathways with at least 5 metabolites and 
5 genes were retained, to ensure that each fold contained at least one of each molecu-
lar type during fivefold cross-validation. This resulted in 212 pathways. Similarly, Reac-
tome pathways were used to assess the ability to rank nodes for various combinations of 
degree bias adjustment method and transition matrix type. Only pathways of size 5 or 
greater were kept, to ensure that each fold contained at least one gene during fivefold 
cross-validation. This resulted in 1139 pathways.

5 human gene expression datasets were accessed from NCBI GEO (GEO Accession 
IDs: GSE112680, GSE30219, GSE75214, GSE3790). These were analyzed for differential 
expression (DE) using the limma package [22, 23]. P-values and log fold changes from 
DE analyses were used as seed values in RWR to compare degree bias adjustment meth-
ods and to assess the effectiveness of B-RWR.

Data from the TCGA-KIRC project was accessed through the Broad Institute’s Fire-
hose online interface. mRNA abundances, miRNA abundances, and methylation β
-values (at the gene level) were analyzed for DE between paired tumor and normal 
tumor-adjacent samples using mixed effects models in limma. Exponentiated absolute 
log fold changes were used as seeds value in the AMEND algorithm for active module 
identification. Additionally, Gene Ontology and Disease Ontology terms were used in 
the TCGA-KIRC analysis for functional enrichment analysis of AMEND results.

The OGT-KO study consisted of transcriptomic, proteomic, phospho-proteomic, and 
metabolomic data from OGT-KO and control samples of mouse liver at 1 and 2 weeks 
post-KO. DE analysis assessed changes in expression between OGT-KO at 1 week post-
KO vs. Control 1 and OGT-KO at 2 weeks post-KO vs. Control 2 to obtain two sets 
of log fold changes and associated p-values, from which ECIs were calculated for each 
feature to assess the degree of equivalent or inverse change between the two treatment–
control comparisons. ECIs were used as seed values for AMEND, with the algorithm 
selecting for equivalently changed features between 1 and 2 weeks.
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Functional and disease enrichment

Over-representation analysis (ORA) was used to functionally interpret themodules 
obtained from the TCGA-KIRC and O-GlcNAc datasets. ORA relies on a hypergeomet-
ric test to assess the significance of the overlap between module nodes and features in a 
pathway. The input network is set as the ‘universe’, and p-values are adjusted for multiple 
testing using the Benjamini–Hochberg procedure. For the TCGA analysis, a threshold of 
0.01 was used to determine statistical significance, whereas a threshold of 0.05 was set 
for the O-GlcNAc analysis. GO terms representing molecular function, biological pro-
cess, and cellular compartment were used for the TCGA-KIRC analysis to identify func-
tionality and localization associated with molecules in the module. Additionally, disease 
ontology (DO) terms were used to assess the modules association with diseases through 
the DOSE package [24]. KEGG and Reactome pathways were used to assess module 
functionality for the O-GlcNAc study.

Results
Random walk with restart for multiplex/heterogeneous graphs

Several authors have previously contributed to the extension of Random Walk with 
Restart (RWR) to accommodate complex graphs [25–27]. Most recently, MultiXrank 
was introduced, which generalizes RWR for multiplex and/or heterogeneous graphs 
[25]. This method can accept graphs with an arbitrary number of node types and 
edge types and introduces tuning parameters that control the extent of information 
sharing (cross-talk) between different graph regions during diffusion. While Mul-
tiXrank greatly increases the types of graphs to which RWR can be applied, there 
are several limitations that warrant a reformulation of RWR for multiplex/het-
erogeneous graphs, which we call RWR-MH. First, MultiXrank requires that each 
layer within a multiplex component contain the same node set. This greatly limits 
the types of multiplex graphs it can accept. RWR-MH can accommodate layers with 
different node sets that may even have zero overlap. The second limitation relates 
to the normalization of multiplex adjacency matrices (i.e., scaling columns or rows 
such that they sum to one) during transition matrix construction. A multiplex adja-
cency matrix comprises inter- and intra-layer adjacency matrices (see Materials and 
Methods). In the MultiXrank formulation, cross-talk parameters are first applied to 
a multiplex adjacency matrix, which is subsequently normalized as a whole, without 
distinction between inter- and intra-layer matrices. In RWR-MH, each intra- and 
inter-layer adjacency matrix is first normalized independently, after which cross-talk 
parameters are applied. This introduces a re-parameterization that offers more pre-
dictable behavior of transition probabilities as a function of cross-talk parameters. 
This is illustrated in Fig. 3A and B, which show the relationship between the transi-
tion and switch probabilities for hypothetical nodes in a multiplex graph. For both 
intra- and inter-layer transitions, the parameterization in RWR-MH results in a lin-
ear relationship between the switch and transition probabilities, which leads to more 
intuitive behavior compared to the exponential relationship for MultiXrank. Lastly, 
seed vectors are allowed to differ between multiplex layers in RWR-MH, whereas 
they must be the same in MultiXrank. This improvement allows for the diffusion of 
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multiple data types in the same multiplex component, which opens up many more 
possibilities for data integration.

Feature ranking: RWR‑MH versus RWR 

RWR-MH was evaluated at the task of ranking nodes that are functionally related to 
seed nodes. In what follows, lower rank refers to ranks closer to 1 and corresponds to 
larger diffusion scores. Given the fundamental assumption of guilt-by-association that 

Fig. 3 Random Walk with Restart for multiplex/heterogeneous graphs: A and B Comparison between 
RWR-MH and MultiXrank for intra- and inter-layer transition probabilities as a function of switch probability, 
for a hypothetical source-target node pair with source node degree of 50 and source-target edge weight of 
0.8 in a multiplex graph with 3 layers. C–E Empirical cumulative probabilities for ranks of nodes (determined 
by diffusion scores) in test folds following a fivefold cross-validation procedure using KEGG metabolic 
pathways, wherein each pathway is split into 5 folds, features in training folds are set as seeds, and the 
ranks of the features in the test fold are stored. Restart probability is set to 0.5. Ranks shown include ranks 
from all test folds from all KEGG pathways. Lower ranks represent higher diffusion scores and higher affinity 
to seed nodes. The networks used include different combinations of three components: a Mus musculus 
physical PPI network from STRING; a functional PPI network wherein an edge connects two nodes if 
they belong to a common Reactome pathway; and a MMI network of merged isomers from STITCH. The 
multiplex-heterogeneous graph comprises all three components, with the two PPI networks as layers in a 
multiplex. The monoplex-heterogeneous graph comprises the functional PPI network and the MMI network. 
The multiplex-homogeneous graph comprises the two PPI networks as layers
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underlies network diffusion methods, it is expected that a node will be ranked lower 
if it belongs to common pathways with the seed nodes. Using KEGG metabolic path-
ways [28], containing both metabolites and genes, we performed a fivefold cross vali-
dation procedure, wherein features in the training folds were used as seeds and the 
ranks of nodes in the test fold were obtained for each pathway. This was performed on 
3 graphs: a multiplex-heterogeneous graph with an MMI component and a PPI multi-
plex component consisting of physical and functional interaction layers (20,653 nodes; 
326,459 edges); a monoplex-heterogeneous graph with an MMI component and a PPI 
component of functional interactions (17,694 nodes; 289,278 edges); and a multiplex-
homogeneous graph of a PPI multiplex component consisting of physical and func-
tional interaction layers (12,375 nodes; 198,953 edges). For each graph, RWR-MH was 
run under three parameter settings representing varying degrees of cross-talk (CT in 
figures) between layers and components. As cross-talk increases, more information is 
being shared between components/layers. High, medium, and low cross-talk correspond 
to values of 0.85, 0.5, and 0.15, respectively, for all cross-talk parameters (denoted as � 
and δ in Materials and Methods). For this and all subsequent analyses involving RWR 
(except when run in the AMEND algorithm), the restart probability parameter is set to 
0.5.

Figure  3C-E show empirical cumulative probabilities for the ranks of nodes in the 
hold-out folds. Lines that lie above others at a certain rank represent a larger probabil-
ity of assigning ranks less than or equal to that value, and thus, an improvement in that 
methods ability to give low ranks to nodes that are functionally related to seed nodes. 
For Fig.  3C–D, insets reveal a slightly superior performance from RWR-MH when 
considering top-ranked nodes. However, Fig.  3C inset highlights the ambiguity of the 
results. When considering ranks of 100 or lower, RWR-MH out-performs RWR, regard-
less of cross-talk. But when considering ranks larger than 100, RWR out-performs the 
others. The impact of cross-talk varies between graphs. For the multiplex-homogene-
ous graph (Fig.  3E), high cross-talk negatively impacts performance, albeit subtly. For 
the multiplex-heterogeneous graph (Fig. 3C), we see the worst performance among the 
RWR-MH methods for the high cross-talk scenario, whereas high cross-talk shows the 
best performance for the monoplex-heterogeneous graph (Fig.  3D). This suggests that 
the appropriate amount of cross-talk between graph components depends on the graph 
topology. For this analysis, large cross-talk for multiplex graphs results in poorer perfor-
mance, possibly due to the reduced ability of the random walker to thoroughly explore 
each layer individually.

Degree bias adjustment

PPI networks have been shown to suffer from degree bias, wherein certain proteins 
may have an inflated or deflated number of interactors (i.e., node degree) relative to 
others [29]. This is the result of various technical and study biases that are inherent in 
PPI ascertainment studies; for example, certain technologies may favor the detection of 
interactors for highly-abundant proteins, while some proteins are simply studied more 
often due to their association with high-profile diseases [29]. This presents problems for 
network diffusion methods, which partly determine node importance based on degree. 
Several approaches for addressing these issues in the context of network diffusion and 
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active module identification (AMI) methods have been put forward. These range from 
diffusion score adjustments to permutation-based approaches, such as permuting seed 
vectors or diffusing on random degree-preserving networks (RDPN) to obtain empiri-
cal p-values for diffusion scores [7, 17, 30]. In the Discussion, we’ll present reasons why 
RDPN-based approaches may be misguided. But in the context of AMEND, which is an 
iterative algorithm that runs RWR on many different (sub)networks, permutation-based 
approaches are too computationally intensive. We choose to pursue an unexplored mode 
of degree bias adjustment by directly adjusting the transition matrix, post-normalization 
but prior to diffusion. We also investigate the effects of different adjacency matrix nor-
malization methods for constructing the transition matrix.

We compare three different degree bias adjustment methods: stationary distribution 
scaling (SDS), inflation-normalization (IN), and bistochastic scaling (BS). SDS, also 
called eigenvector centrality scaling and previously introduce by Erten et  al. (2011), 
involves scaling diffusion scores by stationary distribution probabilities. The stationary 
distribution is the normalized eigenvector associated with the absolute largest eigen-
value of the transition matrix. Both IN and BS are novel adjustment methods being 
introduced here that involve manipulating the transition matrix prior to diffusion. Both 
are based on the assumption that the stationary distribution of a transition matrix is a 
fair metric for assessing individual influences of node degree on diffusion scores. They 
attempt to maximize the entropy of this distribution, thereby squeezing degree influence 
of all nodes towards a global mean. IN applies exponents to the rows of a left-stochastic 
transition matrix, followed by column re-normalization. BS implements Iterative Pro-
portional Fitting (IPF) to scale the transition matrix to be approximately bistochastic 
[31]. Additionally, we compared two transition matrices obtained from different adja-
cency matrix normalization procedures: degree normalization and penalized degree 
normalization with varying penalization factors (see Materials and Methods). These 
methods were compared in three evaluation tasks: feature ranking, assessment of cor-
relation between diffusion scores and node degree, and subnetwork identification in the 
context of the AMEND algorithm.

The first task involves a fivefold cross-validation procedure analogous to the previ-
ous section, wherein genes from Reactome Mus musculus pathways [32] in the training 
folds are used as seeds, diffusion is run on a Mus musculus physical PPI network from 
STRING [33], and the ranks of diffusion scores for nodes in the test fold are assessed 
(higher scores equals lower ranks). Figure 4A–C show cumulative probabilities for ranks 
of genes in hold-out folds for combinations of transition matrix and adjustment method. 
For all three transition matrix types, the control method of no adjustment results in the 
best performance, as shown by the insets. IN performs slightly better than SDS and BS, 
with BS showing the worst performance across all three transition matrix types. Perfor-
mance is similar across the transition matrix types.

Next, correlation between diffusion scores and degree was assessed using 5 human 
gene expression datasets obtained from NCBI GEO [34] that were diffused on a human 
PPI network of physical and functional interactions from STRING. Results were aver-
aged across datasets. Figure  4D, obtained using -log10 transformed p-values as seeds, 
shows marked differences in correlation among the adjustment methods. As expected, 
the control results in the largest Pearson correlation coefficient between diffusion score 
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and degree. We also see correlations closer to zero for penalized degree transition 
matrices, which is expected since this biases outgoing transition probabilities towards 
low-degree nodes. Interestingly, BS shows little variation in correlation between transi-
tion matrix types, and SDS results in negative correlation between diffusion score and 
degree, which is undesirable given that node degree, despite being a corrupt metric, still 

Fig. 4 Degree bias adjustment analysis: combinations of transition matrix types and degree bias adjustment 
methods compared on 3 tasks: ranking of functionally related proteins, correlation between diffusion 
scores and degree, and retention of high-seed-value nodes in the context of AMEND. For all figures, the 
restart probability is set to 0.5 for RWR. A–C Empirical cumulative probabilities of ranks. Using Reactome 
Mus musculus pathways and a Mus musculus PPI network of physical and functional interactions, a fivefold 
cross validation procedure was implemented in which pathways are split into folds, nodes belonging to the 
training folds of a pathway are used as seeds in RWR, and the ranks of diffusion scores of nodes in the test 
fold are collected (higher score equals lower rank). Ranks shown in figures include ranks from all test folds 
from all pathways. D Correlation between diffusion scores and node degree. For each of 5 human gene 
expression datasets, -log10-transformed p-values from differential expression analysis were diffused on a 
human PPI network of functional and physical interactions. Pearson correlation coefficients were averaged 
across datasets. E Average difference in empirical cumulative probabilities between seed values and degree 
for module nodes returned from AMEND. For each of 5 human gene expression datasets, seed values are 
-log10-transformed p-values from differential expression analyses assigned to nodes such that seed value and 
degree are perfectly negatively correlated. Results are averaged across datasets
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offers evidence of biological importance [35]. IN also shows a large decrease in correla-
tion. Similar results are obtained using absolute log fold changes as seeds (Additional 
File 3).

The goal of the final degree bias analysis was to assess the extent to which AMEND 
retains nodes based on seed value compared to degree. Transition matrix types and 
adjustment methods were implemented in the AMEND algorithm and run using the 5 
gene expression datasets and the PPI network introduced previously, with results being 
averaged across datasets. To disentangle the effects of seed value and degree on node 
retention in the final module, seed values were assigned to nodes such that degree 
and seed value were perfectly negatively correlated. For each module returned from 
AMEND, the average difference in empirical cumulative probabilities between the seed 
values and degrees of module nodes was calculated with respect to the entire network. 
To the extent that AMEND learns primarily from seed values and not from degree, we 
would expect these differences to be close to 1. Figure 4E, obtained using -log10 trans-
formed p-values as seeds, shows fairly uniform, positive results across the transition 
matrices and adjustment methods, with a notable exception being SDS for penalized 
degree normalization ( k = 0.5 ). For the degree and penalized degree ( k = 0.1 ) transi-
tion matrices, SDS shows the largest difference, followed by BS, then IN, and then con-
trol. This corroborates Fig.  4D, which shows increasing correlation between diffusion 
score and degree when moving from SDS to BS to IN to control. The large differences in 
empirical cumulative probability between seed value and degree indicate that AMEND 
accurately retains nodes with large seed values, despite these nodes having low degree. 
Results are slightly more variable when using absolute log fold change as seed values, 
although all y-axis values remain above 0.75 (Additional File 3).

Despite performing worse than control in the feature ranking analysis, the IN adjust-
ment method outperformed SDS and BS. Also, IN showed a significant decrease from 
the control in correlation between diffusion score and degree, while remaining positive. 
It also showed favorable results in its ability to retain high-seed-value, low-degree nodes 
in the context of AMEND. Given these trade-offs, IN is recommended as the preferred 
degree bias adjustment method and is employed for the analysis of the real-world data-
sets included in this study.

Biased random walk

In its broadest sense, a biased random walk (BRW) is any random walk in which there 
are non-uniform transition probabilities from a node to its neighbors. For our purposes, 
the definition of a biased random walk is restricted to be a random walk in which node-
wise, non-negative values are applied in such a way that nodes with larger values have 
increased incoming transition probabilities (see Materials and Methods). We will use the 
term ‘BRW attribute’ to refer to these non-negative values. Biased Random Walk with 
Restart (B-RWR) can be used to select for nodes that have large seed values and large 
BRW attribute values, effectively transforming RWR into a multi-objective algorithm. 
B-RWR has been implemented into the AMEND algorithm.

Figure 5A–D show the impact of B-RWR on raw diffusion scores and also in the con-
text of AMEND. For analyses in this section, seed values were set to be −log10(p-value) 



Page 17 of 29Boyd et al. BMC Bioinformatics           (2025) 26:39  

coming from differential expression analyses of 5 human gene expression datasets 
(see Materials and Methods). For Fig. 5B-D, results were averaged across datasets. For 
Fig. 5A, 10% of nodes in a PPI network were chosen at random and assigned BRW attrib-
ute values from an exponential distribution with varying rate parameters, while all other 
nodes were given a value of 1. Empirical cumulative probabilities of diffusion scores for 
these selected nodes were compared between RWR and B-RWR, and Fig. 5A shows a 
marked increase from RWR to B-RWR, with this increase becoming greater as the rate 
parameter approaches 0. As expected, B-RWR increases diffusion scores for nodes with 
large BRW attribute values.

Figure  5B–D capture the impact of B-RWR when embedded in the AMEND algo-
rithm, which by default relies on RWR to assess node importance. This impact was 
assessed in two ways. First, given the iterative nature of AMEND, we compared the iter-
ation at which selected nodes of interest (NOI) were removed from the network between 

Fig. 5 Biased random walk: impact of biased random walk with restart (B-RWR) on diffusion scores and on 
AMEND modules. Seed values are −log10(p-value), with p-values coming from differential expression analysis 
of 5 human gene expression datasets. For panels B–D, results are averaged across datasets. In the context 
of AMEND, nodes of interest (NOI), chosen to be nodes that were removed at varying points in the iterative 
AMEND algorithm, were assigned large BRW attribute values. A 10% of nodes in the PPI network, chosen 
randomly, were assigned BRW attribute values from an exponential distribution with varying rate parameter, 
while all other nodes were set to 1. Y-axis shows the change in empirical cumulative probabilities for diffusion 
scores of these selected nodes between RWR and B-RWR, for 5 gene expression datasets. Restart parameter is 
set to 0.5. B B-RWR in the AMEND algorithm. All nodes were assigned BRW attribute values that decrease as a 
function of distance to NOI in the PPI network. Upper plot shows the change in average iteration-of-removal 
of NOI from  AMENDRWR  to  AMENDB-RWR . Lower plot shows the change in average distance (in full PPI network) 
between module nodes and NOI from  AMENDRWR  to  AMENDB-RWR . C–D Similar to panel B. The BRW attribute 
values assigned to NOI are drawn from an exponential distribution with varying rate parameters, with all 
other nodes set to 1
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AMEND with RWR  (AMENDRWR ) and AMEND with B-RWR  (AMENDB-RWR ); it is 
expected that this will increase in  AMENDB-RWR . Second, we captured the distance (in 
the full PPI network) from module nodes (i.e., nodes in the final module returned from 
AMEND) to NOI; it is expected that  AMENDB-RWR  will reduce the distance between 
module nodes and NOI. These NOI were chosen to be nodes that were removed at cer-
tain iterations in the AMEND algorithm, ranging from early iterations (these nodes are 
considered to be less important) to later iterations (these nodes are considered to be 
more important). For Fig. 5B, BRW attribute values were set such that they decrease as 
a function of distance from NOI (see Materials and Methods). There is a steady increase 
in iteration removal number (scaled by the total number of iterations in that run), which 
means that these nodes are staying in the network longer and thus have more influence 
on the diffusion scores of other nodes. We also see a slight decrease in distance between 
module nodes and NOI when we compare  AMENDRWR  to  AMENDB-RWR . For Fig. 5C–
D, NOI are being assigned BRW attribute values drawn from an exponential distribution 
with varying rate parameters, while values of 1 are given to all other nodes. Figure 5C 
shows a clear increase in iteration removal number. The change in distance, given in 
Fig. 5D, gives more ambiguous results. Given the very small scales (y-axis ranges from 
− 0.03 to 0.06), we can conclude that  AMENDB-RWR , when assigning BRW attribute val-
ues from an exponential distribution, doesn’t have a substantial impact on the final mod-
ule, in terms of distance to NOI. However, the impact is more substantial when assigning 
BRW attribute values that decrease as a function of distance from NOI (Fig. 5B).

AMEND 2.0: new capabilities

The methods introduced in the previous sections—RWR-MH, B-RWR, degree bias 
adjustment methods, and adjacency matrix normalization methods—have been imple-
mented into the previously introduced AMEND algorithm for active module identifica-
tion. RWR-MH enables the analysis of multi-omic data in a multiplex, heterogeneous 
network with an arbitrary number of components and layers. The biased random walk 
capability enables the integration of secondary, node-wise information that informs 
node selection in addition to seed values. Furthermore, users have the option to imple-
ment degree bias adjustment in a component/layer-specific fashion. Additionally, in the 
context of multiplex networks, it is possible to collapse multiplex components such that 
the edge set of a user-specified layer is preferentially used during the maximum-weight 
connected subgraph step of the algorithm (see Materials and Methods: Multiplex Layer 
Aggregation). Together, these new capabilities address important needs in the area of 
active module identification, and they make AMEND a flexible tool that facilitates multi-
omic data integration and knowledge discovery in biomedical research. The AMEND 
algorithm is available as a package in the R software environment [36], with installation 
instructions and tutorials at https:// github. com/ sambo yd0/ AMEND. General guidelines 
on data preparation and function argument specification can be found in Additional File 
1.

AMEND identifies key molecular features involved in kidney renal cell carcinoma

We applied the AMEND algorithm to two real-world datasets: the TCGA-KIRC study 
and an O-GlcNAc perturbation study of mouse liver. The Cancer Genome Atlas (TCGA) 

https://github.com/samboyd0/AMEND
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was a pan-cancer initiative that molecularly profiled over 20,000 tumor and paired-
normal samples for 33 cancer types [37]. For this analysis, RNA-seq, miRNA-seq, 
methylation, and clinical data from the TCGA Kidney Renal Cell Carcinoma (TCGA-
KIRC) project were obtained through the Broad Institute’s Firehose [38]. The RNA-seq, 
miRNA-seq, and methylation datasets had 72, 68, and 160 paired tumor-normal sam-
ples, respectively. Differential expression analysis between paired tumor and normal 
samples yielded log fold changes for each omic type, with exponentiated absolute log 
fold changes serving as seed values. Hence, AMEND searched for both up- and down-
regulated features. Additionally, hazard ratios of mortality were obtained from Cox pro-
portional hazard models for each feature in the omics data. These values were mapped 
to nodes in a multiplex-heterogeneous network that comprised three components cor-
responding to RNA-seq, miRNA-seq and methylation data. The mRNA component is 
multiplex with four layers: a human PPI network of physical interactions from STRING; 
a kidney-specific human PPI network from OhmNet [39]; a gene regulatory network 
constructed from TCGA-KIRC gene expression data using ARACNE [40]; and a net-
work from the graphite package [41] comprising edges between genes that lie in com-
mon Reactome pathways. The miRNA component contained only bipartite connections 
between miRNAs and mRNAs, using interaction information from the miRTarBase 
database [42]. The methylation component, where methylation values are summarized 
at the gene level, consist of genes captured in methylation data, with edges connecting 
common genes between mRNA-methylation components and between miRNA-encod-
ing genes and their miRNA products in the miRNA component. This network contains 
57,642 nodes and 747,549 edges.

Figure 6 shows the AMEND module after diffusing RNA-seq, miRNA-seq, and meth-
ylation data simultaneously in a multiplex-heterogeneous network. Furthermore, hazard 
ratios were supplied as BRW attribute values to select for features whose expression cor-
relates with mortality. IN was also applied to the mRNA component to mitigate degree 
bias in the PPI networks. There are six miRNAs in the module, all of which have clear 
connections with renal cell carcinoma (RCC). miR-122, miR-155, and miR-210, all up-
regulated in the TCGA-KIRC data, have shown significant up-regulation in RCC sam-
ples, promoting tumor progression, proliferation, and migration [43, 44]. miR-200c and 
miR-141, both of which are down-regulated in the TCGA-KIRC data, have shown sig-
nificant down-regulation in RCC samples, contributing to cell proliferation and metas-
tasis [45, 46]. The module contains VEGFA, an oncogene whose gain of function is due 
to under-expression of miR-200c and miR-141 [47]. The module also contains HIF1A, a 
subunit of hypoxia-inducible factor 1 which, due to its dysregulation in RCC cells, pro-
motes the expression of miR-210 [48]. Several genes implicated in RCC were also cap-
tured in the module, including TGFBI [49], ICAM1 [50], and VIM [51].

Over-representation analysis (ORA) of GO terms [52, 53] also picks up important 
pathways that are characteristic of cancer (Fig. 7, Additional File 4). The green clus-
ter—containing VEGFA, miR-200c-3p, and miR-141-3p—is associated with angio-
genesis, with dysregulated angiogenesis being a hallmark of cancer [54]. The purple 
cluster—containing miR-210-3p, HIF1A, and VIM—is associated with positive regu-
lation of immune system processes and adaptive immune response. Another relevant 
biological process significantly associated with the module is the regulation of T cell 
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activation, relating to genes such as CD2, CD86, and JAK3; T cells play an impor-
tant role in the tumor microenvironment (TME) and have been shown to make up 
the majority of immune cells in the TME of RCC [55]. Furthermore, disease enrich-
ment with Disease Ontology terms [56] show significant enrichment for many cancer-
related conditions, including RCC (Additional File 5).

While there are few, if any, network-based methods that can flexibly integrate multi-
omic data for the purpose of module identification/feature selection, there are other, 
non-network-based methods that achieve a similar purpose. Among them is DIABLO, 
a supervised multi-omic integration and feature selection method based on maximiz-
ing covariance between input datasets [57]. DIABLO was applied to the TCGA-KIRC 
data to obtain a feature set from the mRNA-seq, miRNA-seq, and methylation data-
sets that also differentiates between normal vs. tumor samples. A non-parametric 
Mann–Whitney U test was performed to test for differences in distribution of log fold 
changes (weighted by 1 minus p-value) between the feature sets returned by AMEND 
and DIABLO. The weighted log fold changes of the mRNA features from the AMEND 
module (N = 150) were significantly higher than those from the first factor given by 
DIABLO (N = 150), despite a moderate overlap (Jaccard Index of 0.31) (Fig.  8). The 

Fig. 6 Active module from TCGA-KIRC analysis with AMEND: AMEND module using TCGA-KIRC multi-omic 
data. Darker shades of grey for node color represent larger seed values, which were exponentiated absolute 
log fold changes from differential expression analyses. Hazard ratios were set as BRW attribute values. 
Red node borders represent the RNA-seq component, while blue node borders represent the miRNA-seq 
component. The multiplex RNA-seq component was collapsed such that the STRING physical PPIs are 
preferentially considered during the maximum-weight connected subgraph step of the AMEND algorithm
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distributions of weighted log fold changes for the miRNA features were not signifi-
cantly different between AMEND (N = 6) and DIABLO (N = 6), partly due to the large 
overlap between them (Jaccard Index of 0.67).

Fig. 7 Pathway analysis of AMEND module from TCGA-KIRC data: significant GO terms from 
over-representation analysis of the AMEND module from TCGA-KIRC data, using a BH-adjusted p-value cutoff 
of 0.01, are displayed as an acyclic, directed graph depicting terms nested within others. Colors correspond 
to clusters in the AMEND module that contain the most features of that term. Node size corresponds to the 
number of features in that GO term

Fig. 8 AMEND-DIABLO comparison on TCGA-KIRC data: comparison of log fold change distributions for 
feature sets returned by AMEND and DIABLO. For both methods, the mRNA and miRNA feature set sizes are 
150 and 6, respectively. A non-parametric Mann–Whitney U test was performed to test for differences in the 
distribution of weighted log fold changes between the two methods
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Additionally, AMEND provides the feature set in the context of an interaction net-
work, making it possible to explicitly define intra- and inter-omic relationships between 
molecules based on a priori functional and physical interaction data. The module from 
AMEND is also amenable to community detection algorithms to identify clusters of 
molecules in the module that may be functionally related. DIABLO requires the same 
samples to be present across all datasets. While this scenario is ideal in a multi-omic 
experiment, often it is not the case. These conditions do not hold for the next example; 
therefore, DIABLO could not be used for comparison.

OGT knockdown disrupts mitochondrial and peroxisomal lipid metabolism

We next applied the AMEND algorithm to a study of O-GlcNAc alterations in mouse 
liver. O-GlcNAc is a ubiquitous post-translational modification (PTM) of serine and 
threonine residues of intracellular proteins. This PTM regulates many essential biologi-
cal functions such as gene transcription, protein translation, and signal transduction 
[58, 59]. O-GlcNAc is mediated by two enzymes: O-GlcNAc transferase (OGT), which 
adds O-GlcNAc to target proteins, and O-GlcNAcase (OGA), which removes O-Glc-
NAc from target proteins. Our data consist of transcriptomic, proteomic, phospho-pro-
teomic, and metabolomic data from wildtype and OGT knockdown (KO) mouse liver at 
1 or 2 weeks post-KO. To identify stable effects of OGT-KO, we calculated the degree of 
equivalent change between OGT-KO vs. control at 1 week and OGT-KO vs. control at 
2 weeks using the equivalent change index (ECI) [60, 61]. ECIs are used as seed values 
in the AMEND algorithm. The molecular interaction network comprises 4 components 
corresponding to the 4 omics types. The transcriptomic, proteomic, and phospho-prot-
eomic components are multiplex with 2 layers each: a mouse PPI network of functional 
interactions from STRING and a network of interactors and substrates of OGT in mouse 
liver (see Materials and Methods). The metabolite interactions come from STITCH [62], 
as well as the bipartite edges connecting the metabolomic component to the others. The 
transcriptomic, proteomic, and phospho-proteomic components are linked through 
common gene-products. This network contains 33,504 nodes and 710,147 edges.

The AMEND module (Fig. 9) contains 167 nodes (63 mRNAs, 60 proteins, 28 phos-
pho-proteins, 16 metabolites) and 290 edges. In what follows, nodes coming from the 
transcriptomic, proteomic, and phospho-proteomic components of the network will be 
denoted by T, P, and Ph, respectively. The colored clusters correspond primarily to met-
abolic processes. Among nodes in the red cluster corresponding to metabolism, there 
is Choline, an essential nutrient in lipid metabolism with links to O-GlcNAc [63, 64], 
which was down-regulated in OGT-KO samples at both 1 and 2-weeks post-KO. The 
module also contains metabolites of Choline: Betaine and Sarcosine. While Sarcosine 
was also down-regulated at both timepoints, Betaine showed consistent up-regulation 
at 1 and 2-weeks post-KO. These metabolites, along with proteins THA1 (P) and CTH 
(P) captured in the module, belong to the Glycine, Serine, and Threonine Metabolism 
pathway from KEGG (Additional File 6). Additionally, we see several genes, gene prod-
ucts, and pathways related to lipid metabolism in both mitochondria and peroxisomes 
(Figs. 9 and 10). DECR1 (P) and ACSF2 (T), both involved in fatty acid beta-oxidation in 
mitochondria, have previously been found to be down-regulated after O-GlcNAcylation 
impairment [65], which is corroborated by our data. Additional enzymes involved in 
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mitochondrial fatty acid beta-oxidation are ECI1 (T,P) and ECI2 (T,P). These enzymes 
show equivalent down-regulation across omic datasets in OGT-KO samples between 1 
and 2-weeks, with the notable exception of ECI2 with consistent up-regulation in tran-
scriptomics but down-regulation in proteomics across 1 and 2 weeks post-KO. Gene 
products captured in the module that relate to peroxisomal lipid metabolism include 
ACOX1 (T), ACOX3 (P), ALDH3A2 (T), CRAT (T), ACAAB1 (Ph), and EHHADH (T), 
most of which show equivalent down-regulation across 1 and 2-weeks post-KO, exclud-
ing CRAT  (T) and ACOX3 (P). These findings suggest that O-GlcNAcylation is a novel 
regulator of lipid metabolism in mouse liver.

Discussion
We present a new version of the AMEND algorithm, which now allows for multi-
omic data integration and active module identification on multiplex-heterogeneous 
networks using the RWR-MH network diffusion method, with the options of biased 
random walk for multi-objective node selection (B-RWR) and degree bias adjustment. 
We assessed the effectiveness of RWR-MH, B-RWR, degree bias adjustment meth-
ods, and transition matrix types on various tasks such as feature ranking, degree bias 
mitigation, and module identification. These individual methods were wrapped in the 
AMEND algorithm and applied to two diverse multi-omic datasets coming from the 
TCGA-KIRC project and an OGT knockout study. While most existing methods have 
been developed for specific data types and research questions, thereby limiting their 

Fig. 9 O-GlcNAc analysis with AMEND: active module obtained from AMEND. Seed values for AMEND are 
equivalent change indices (ECIs), which are weighted ratios of log fold changes between OGT knockout 
vs. Control at 1 week and OGT knockout versus control at 2 weeks from differential expression analyses of 
transcriptomic, proteomic, phospho-proteomic, and metabolomic data. Samples come from mouse liver. 
Darker grey nodes represent nodes with ECIs closer to 1 (more equivalently changed between treatment–
control comparisons). Red, orange, pink, and blue node borders correspond to the transcriptomic, proteomic, 
phospho-proteomic, and metabolomic components, respectively
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generalizability, AMEND is designed to be a flexible tool that can accommodate many 
different combinations of multi-omic data and network configurations.

AMEND is robust to the dimensions of the input datasets. Small sample sizes will 
affect omics analyses that are performed as a pre-processing step for AMEND; how-
ever, since AMEND can accept any node-wise metric derived from the experimental 
data, sample size considerations should be specific to the type of analysis being per-
formed (e.g., differential expression analysis). In addition, the omics experiment does 
not need to contain all of the molecules in the network used for AMEND. Nodes cor-
responding to molecules not captured in the assay will be given a seed value of 0 but 
are nonetheless included in the analysis, with the possibility of being included in the 
final module by virtue of network diffusion.

Fig. 10 Pathway analysis of AMEND module from O-GlcNAc data: significant pathways from 
over-representation analysis (ORA) of the AMEND module obtained from the O-GlcNAc dataset. A directed, 
acyclic graph of significant Reactome and KEGG pathways from ORA, with a BH-adjusted p-value cutoff 
of 0.05. Edges point from smaller pathways to larger pathways in which they are partially nested. Colors 
correspond to clusters in the AMEND module that contain the most features of that pathway. Node size 
corresponds to pathway size
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RWR-MH is a reparameterization of MultiXrank that leads to more intuitive behav-
ior over the entire parameter space. It also introduces some important generalizations 
beyond MultiXrank that enable RWR-MH to accommodate multiplex layers with vary-
ing node sets and seed vectors. RWR-MH improves over RWR in the task of node rank-
ing when considering top-ranked node, which is the most relevant since one of the 
purposes of ranking is to reduce the feature-space to a more manageable and interpret-
able subset. Although RWR-MH may perform as well as or worse than RWR in some 
scenarios (e.g., multiplex-homogeneous), it offers capacities such as cross-talk and seed 
weight control which are advantageous in other cases, such as when a specific omic type 
of a multi-omic experiment is of more interest than others. A limitation of this analy-
sis is that cross-talk values are uniform across all layers/components, rather than being 
tuned to optimality for the specific network/data configuration. This was done to more 
easily assess the impact of cross-talk on node ranking. The limited impact of RWR-MH 
for the multiplex graphs could be due to the limited extra information that each layer 
offers, since STRING borrows information from pathway databases when curating their 
PPIs [66].

Two novel degree-bias adjustment methods were introduced–BS and IN– that directly 
manipulate the transition matrix prior to diffusion to attenuate the influence of degree 
on diffusion scores. IN had the best performance when considering its ability to rank 
nodes, to decrease correlation between diffusion scores and degree, and to select low-
degree, high-seed-value nodes in the context of AMEND. While all adjustment methods 
showed poorer performance compared to control in their ability to rank proteins associ-
ated with seed proteins, this may be due to the possibility that many proteins in popular 
pathway databases (e.g., Reactome) suffer to some extent from study bias, and conse-
quently, from degree bias in the context of a PPI network. Degree bias adjustment may 
be most appropriate in scenarios where underexplored proteins are desired.

Biased random walk with restart (B-RWR) was shown to effectively increase the rank 
of nodes based on a continuous attribute. In the context of AMEND, the impact of 
B-RWR is limited, although it does cause nodes to stay in the network longer, thereby 
increasing their influence on other nodes. The penalized degree normalization method 
is an instance of a biased random walk, with inverse degree serving as the node attribute. 
This illustrates the versatility of B-RWR, which can be used not only to increase tran-
sition rates to desirable nodes, but conversely to decrease transition rates to undesir-
able nodes by incorporating negative evidence. Penalized degree is in marked contrast to 
core normalization used in NetCore [30], which is equivalent to a biased random walk 
favoring transitions to high-core nodes, and by correlation, high-degree nodes, thereby 
exacerbating degree bias.

The new AMEND algorithm, which incorporates RWR-MH, degree bias adjust-
ment, and B-RWR, was applied to two multi-omic datasets, each including different 
omic types, using multiplex-heterogeneous networks with complex configurations. 
The TCGA-KIRC analysis included RNA-seq, miRNA-seq, methylation, and sur-
vival data, while the OGT-KO study included transcriptomic, proteomic, phospho-
proteomic, and metabolomic data. AMEND was able to recapitulate many important 
molecular associations with RCC, including miR-200c, miR-141, VEGFA, and HIF1A. 
Additionally, several enzymes involved in mitochondrial and peroxisomal lipid 
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metabolism were captured in the module from the OGT-KO analysis, many of which 
corroborate previous studies of O-GlcNAc (Choline, DECR1, ACSF2).

Despite, or because of, its broad applicability, there are limitations with AMEND. 
Since AMEND is a tool designed to be as widely applicable as possible, with the goal 
of identifying densely-connected subsets of nodes with large experimental values, it 
may not be optimal for a specific research question or experimental design for which 
this is not the analytic goal. Additionally, results will be highly dependent on the 
choice of network. There are alternative, non-network-based frameworks for jointly 
analyzing multi-omic data: correlation/covariance-based (e.g., DIABLO), factor 
analysis-based, kernel-based, deep learning-based, and more [67]. AMEND is most 
suitable for complex experimental designs with noisy, disparate data, where the goal 
is to identify a coherent, inter-related set of biologically relevant features, and when 
high-quality molecular interaction data is available. Since AMEND was developed as 
a supervised method, it is not appropriate for the task of sample clustering.

In conclusion, we present AMEND 2.0, an active module identification method 
with capabilities for multi-omic data integration through multiplex-heterogeneous 
network diffusion, in addition to degree bias mitigation and multi-objective node 
selection. These capabilities make AMEND a widely applicable tool for identifying 
highly relevant modules that facilitate understanding of complex, heterogeneous 
molecular data. AMEND is easily accessible as an R package, with source code, install 
instructions, documentation, and examples available at https:// github. com/ sambo 
yd0/ AMEND.
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