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Abstract 

Background: Mutational processes of diverse origin leave their imprints 
in the genome during tumour evolution. These imprints are called mutational sig-
natures and they have been characterised for point mutations, structural variants 
and copy number changes. Each signature has an exposure, or abundance, per sample, 
which indicates how much a process has contributed to the overall genomic change. 
Mutational processes are not static, and a better understanding of their dynam‑
ics is key to characterise tumour evolution and identify cancer cell vulnerabilities 
that can be exploited during treatment. However, the structure of the data typically 
collected in this context makes it difficult to test whether signature exposures differ 
between conditions or time‑points when comparing groups of samples. In general, 
the data consists of multivariate count mutational data (e.g. signature exposures) 
with two observations per patient, each reflecting a group.

Results: We propose a mixed‑effects Dirichlet‑multinomial model: within‑patient 
correlations are taken into account with random effects, possible correlations 
between signatures by making such random effects multivariate, and a group‑specific 
dispersion parameter can deal with particularities of the groups. Moreover, the model 
is flexible in its fixed‑effects structure, so that the two‑group comparison can be 
generalised to several groups, or to a regression setting. We apply our approach 
to characterise differences of mutational processes between clonal and subclonal 
mutations across 23 cancer types of the PCAWG cohort. We find ubiquitous differential 
abundance of clonal and subclonal signatures across cancer types, and higher disper‑
sion of signatures in the subclonal group, indicating higher variability between patients 
at subclonal level, possibly due to the presence of different clones with distinct active 
mutational processes. 

Conclusions: Mutational signature analysis is an expanding field and we envision our 
framework to be used widely to detect global changes in mutational process activity. 
Our methodology is available in the R package CompSign and offers an ample toolkit 
for the analysis and visualisation of differential abundance of compositional data such 
as, but not restricted to, mutational signatures.
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Author summary
The genome is permanently subject to alterations due to errors in replication, faulty 
replication machinery, and external mutational processes such as tobacco smoke or UV 
light. Cancer is a disease of the genome, characterised by an abnormal growth of cells 
that harbour the same set of “clonal” mutations. In turn, these mutations might trans-
form how cells accrue new “subclonal” mutations or the extent to which they tolerate 
them. The mutational signature framework lets us extract the information of which 
mutational processes have been active, and in which intensity, in creating a set of muta-
tions. We extend this framework to statistically test the change in the relative intensity of 
mutational processes between conditions. In samples of 23 cancer types of the PCAWG 
project, we test the difference between mutational processes that contribute to muta-
tions prior to cancer onset (clonal group), and upon cancer onset (subclonal group), 
whilst keeping into consideration patient-to-patient differences. We find differences in 
the majority of cancer types, and identify mutational processes which contribute prefer-
entially to either group.

Introduction
Cancer is a disease of the genome, which is permanently subject to alterations due to 
external factors, to inevitable errors in replication, and to faulty replication machinery 
[1–5]. Cancer cell populations grow by clonal expansions. A typical tumour carries sev-
eral clones—populations of cells with a common genotype. A mutation shared by all 
cancer cells in the genome is called a clonal mutation, in opposition to a subclonal muta-
tion, which appears in subsequent clones. Fig. 1 shows a diagram of clonal evolution in a 
cancer sample.

Mutational signatures Computational methods on large-scale, genome-wide, 
genomic data (commonly whole-genome sequencing, WGS) have enabled the use of 
mutational signatures as a proxy for mutational processes to measure the number of 
processes active in a tumour and quantify the number of mutations created by each 
one. Mutational signatures represent the processes of mutation and of any subsequent 
repair [2, 6–8]. They are particularly well established in the context of point mutation 
signatures, which are repeatedly re-defined and curated in the COSMIC database [9]. In 
COSMIC signatures, six types of mutations are considered (C→A, C→G, C→T, T→A, T→
C, and T→G), as well as their immediate context (their 5’ and 3’ flanking bases), generally 
without including information about their strandness. This leads to a classification into 
96 ( = 6 · 4 · 4 ) trinucleotide substitution categories. Therefore, a COSMIC signature is a 
vector of probabilities of length 96 which sums up to one and indicates the preferences 
in creating each type of mutation. In the latest version of these signatures (v3.4, Octo-
ber 2023) there are 86 such signatures: SBS1 to SBS99, with some intermediate labels 
referring to deprecated signatures. As explained in more detail below, in a sample, each 
signature has a corresponding mutational signature exposure, indicating the number of 
mutations attributable to the signature in the sample. Mutational signatures and their 
exposures are extracted assuming that the total number of mutations are a linear combi-
nation of signature contributions, and where exposures are the coefficients in this linear 
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combination. We denote the exposure matrix Y : these are the key quantities we wish to 
model.

A short history of signature analysis Established in 2012, the field of mutational sig-
natures promised not only to bridge the gap between the observable, and possibly very 
complex, mutational landscape of a tumour at the time of sequencing and its aetiology, 
but also to be clinically relevant. In the first instance, patient stratification [10] based 
on exposures suggested treatment groups. This approach has delivered in the case of 
homologous recombination deficiency (HRD), where mutational signatures are used 
to determine suitability of PARPi treatment [11]. The use of signatures has, moreover, 
enabled to discern the nature of other mutational processes, notably APOBEC [12, 13]. 
However, the number of mutational signatures has been ever-increasing—at least par-
tially due to the increased number of samples used for signature derivation—but few 
have an aetiology unequivocally linked to them, hampering the interpretation of results 
and even making the analyses difficult from a statistical point of view. Finally, several 
variations on single-base substitution signatures have been proposed and adopted: 
doublet-base substitution signatures [14], indel signatures [14] and copy number signa-
tures [15, 16]. [17] list several statistical challenges in the field, including the difficult 
choice between alternative methods of signature extraction (each with different assump-
tions; see Sect.  S1) and the inclusion of uncertainty quantification around exposures, 
which warrants new statistical methods. Even with simpler signature extraction meth-
ods, downstream analyses of these data—such as the differential abundance analyses in 
which we focus—can be complex.

Motivating example
We wish to detect differential abundance between clonal and subclonal muta-

tions in the PCAWG cohort, in a histopathological cancer type-specific analysis of 23 

Fig. 1 Example of a clonal tree. Four clones are drawn by big circles. A smaller black circle indicates the 
founder cell of the subsequent clone. The left‑most dark circle is the MRCA cell of the tumour, which 
undergoes clonal expansion to create the first clone, which is defined by clonal mutations of a cancer cell 
fraction (CCF= 1 ). Subsequent clones are defined by subclonal mutations of CCF< 1 . The mutations that 
define each clone might be of diverse origin: here we depict two active mutational processes (grey and red 
arrows) creating mutations at two distinct rates. Whilst the mutational process represented by grey arrows 
is more active at early stages of tumour development, in creating the mutations that define the first clone, 
the mutational process presented by red arrows has a constant mutation rate. We can quantify the number 
of mutations created by each mutational processes by extracting signature exposures, which are indicated 
for each of the clones. These signature exposures can be finally aggregated to clonal exposures (those of 
clone 1) and subclonal exposures (in this case, those of clone 2 and clone 4). Clone 3 might be interpreted 
as a clone which is not represented in the sample that has been taken, and for which we therefore not have 
mutation information
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cancer types of 27 samples or more. Signatures exposures are extracted using quad-
ratic programming as shown in [18]. The comparison to values obtained by consider-
ing mutSigExtractor [19], as well as to values reported in [20] and extracted using 
sigProfiler and without splitting the mutations into two groups, yield comparable 
results (Fig. S1). Signatures are extracted using the subset of COSMIC signatures that 
are considered to be active in each cancer type, taken from [14]. Mutations are classified 
as clonal and subclonal following [21], considering as clonal mutations which appear in 
all cells of the tumour, and as subclonal mutations only appearing in a fraction of cells. 
Details on the assignment of mutations to these categories are beyond the scope of this 
paper, as this is a step that requires inference of the clonal population structure of the 
model, is done in a per-sample basis and requires careful consideration—in [21] 11 
clonal structure identification methods are used, from which a consensus is derived.

Signature exposures as compositional data
In the case under consideration—clonal and subclonal mutations—as well as in most 

comparisons of mutational signature exposures, the total number of mutations in each 
observation (i.e. in each patient and group) is not of interest; instead, the crucial infor-
mation is the relative allocation of these signatures into categories (where categories are 
mutational signatures, or some other type of mutation categorisation). This renders their 
analysis suitable in a compositional setting. [22] noted that compositional data can be 
encoded, without loss of information, using log-ratios. Compositional data in the form 
of probabilities can be transformed to log-ratios and back using the additive log-ratio 
transformation ( ALR ) and inverse additive log-ratio transformation ( ALR −1 ) respec-
tively. In short, compositional data are relative data which must be analysed in relative 
terms, an important consideration that has usually been overlooked in the mutational 
signature literature (with few exceptions: [23, 24], only the latter mentioning composi-
tionality), as well as in several other scientific disciplines where compositional data are 
frequent. Not doing so can lead to spurious correlations and negative biases. Section S2 
gives an introduction to compositional data and expands on what makes the data under 
consideration compositional.

Precedents in determining differential abundance of signatures Two papers to 
date—HiLDA [23] and TCSM [24]—have shown statistical analyses specific to the com-
parison of exposures in two groups. TCSM tests for differential abundance between two 
groups of samples following signature extraction and by simulation through the logistic-
normal distribution. In HiLDA, the Dirichlet-multinomial is used to model signatures 
in an MCMC based inference framework. Neither are suitable for a post-hoc analyses 
of exposures (e.g. using COSMIC signatures) nor do they include random effects. The 
aim of HiLDA, TCSM and the models proposed here aim to detect changes at a cohort 
level, while other methods focus on individual samples. Notably, TrackSig [25] is a sin-
gle-sample method that detects changepoints throughout tumour development, and 
PhySigs [26] between clones. On the other hand, as compositional data arise in multiple 
situations, models that analyse equivalent data in other disciplines are more widespread. 
Recently, [27] implemented a Dirichlet-multinomial model with mixed effects, of which 
the model described here can be seen as an intension. Table 1 proposes a list of the most 
relevant existing methods for studying the dynamics of mutational signatures, which is 
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extended in Table S1 with other methods of detecting differential abundance in compo-
sitional data.

Methods
In this paper, we propose an estimator for the Dirichlet-multinomial mixed effect model 
with multivariate random effects as well as a group-specific precision parameter. The 
random effects have a multivariate and unconstrained structure to be able to model 
within-patient correlations as well as correlations between the categories (mutational 
signatures). The model is used to detect differences in mutational signatures between 
groups of observations, which are captured in the fixed effects. We opted for the Laplace 
analytical approximation (LA) to evaluate the high dimensional integrals induced by the 
random effect structure (Sect. S3). Speed is one of the attractive features of the Laplace 
approximation compared to alternatives [28]. We present the R package CompSign, in 
which this model and variations of which that have been implemented are made avail-
able. With comparable data to that presented, most can be run on a laptop in a few 
seconds.

The remaining of this paper is organised as follows: the Methods section presents our 
model and its implementation with Laplace approximation. The first part of the results 
section describes the operating characteristics of our estimator by Monte Carlo simula-
tions, and compares the results to those of the existing methods HiLDA and TCSM. The 
second part of the results section is dedicated to the application of our model to the 
PCAWG dataset, first by using the simple categorisation of mutations into six nucleotide 
substitutions, and then by using mutational signatures as categories. Finally, we present 
a discussion on the biological implications of the results, we include two smaller addi-
tional use cases where the R package CompSign is used, and we provide some guidance 
on each step of the pipeline of CompSign.

Table 1 Methods for determining changes in the mutational spectrum

Methods for determining differential abundance in mutational signatures

Name Model Caveats Reference
HiLDA Signature extraction (LDA) followed 

by Dirichlet‑multinomial
No mixed effects, local test not 
compositionally‑minded

[23]

Tumor Covariate 
Signature Model 
(TCSM)

Signature extraction and test through 
simulation

No mixed effects, test through 
simulation without interpretation of 
signatures in log‑ratios

[24]

Methods for studying the dynamics of mutational signatures

TrackSig Multinomial model to determine 
changepoints in bins of exposures

Compositional model but non‑compo‑
sitional interpretation of dynamics

[41]

Clonesig Clonal inference using potential differ‑
ences in the exposures of clones as aid

Not a method for detecting differential 
abundance as such

[42]

Log‑odds of signature‑
specific exposures

Log‑ratio of normalised exposures for 
each signature between early and late 
mutations, and between clonal and 
subclonal mutations

Non‑compositional; changes in log‑
ratios of a signature can be due to 
changes in other signatures

[21]
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Mixed effects Dirichlet‑multinomial regression

Data Our goal is to compare signature exposures between two sets of samples. The 
notation used throughout the paper is found in Table 2. For simplicity we assume that 
we have paired observations for Ns patients and thus N = 2Ns observations in total, 
although our method is general and can also be applied to un-paired cohorts of differ-
ent sizes, or to cohorts containing multiple samples per patient. As for each patient a 
single biological sample is taken, in this document we use the word “sample” to denote 

Table 2 List of notation

Matrix factorisation

Data N Number of samples or observations (input of NMF)

K Number of signatures

F Number of mutational categories or features

V (F × N ) Count matrix of categorised mutations

Parameters Y∗ (K × N ) Matrix of exposures. For the sections below, Y = Y∗⊤

S (F × K  ) matrix of signature definitions

Indices f Index for features (mutational types such as ACA →ATA , for instance)

Models of differential abundance

Data N Number of observations with N ≥ Ns

Ns Number of patients, equivalent to the number of samples

K Number of categories/signatures

P Number of fixed effect covariates

Q Number of precision covariates

X (N × P ) covariate matrix with P=2 in our case, without loss of generality

Z (N × Ns ) boolean matrix for random intercepts

D (N × Q ) precision covariate matrix with D = X in our case

Y (N × K  ) response matrix of exposures

Tj Mutational toll of observation j. Tj =
∑

k′ Yjk′

M
(1)

i  , M(2)

i (T (1)i × 1 ) sequence of mutations of each observation of patient i

Parameters β (P × (K − 1) ) Matrix of coefficients for fixed effects

�βp
((K − 1)× (K − 1) ) covariance matrix of the pth row of β

U (Ns × (K − 1) ) matrix of coefficients for random effects

� ((K − 1)× (K − 1) ) random effect covariance matrix

� (Q × 1 ) vector of precision parameters

Indices i Index for patients

j Index for observations (patient and group combinations)

p Index for covariates

k′ Index for signatures/categories

k Index for signatures/categories (log‑ratio, or the first K − 1)

l Index for mutations in an observation

Random variables α Parameter for the Dirichlet or Dirichlet‑multinomial

ᾱ Parameter for the Dirichlet or Dirichlet‑multinomial (compositional)

Other notation

0K Vector of zeros of length K

Y, yj , yjk Notation for matrices, vectors and scalars.

P, p Dimensions, indices

Simulations π For simulations C1‑3, mixing proportion. Lower values indicate no mix‑
ing (no differential abundance).
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the biological sample, and it is therefore used interchangeably with “patient”. In turn, 
each sample is split into two subsamples, which populate the first (clonal) and second 
(subclonal) groups. Subsamples are called “observations” in the rest of the manuscript 
for simplicity. These observations correspond to the response in the model. For the data 
under consideration, clonal and subclonal labels were assigned after the laborious sub-
clonal inference analysis of the PCAWG study, involving several subclonal inference 
tools [20], but this step is left at the user’s discretion. Let K denote the number of signa-
tures or categories, i index patients (or any other group defined by the mixed effects), k 
index either the first K − 1 signatures or K − 1 signature log-ratios, and j index observa-
tions. Let P be the number of covariates. Comparing two groups and including a shared 
intercept leads to P = 2.

Our data are as follows. We have two exposure matrices of counts corresponding to 
the clonality-based groups (clonal and subclonal). Each element in each of the two matri-
ces corresponds to the same patient and the same category or signature. Let’s denote 
these matrices by Y(1) ∈ N

Ns×K  and Y(2) ∈ N
Ns×K  where (1) and (2) refer to clonal and 

subclonal groups. In the case under consideration, for each sample and clonality-based 
group (i.e., for each observation), mutations are classified according to their trinucleo-
tide context, and signature exposures are estimated independently. We row-concatenate 
the clonal and subclonal matrices to create Y ∈ N

N×K  where N = 2Ns.
Fixed-effects Firstly, we express the log-ratios of signature abundances as a function 

of the fixed effects. The fixed effects are captured by the X ∈ R
N×P design matrix, and 

their corresponding coefficients are a β ∈ R
P×(K−1) parameter matrix. Unless specified 

otherwise, in the applications shown X is a binary matrix of ones in the first column, and 
zeros or ones in the second (with a zero if the sample belongs to the clonal group, and 
a one otherwise). In practice, the implementation we propose does not have this con-
straint: X can take any value in R and P can be greater than 2, as will be shown.

The first row of β , β0 , is a vector of length K − 1 which corresponds to the general 
abundance of signatures in the reference mutational group (clonal group), expressed as 
the ALR transformation using the last signature as reference, i.e. as the log-ratio of a sig-
nature to a baseline signature. Let M(1)

i ∈ {1, . . . ,K }T
(1)
i  be the sequence of mutations for 

patient i in the clonal group, and M(2)
i ∈ {1, . . . ,K }T

(2)
i  the equivalent for the subclonal 

group. Let these mutations be indexed by l. Thus, for k < K  and a case without patient-
dependence (i.e. no random effect), we have

where β0k
 denotes the kth element of β0 , and Pr (m(1)

il = k) denotes the probability 
that the lth mutation of patient i in the reference group is generated by signature k. For 
k < K  , this probability is then given by

(1)β0k
= ln

Pr
(
m

(1)
il = k

)

Pr
(
m

(1)
il = K

) ,

(2)Pr
(
m

(1)
il = k

)
= Pr

(
m

(1)
il = K

)
e
β0k =

e
β0k

1+
∑K−1

k=1 e
β0k

.



Page 8 of 26Morrill Gavarró et al. BMC Bioinformatics           (2025) 26:59 

The second row of β , β1 , is our main parameter of interest, as it indicates whether there 
are shifts in the general abundance of signatures for samples of the subclonal group 
compared to the clonal reference, in ALR space. Similarly to above, β0k

+ β1k
 is the log-

ratio of the probability that the lth count of patient i in the second group is generated by 
signature k, over the probability that it is generated by signature K, is

β1k
 equal to zero indicates that the kth log-ratio is the same in both groups, and that 

therefore the relative mutation rates of the signatures of both groups are equal. A zero 
vector of β1 corresponds to cases without differential abundance between groups. A test 
for overall differential abundance can be computed by using the generalised Wald statis-
tic w in a χ2 test with K − 1 degrees of freedom, combining all the estimates of β1 and 
their correlations:

where β̂1 and �
β̂1

 respectively denote the estimated β1 parameter vector and its corre-

sponding covariance matrix.
Random intercepts Secondly, the log-ratios of abundances of signatures also depend 

on the random effects, in which we include information about the patient from whom 
each observation derives. In the PCAWG dataset, having one observation per patient and 
group, i.e. two observations per patient, we use the matrix Z ∈ {0, 1}2Ns×Ns (more gener-
ally, Z ∈ {0, 1}N×Ns ). The coefficients for Z are encapsulated in the matrix U ∈ R

Ns×(K−1) , 
where each row of U corresponds to the patient-specific multivariate intercepts and where 
the values are, too, ALR-transformed with respect to the baseline signature. These inter-
cepts are drawn from a multivariate normal distribution of mean zero (as the overall abun-
dance of signatures in the first group is already captured by β0 ), and a covariance matrix � 
which can be unconstrained or not. These multivariate random intercepts differentiate our 
implementation from the one of [27] and allow us not only to model the potential within-
patient dependence with more flexibility but also to have positive correlations between 
signatures.

Logit link The linear combination of fixed and random effects is linked to the log-ratios 
of abundances as follows, in the commonly used logit link:

where ᾱ ALR ∈ R
N×(K−1) are row-wise ALR-transformed quantities. Therefore, each row 

can be transformed into a vector of probabilities ᾱj using the inverse-ALR transforma-
tion ALR −1 , or generalised softmax transformation:

(3)β0k
+ β1k

= ln
Pr

(
m

(2)
il = k

)

Pr
(
m

(2)
il = K

) .

(4)
w = β̂

⊤

1 �β̂1
β̂1,

w ∼ χ
2
K−1

(5)ᾱ ALR = Xβ + ZU
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where ᾱjk represents the probability of counts of the jth observation to have been gener-
ated from the kth signature.

Dirichlet-multinomial The vector ᾱj corresponds to the mean of the Dirichlet-multi-
nomial. If a multinomial distribution were to be used instead, this would be the its sole 
parameter. However, in using the Dirichlet-multinomial, we introduce the precision 
parameter vector � , such that, for the jth observation, the Dirichlet-multinomial param-
eter αj is defined as product of the probability described above and the scalar �j = d⊤j � , 
where dj denotes the jth row of the ( N × Q ) D precision predictor matrix, so that

Without loss of generality, we model the precision as a function of the groups only, so 
that D = X and the two values of the � vector correspond to the precision level in the 
reference group and to the shift in precision between both groups, respectively. Higher 
values of � lead to more concentrated results, or lower overdispersion. In practice, we 
estimate log(�) , to ensure positivity. Lastly, the counts of the jth observation are drawn 
from a Dirichlet-multinomial (DM) distribution as follows

where Tj =
∑K

k ′=1 yjk ′ corresponds to the total number of mutations observed for obser-
vation j.

Model summary Therefore, our mixed-effect Dirichlet-multinomial model can be 
summarised by the following equations:

The dependencies between parameters and elements of the data are displayed in the 
plate diagram proposed in Fig. 2.

Availability of models in the R package CompSign

Implementation in Template Model Builder All models considered in this paper are 
implemented using Template Model Builder (TMB) [29], a framework for maximum 
likelihood estimation in random effects models, in which the random effects are inte-
grated out of the likelihood using the Laplace approximation. TMB has an R interface, 
and the model is written in C++. The mixed effects models presented in this paper have 
been assembled into the R package CompSign (https:// github. com/ lm687/ CompS ign), 
which includes vignettes with example data and instructions on how to run the func-
tions and interpret the results.

(6)ᾱjk =

e
ᾱ
ALR
jk

1+
K−1∑

k=1

e
ᾱ
ALR
jk

(k = K ),

1

1+
K−1∑

k=1

e
ᾱ
ALR
jk

(k = K ),

(7)αj = �jᾱj

(8)yj ∼ DM
(
αj ,Tj

)

(9)

ui ∼ MVN (0K−1,�),

ᾱj = ALR −1
(
xjβ + zjU

)
,

yj ∼ DM
(
�jᾱj ,Tj

)
,

https://github.com/lm687/CompSign
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Variants of the model In the main part of this paper, where the data comprise two 
observations per patient and two groups, we compare several of these variations of 
the mixed-effects Dirichlet-multinomial model:

• diagREDM is a DM model that considers signature-dependent random-effects 
(independently for each signature log-ratio) and group-dependent precision 
parameters �,

• fullREDM is a DM model that considers signature-dependent (and possibly cor-
related) random-effects and group-dependent precision parameters �,

• singleREDM is a DM model that considers signature-independent random-
effects (a univariate random intercept drawn from one single σ ) and group-
dependent precision parameters �.

Additionally, the following models are used with two additional use cases where the 
data no longer comprise two observations per patient and two groups but, (a) several 
groups of unmatched data, or (b) a regression setting:

• fullREM is a multinomial model that considers signature-dependent (and pos-
sibly correlated) random-effects and group-dependent precision parameters �,

• FEDMsinglelambda is a DM model that considers no random effects (only 
fixed-effects) and a shared precision parameter �,

Fig. 2 Plate diagram for the Dirichlet‑multinomial model. The random intercepts ui are independent 
of clonality‑based grouping, and in log‑ratio space, as are the coefficients β . The precision parameters 
� are a function of the clonality‑based grouping exclusively in this manuscript, but adjustable in their 
implementation. Similarly, X and D (the covariate matrices for the fixed effects and precision) are shared here 
and reflect the clonality group g, but that need not be the case and they are specified independently in the 
model implementation
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• diagREDMpatientlambda is a DM model that considers signature-dependent 
random effects (independently for each signature log-ratio) and patient-dependent 
precision parameters �.

Table S2 contains the comprehensive list of models implemented in CompSign with indi-
cations of when their usage might be appropriate.

Model assumptions We assume in all cases that the mutational processes active in the 
clonal group are also active in the subclonal group, possibly in different relative activity. 
As with most compositional models, scenarios where all exposures are zero in a group 
and non-zero in the other are problematic (Sect. S2.1), but this is not a scenario seen in 
any of PCAWG datasets to which the models have been applied, even if zeros are com-
mon (Table S3). The exposures in the subclonal group might be representative of only a 
subset of the clones: as β1 represents a cohort-wide average, a large increase in the muta-
tion rate of a process active in a single clone can result in a moderate β1 provided the 
clone represents a small fraction of cells in the tumour. diagREDM assumes that muta-
tional processes are not correlated across patients, although the multivariate random 
effects paired with the group-dependent precision parameter � allows for correlations to 
some extent. fullREDM, in that it does allow for such correlations or co-occurrences by 
estimating the covariance matrix of signature abundances, may suffer from convergence 
problems if some signature is present in very low abundance and the dataset includes 
few samples.

Results
Simulation‑based assessment of model performance

Bias and coverage of estimator The adequacy of the model can be assessed by means 
of simulations. Simulated datasets A1-3 represent two-group and patient-matched sig-
nature exposures in a cancer type cohort. The set of active signatures is shared in all the 
observations of each simulated dataset. The bias and coverage of 95% confidence inter-
vals for elements of β̂1 , the parameter vector of interest, as well as for elements of β̂0 , 
are assessed by means of Monte Carlo simulations considering 1000 simulated datasets 
of n=200 samples – a sample size in line with the number of patients often considered 
in such studies. Although the recovery of parameters β0 and β1 can suffer with increas-
ingly lower values of � (higher dispersion) (Figs. S2, S3), the recovery of β is mostly sat-
isfactory. When datasets have been created with independence between the random 
effects, diagREDM and fullREDM lead to equivalent results (Figs. S5, S6). When cor-
related random effects are used, this can lead to biases in the estimation of elements 
of β0 for diagREDM (but not for fullREDM), but this does not translate to biases or 
lower coverages in the elements of β1 , our parameter of interest, provided multivariate 
random effects are used (Figs.  S4,  S6). Further simulations (B1-4, Sect.  S4.1) are gen-
erated to match biologically-relevant parameters. Both bias and coverage results are 
satisfactory in all biologically-inspired datasets (Figs. S5S6, S6, S7, S9). In these simula-
tions the number of mutations is either representative of the cancer type from which 
representative parameters were chosen, or lower than typical number of observed muta-
tions (Fig. S8). Indeed, we find that the results of the models are robust to lowering the 
number of mutations up to 10-fold (Fig. S9). Due to the strong reduction in the number 
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of parameters to estimate and their agreement in β̂1 , diagREDM thus appears as very 
attractive compared to fullREDM. Finally, to support the validity of findings from the 
PCAWG analyses shown in the results section, bias and coverage have been assessed 
for datasets generated with the parameters estimated by diagREDM, with satisfactory 
results in all cases (Fig. S10).

Comparison with previous models of differential abundance The output of HiLDA, 
TCSM and diagREDM is compared in a simulation setting. To avoid simulating from the 
model, and because both TCSM and HiLDA take as input substitution categories (and 
not pre-computed exposures), we use a new approach to generate the datasets in simula-
tions C1-C3 (Fig. S11). In a simulation inspired by [30], biologically-informed exposures 
are generated by mixing, in some mixing proportion π , mutations generated by two sets 
of COSMIC exposures. The scenario of no differential abundance corresponds to set-
ting π to zero, where exposures in both groups come from the same distributions. With 
increasingly high values of π , differential abundance becomes more apparent. From 
these simulated exposures, mutations categorised into 96 trinucleotide substitutions 
are generated based on COSMIC signature definitions, and are used as input for HiLDA 
and TCSM. For diagREDM, exposures are re-computed from the trinucleotide substitu-
tions using quadratic programming, and they become the input for the model. The two 
sets of exposures used for mixing differ between the three simulation strategies C1-3 
(Sect. S4.5.1).

The results on differential abundance from HiLDA, TCSM and diagREDM are mark-
edly different, across simulation strategies and as parameters vary. Whereas HiLDA 
never finds any differential abundance (indicating a high false negative rate), TCSM 
almost always does (indicating a high false negative rate) (Table S4). diagREDM is the 
only model with progressively higher true positive rates, as expected, as π increases 
(Fig.  S12). We additionaly compare the recovery of ground-truth values by analysing 
the estimated values of (1) β1 (or equivalent coefficients for differential abundance), 
(2) β0 , (3) signature definitions, and (4) signature exposures. Regarding (1) the coeffi-
cients that indicate differential abundance, as they differ in each model and have to be 
transformed (Sect. S4.5.2). Fig. 3 shows the value of these coefficients as π increases, for 
C1 (and Fig. S13, S14 for C2, C3). Values that differ from the dashed line indicate dif-
ferential abundance. For C1, the changes are apparent in diagREDM and TCSM even 
when datasets are mixed in a 92-to-8% proportion, whereas in HiLDA a 50-50% mix-
ture is necessary. In comparing estimated β1 to the ground-truth β1 , only diagREDM 
performs well (Fig. S15). In C1, the data have been generated by mixing exposures from 
two cancer types with an only partial overlap of active signatures. Therefore, regarding 
(2) β0 , at high values of π , we expect to find some very low values of β̂0 that correspond 
to practically inactive signatures. This expected relative sparsity of signature exposures 
in datasets of high π is clearest in the results from diagREDM (Fig. S16, Sect. S4.5.3). 
Regarding (3) signature definitions, only in the case of TCSM can the estimated signa-
ture definitions be compared to the ground truth—in diagREDM the ground truth sig-
natures are used to re-extract exposures, and HiLDA does not use the 96 trinucleotide 
substitution categorisation. TCSM often re-extracts signatures similar to those used in 
the simulation (Fig. S17). Finally, regarding (4), exposures can be compared in all three 
cases. Keeping in mind that they are only estimated de novo in TCSM and HiLDA, the 
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re-extracted exposures from quadratic programming are more representative of the 
ground truth exposures than TCSM and HiLDA exposures (Fig. S18).

The parameters used for simulation influence the success in parameter recovery. In 
diagREDM an increase in the number of mutations or the number of samples leads to 
higher statistical power (Fig.  S12), in TCSM it leads to a better recovery of signature 
definitions (Fig. S17). When a low number of mutations is included, exposures are better 
recovered in HiLDA than in TCSM, and they are perfectly recovered by quadratic pro-
graming (for diagREDM) when the number of mutations is high (Fig. S18). In terms of 
runtime, diagREDM is consistently the fastest method out of the three, often by several 
orders of magnitude, and partially owing to the fact that signature extraction has been 
performed beforehand (Sect. S4.5.6).

Effect of active signature selection on differential abundance Unlike in HiLDA 
and TCSM, where a joint de novo signature extraction and differential abundance test 
is performed and the number of active signatures is a given parameter, the models sug-
gested here require signature exposures to have been derived from a known set of active 
signatures prior to parameter estimation. The selection of active signatures is a topic of 
debate and careful thought is put in choosing the set of active signatures in each can-
cer type, or even sample. By generating simulated signature exposures using different 
strategies of active signature selection, we assess the robustness of our differential abun-
dance model diagREDM. We find that, unless the number of active signatures is severely 
overestimated, leading to a high false positive rate, the differential abundance results 

Fig. 3 Comparison of coefficients that represent differential abundance for the models under consideration: 
diagREDM, HiLDA, and TCSM, for simulated dataset C1. Although diagREDM shows a marked increase 
in dispersion of softmax‑transformed β̂1 across signatures (indicating differential abundance) and the 
coefficients of TCSM show an increased deviation from zero (also indicating differential abundance), the 
results from HiLDA do not show such trends unless the mixing proportion π is very high. In the case of 
diagREDM, the signatures represent the ground truth signatures used for simulation (SBS1, SBS5, SBS9, 
SBS40, SBS3, SBS13)
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are comparable across active signature selection strategies (Fig. S19, Sect. S4.5.7). More 
results on the robustness of results to changes in the set of active signatures, specific to 
the PCAWG cohort, will be referred to in the following section.

Application of the model to PCAWG data

The model diagREDM, and fullREDM where applicable, are applied first to muta-
tion data grouped in simple nucleotide substitutions ({C>A, C>G, C>T, T>A, T>C, T>G}) 
and secondly to mutational signature exposures. The latter provides a better platform 
to identify the mutational processes behind a change in mutation type abundance. In 
the context of mutational signatures, the estimates of coefficients representing differ-
ential abundance ( β1 ), differential precision ( � ) and patient heterogenity ( U ) are ana-
lysed. Finally, β1 are analysed more in depth to point to specific mutational processes 
the activity of which changes over time during tumour development. The results of this 
section are robust to numerous perturbations to the data: to the addition or removal of 
signatures (Fig. S20), even if those are signatures with flat definitions (Fig. S21), to the 
inclusion of signatures which are a linear combination of each other (Figs. S22, S23), to 
a reduction in the number of mutations (Figs. S24, S25) or samples (Figs. S26, S27), and 
to some misclassification of mutations in the clonal and subclonal groups (Fig. S28, S29). 
Notably, more than 60% of samples or mutations can be removed with practically undis-
tinguishable β1 values in most cancer types.

Differential abundance of nucleotide changes
The Dirichlet-multinomial fullREDM model has been fit on a per-cancer type basis 

on data categorised into six different types of mutation ({C>A, C>G, C>T, T>A, T>C, T>
G}) to compare clonal and subclonal mutations. In four cases where the model has 
not converged due to a comparatively lower number of samples, diagREDM is used 
instead. T>G is used as baseline. Importantly, the choice of baseline does not impact 
the results of these models beyond the interpretability of coefficients (Fig. S30). The 
results of the model indicate that  the type of mutations created at clonal and sub-
clonal differ, and that the way in which they differ is particular to each cancer type. C>
T constitutes the most abundant mutation type in most cancer types (19/23), whilst 
T>G is the least abundant in 15/23. Coherently, β̂0 corresponding to C>T with respect 
to T>G are the highest coefficients, and they are positive, in 20/23 cancer types, indi-
cating that they constitute the most abundant mutation type in clonal stages. Fig. 4 
shows β̂1 , the estimate and confidence interval of β1 , for each cancer type, where each 
element of β̂1 corresponds to the log-ratio of a mutation type β̂1 corresponding to 
the same log-ratio are colour-coded and joined by a line, to enable the identification 
of similar trends of differential abundance across cancer types. The estimates vary 
greatly across cancer types. Generally, either all β1 are negative, indicating that the 
baseline mutation type, T>G, is more subclonal than the rest of mutations, or they are 
all positive, indicating that it is more clonal. C>T often has the lowest coefficient and 
it is negative. Overall, this makes C>T and T>G the most clonal mutation types glob-
ally. Pan-cancer, the β̂1 coefficients for C>T (with respect to baseline category T>G) are 
generally not correlated with other coefficients across cancer types (highest Pearson 
correlation coefficient of 0.7, in correlation with T>A), whereas those of T>C and T>
A are highly correlated (i.e. their lines follow each other, often sharing the same β̂1 ; 
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cor = 0.9 p-value = 5 · 10−9 , Pearson’s product-moment correlation) and their confi-
dence intervals overlap in 21/23 cases. Additionally, the confidence intervals of C>A/
T>G, C>G/T>G, T>A/T>G and T>C/T>G often overlap, in that at least 20 cancer types 
show an overlap in any pair of these coefficients, while C>T/T>G behaves more inde-
pendently, in that the confidence intervals of their β̂1 do not overlap with the others 
as commonly. On the other hand, the value of β1 = 0 , corresponding to the baseline 
category T>G, is mostly not included in these confidence intervals either (only in 47% 
of β̂1 , across cancer types). Therefore, we find that T>A, T>C, C>A and C>G have com-
paratively similar patterns of differential abundance across cancer types, while C>T 
and T>G vary widely across cancer types. Part of the explanation for this behaviour 
is that C>T mutations reflect a variety of mutational processes, exogenous (e.g. UV 
light [31]) or not (e.g. spontaneous deamination of 5-methylcytosine [32]), and so do 
mutations in T>G (exogenous when created by UVA light [33] but not linked to clini-
cal or exposure covariates in other cancer types such as oesophageal adenocarcinoma 
[34]). The commonalities might be explained by shared underlying mutational pro-
cesses in only some cases: T>A might represent mutations due to activation-induced 
cytidine deamination [14], and so might C>G [35], but the high for β̂1 for C>G in mela-
noma is explained by hightened polymerase iota activity [36]. Overall, these results 
suggest patterns of differential abundance between clonal and subclonal mutations 
even at the lowest level of granularity, which prompts us to extend this approach to 
mutational signatures in order to link them to changes in mutational processes.

Fig. 4 β̂1 estimated using fullREDM on single‑nucleotide mutations in 23 cancer types of the PCAWG 
cohort, using the mutation category T>G as baseline. In four cases where fullREDM did not converge 
(CNS‑Medullo, CNS‑PiloAstro, Lymph‑CLL, Thy‑AdenoCA), diagREDM is used instead. The ribbons indicate 
the estimate ± its standard error
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Widespread differential abundance of mutational signatures In this analysis of 
PCAWG data, diagREDM has been fit on exposures extracted on the subset of signa-
tures considered to be active in each cancer type, according to [14] (Table S6). All can-
cer types are differentially abundant when including all signatures, and most (17/23) 
are when including only non-exogenous signatures (following Benjamini & Hochberg 
adjustment). The six cancer types that cease to be differentially abundant are CNS-
Medullo, CNS-GBM, CNS-PiloAstro, Kidney-ChRCC, Lung-SCC and Stomach-
AdenoCA. These six cancer types do not differ in the number of samples (Welch Two 
Sample t-test; p-value = 0.08733), nor in the number of active non-exogenous signa-
tures (Welch Two Sample t-test; p-value = 0.1858, with an average of 8.5 signatures in 
the group of differentially-abundant cancer types and of 5.5 in the group of non-differ-
entially abundant cancer types) nor in the average number of mutations constituting 
the observed exposures (Welch Two Sample t-test on log2-transformed mutation toll; 
p-value = 0.425). Rather, it is the number of patient samples which can more strongly 
limit our ability to determine differential abundance, as discussed and assessed by simu-
lations (Figs. S12, S26), and this value varies notably across cancer types (Table S7). To 
have a better indication of the general abundance of signatures, or of which signatures 
are behind these changes, β̂0 and β̂1 should be analysed respectively. These values are 
plotted in Figs. S31 and S32, but before they are analysed in depth, we discuss the esti-
mates �̂ and Û.

Differential precision of mutational signatures The models include group-specific 
precision parameters � , to account for possible overdispersion in one group. Fig. 5 shows 
the log-transformed estimated precision parameters �̂ , for the clonal and subclonal 
groups of mutations in each cancer type. Higher values indicate higher precision, or 
lower overdispersion. In most cases (19/23) the subclonal mutations show higher over-
dispersion, which is to be expected if subclones have different relative signature expo-
sures, or if patients diverge in the types of active mutational processes following cancer 

Fig. 5 Estimated precision parameters � , for each of the groups, in each cancer type. Higher values indicate 
higher precision, or lower overdispersion. In most cases (19/23) the subclonal mutations show higher 
overdispersion rates, which are to be expected if subclones have different relative signature exposures. The 
bars indicate the ± standard error. Asterisks indicate cancer types for which the precision parameters are 
statistically not the same (t‑test, FDR correction)
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onset. There is a statistically-significant difference in precision in 12/23 cancer types 
(Breast-AdenoCA, CNS-GBM, CNS-Medullo, Kidney-ChRCC, Liver-HCC, Lung-SCC, 
Lymph-BNHL, Ovary-AdenoCA, Panc-AdenoCA, Panc-Endocrine, Prost-AdenoCA, 
Thy-AdenoCA; t-test with FDR adjustment). In all statistically-significant cases the pre-
cision is higher in the early mutation group. Head-SCC, Kidney-RCC (clear cell), Kid-
ney-RCC (papillary) and melanoma are the cancer types where there is higher precision 
in the late mutation group, albeit not significantly. There are multiple additional reasons 
why dispersion might be higher in subclonal than clonal mutations: the presence of sub-
clones with distinct active mutational processes, the emergence of subclonal signatures 
that reflect interactions between mutational processes in more advanced stages of can-
cer, the presence of noise particular to mutations of lower coverages, or a less accurate 
signature extraction for subclonal mutations due to e.g. the lower number of subclonal 
than clonal mutations. Through simulations, we have found that differential precision is 
not merely a reflection of the generally higher number of mutations in the clonal group 
(Fig. S24).

Identification of patient strata from their random intercepts
A third output of the model are the estimated patient random intercepts U , which give 

an indication of patient heterogeneity in clonal exposures. TMB outputs their point esti-
mates at the maximum (Fig. S33), as well as values for the estimated correlation matrix 
if fullREDM is used (Fig.  S34). The correlation between two signatures in contribut-
ing to the random effects differs among cancer types, i.e. there is rarely a clear pattern 
of co-occurrence of signatures (Fig. S35 for selected pairs of signatures of interest). The 
extent to which patients can be categorised into strata according to their mutational sig-
natures, based on the patient intercepts, also varies between cancer types: in Lymph-
CLL at least two clear strata can be defined based on SBS9 (Fig S33), and so is the case 
in Prost-AdenoCA due to a range of signatures (but especially due to SBS3), whereas the 
Lung-SCC cohort appears much more uniform. The abundance of HRD signature SBS3 
varies greatly among patients of Breast-AdenoCA, Eso-AdenoCA, Ovary-AdenoCA, 
Panc-AdenoCA and Prost-AdenoCA, driving their patient stratification. In cases where 
fullREDM converged, we are able to compare the estimated covariance matrices to 
the empirical covariance matrix computed from the random intercepts. The correlation 
between these values ranges from a Pearson correlation of 0.47 (in the case of Uterus-
AdenoCA) to 0.998 (in Lymph-CLL), with a median correlation of 0.769. Having consid-
ered the cohort-wide results from the point of view of differential abundance, differential 
precision, and stratification based on the estimated random intercepts, we now focus on 
signature-specific results.

Shared patterns of differential abundance at the signature level The coefficients β̂1 
can give us an indication of the differential abundance patterns of mutational processes, 
which might be shared or not across signatures and cancer types. This is of particular 
interest in the signatures of unknown aetiology (u.a. henceforth), as it offers a possibility 
of associating them with signatures of known aetiology. For this analysis, the vectors β̂1 
have been softmax-transformed to be able to draw conclusions on the baseline signa-
tures. These transformed β̂1 can still be used to compare two signatures within cohorts, 
as the log-ratios of abundance are preserved in the transformation. Importantly, correla-
tions between β̂0 or β̂1 of signatures can reflect spurious and imposed correlations (e.g. a 



Page 18 of 26Morrill Gavarró et al. BMC Bioinformatics           (2025) 26:59 

high correlation in signature abundance in softmax-transformed β̂0
 between two signa-

tures across cancer types can be a reflection of the large variance in the abundance of a 
third signature, and the same is the case for β̂1 ). Fig. 6 displays scatterplots of softmax-
transformed β̂1 for pairs of signatures of interest (six pairs which include clock-signa-
tures SBS1, SBS5 and SBS40, APOBEC signatures SBS2 and, SBS13, and two signatures 
of high abundance and active in multiple cancer types but with unclear aetiology, SBS8 
and SBS18). In each plot, a point represents a cancer type. Tighter alignments along the 
identity line indicate a higher agreement in differential abundance, i.e. in the log-fold 
change in mutational signatures. Signatures that share the same β̂1 across cancer types, 
therefore, are hypothesised to share a biological mechanism. Outliers in an otherwise 
good agreement might indicate particularities of the relevant mutational processes in 
the specific cancer type.

Concordance of clock signatures SBS1, SBS5 and SBS40
Reassuringly, there is generally good agreement in β̂1 of known age-related signatures 

SBS1 and SBS5 [14, 37]. SBS40, sometimes described as an age signature, and a pervasive 
signature of high abundance, has β̂1 that match with those of SBS5. We call β̂SBS1

1  the β1 

Fig. 6 Selected pairs of signatures of interest and with constant ratios of (softmax‑transformed) β̂1 . 
Each point represents a cancer type, and a tighter match along the identity line (the dashed line x = y ) 
indicates a higher agreement in the differential abundance characteristics, i.e. a constant fold‑change in 
their abundance. Only signatures which are shared between each pair of cancer types are shown in the 
plot. The mean squared error is shown for each pair of signatures. Note the very good agreement between 
SBS1 and SBS5 (signatures of proposed constant mutation rate) and the consistently lower values for the 
softmax‑transformed β̂1 of SBS2 compared to SBS8
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coefficient corresponding to the log-ratio which has SBS1 in its numerator, and β̂SBS5
1  the 

equivalent for SBS5. In the case of SBS1 and SBS5, an outlier (Lung-SCC) can be seen in 
the first facet of Fig. 6. Particularly, β̂SBS1

1  is much higher than β̂SBS5
1  , and SBS1 is found in 

very low abundance (Fig. S31)—these two pieces of information, together with the fact 
that in no other cancer type is SBS1 the signature of least abundance, warrant the ques-
tion of whether SBS1 should be considered inactive in the PCAWG Lung-SCC cohort.

A less acute disagreement among clock signatures is found in the three CNS cancer 
types, where β̂1 for SBS5 are too different from those of SBS1. Among the three CNS 
cancer types, only SBS1, SBS5 and SBS40 are signatures in common, and their pattern 
of differential abundance shows the same relative increase: β̂SBS1

1  is always slightly lower 
than β̂SBS5

1  , and all remaining signatures have a higher β̂1 . Whereas in CNS-Medullo 
SBS1 and SBS5 correlate in the patient intercepts (Figs. S33, S34, S35), they do not in 
the other two cancer types. In CNS-GBM, SBS1 has a constant value of zero in the 
intercepts (i.e. no between-patient variability in the abundance of SBS1 with respect to 
SBS40). Contrarily, in all CNS cases the ratio of SBS5 and SBS40 varies greatly between 
patients. This finding applies across cancer types: we find that SBS1, SBS40 and SBS41 
often do not contribute to the between-patient variability (see Kidney-RCC.papillary for 
the clearest example) whereas SBS5 does. These results are inconsistent with hypothesis 
that the random intercepts of SBS1 and SBS5 roughly track the age of the patients in all 
cancer types. Keeping in mind the discordant behaviour of SBS1 and SBS5 in the afore-

mentioned cancer types, the comparison of any β̂1 to β̂
SBS1

1  and β̂
SBS5

1  in the same can-
cer type is useful: where the belief that SBS1 and SBS5 represent signatures of constant 
mutation rate is justified, we can compare β̂1 of signatures of interest with β̂SBS1

1  , β̂SBS5
1  to 

determine the direction of change (i.e. an increase or decrease in the averaged mutation 
rate). In Fig. 7, the values plotted are those of β̂1 for each signature in each cancer type, 
subtracted from β̂SBS1

1  or β̂SBS5
1  . Green colours represent β̂1 higher than those of clock 

signatures, and blue lower.
General increase in signature activity As an alternative to the comparison with sig-

natures of a constant mutation rate, and assuming that the abundance of most signatures 
does not change, β̂1 values can be compared to the median β̂1 value across all signatures 
in a cancer type (Fig. S36, Sect. S5), classifying each active signature as a signature that 
increases, decreases, or does not change in absolute abundance. We call this the minimal 
perturbation framework, and the labels resulting from it are projected onto Fig. 7 and 
are largely concordant with the comparison to clock signatures: β̂1 for signatures where 
the abundance decreases are mostly lower than β̂SBS1

1  and β̂SBS5
1  , whereas for signatures 

where the abundance increases they are higher. Note that this approach works well only 
when the assumption that the abundance of most mutational processes does not change 
is met: we find several cases of SBS1 or SBS5 being labelled as signatures that decrease in 
abundance, which might simply reflect that numerous other signatures increase in abun-
dance, making the amount of red boxes possibly conservative. APOBEC signatures SBS2 
and SBS13 are labelled as signatures that increase in 2 and 4 cancer types respectively. 
SBS17a (u.a.) often increases, and is always more subclonal than SBS17b (u.a.). On occa-
sion, they rank lower than SBS1/5 (Fig. S37). The tendency for clonality of SBS40 varies 
extraordinarily, implying that, as a very flat signature, it could be capturing signal from 
other signatures. Signatures hypothesised to increase in activity include SBS20 (POLD1 
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Fig. 7 β̂1 for each signature in each cancer type, subtracted from the β̂1 which corresponds to clock 
signatures SBS1 (rectangles) and SBS5 (points inside rectangles). Green colours represent β̂1 higher than 
those of clock signatures, and blue lower. They are signatures more subclonal and more clonal than clock 
signatures, respectively. The borders in certain cells indicate that the signature has been used as baseline 
(grey) or that according to the minimal perturbation analysis it is a signature that has increased (in red) or 
decreased (in blue) in absolute abundance
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mutations) in both cancer types in which it is active, and SBS31 (platinum chemother-
apy). Although generally low, β̂

SBS1

1  and β̂
SBS5

1  are not necessarily the lowest coefficients: 
signatures of undoubtedly exogenous origin (SBS7b and SBS7d, representing UV light) 
have consistently lower coefficients, as do SBS12 (u.a.), SBS15 (DMMR), SBS16 (u.a.), 
and SBS19 (u.a.), suggesting, whenever their aetiology is unknown, that they are, too, 
signatures of exogenous processes. SBS16 appears as clonal signature—suggesting that 
the mutational process it represents was active historically, before tumour onset—in the 
two cancer types where it is present, Head-SCC and Liver-HCC. It has been linked to 
alcohol consumption [38] but this is not included in COSMIC [9]. This is the signature 
that solely drives the random intercepts in Head-SCC (Fig. S34) indicating patient vari-
ability in its abundance, stratifying the samples into three groups according to these ran-
dom intercepts (Fig. S33).

Behaviour of APOBEC and associated signatures Overall, there is good agreement 
in β̂1 between the two APOBEC signatures SBS2 and SBS13, with discordant β̂1 only 
in the two renal cell carcinoma cohorts (Kidney-RCC clearcell and papillary), as well 
as in Lymph-BNHL and Skin-Melanoma. These samples are the only ones in which the 
patient random intercepts of SBS2 and SBS13 are poorly correlated, with correlations 
ranging from − 0.03 to 0.36 (Fig. S35), indicating that patients who present high values 
of SBS2 do not present high values of SBS13, or conversely. APOBEC signatures have 
been considered to be active [14] or not [39] in previous studies of kidney cancer. Their 
low abundance, discordant β̂1 , and discordant contribution to the random intercepts 
suggest that, in these cancer types, SBS13 might not be. Judging the equivalent results in 
melanoma, SBS13 is active but SBS2 is not.

Beyond the agreements in clock and APOBEC signatures, the most noteworthy trends 
are those of SBS8 and SBS18 and their interplay with APOBEC signatures and HRD. The 
aetiology of SBS8 is uncertain, although it has been linked to HR and NER deficiency [9]. 
Although SBS18 has been linked to reactive oxygen species, its aetiology is not yet clear, 
and is associated with MUTYH-related signature SBS36 [9]. SBS18 aligns well with the 
APOBEC signatures except in the case where β̂

SBS2

1  is highest (Eso-AdenoCA). Similarly, 
β̂
SBS18

1  closely matches β̂
SBS3

1  . SBS3 and SBS8 display markedly different β̂1 (Fig.  S38), 
although they always have intermediate values of β̂1 compared to other signatures. Inter-

estingly, β̂
SBS2

1  is consistently higher than β̂
SBS8

1  . Such behaviour could be explained by 
at least four scenarios: by APOBEC initiation preceding a heightened mutation rate of 
SBS8, by a more subtle increase in the mutation rate of SBS8 than of SBS2, by an increase 
in SBS8 in only a fraction of clones (but an increase of SBS2 in all cells), or by an increase 
of SBS8 in a fraction of the patients (and a more common increase of SBS2). With very 
few exceptions, these signatures have intermediate values of β̂1 . In fact, in several cancer 
types we find several shared values of β̂1 (seen as a plateau in the sorted β̂1 of Fig. S32). 
In Panc-AdenoCA one such plateau includes SBS2, SBS13, SBS3 and SBS18 - these sig-
natures are also included in the same plateau in Breast-AdenoCA.

Tissue-specific differential abundance Within-tissues analysis reveals which aspects 
of differential abundance are shared between cancer types of the same tissue and 
which are not. Often, the set of active signatures itself varies drastically within a tissue 
or organ (in the case of the three CNS samples, the two pancreatic samples, between 
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Kidney-ChRCC and the two Kidney-RCC samples). This is to be expected in cases where 
the cell of origin differs.

With the pre-selected set of active signatures, CNS samples differ in every aspect 
except in the correlation between SBS1 and SBS40 in CNS-GBM and CNS-Medullo 
(Fig. S34) – a correlation which is absent in CNS-Medullo – and the ordering of β̂

SBS1

1  
and β̂

SBS5

1  . Indeed, we find that upon re-extraction of signature exposures and consid-
ering all signatures present in the tissue (Fig.  S39) the three CNS samples show only 
moderate commonalities in abundance ( ̂β0 ) and none in differential abundance ( ̂β1 ). 
The two kidney RCC samples are very consistent in their differential abundance, show-
ing SBS22 – the aristolochic acid exposure [9] – as the signature of lowest β̂1 , together 
with SBS40, and followed closely by the clock signatures. Upon signature re-extraction 
with all signatures present in the kidney, the general abundance is moderately similar 
even between ChRCC and RCC, but the differential abundance results differ completely. 
In the two RCC cancer types the opposite is true: their abundances differ slightly (e.g. 
in SBS29), but their differential abundance results are in perfect alignment except for, 
again, SBS29. In the case of Panc-AdenoCA, the random intercepts are clear in show-
ing that, unlike in Panc-Endocrine, SBS3 plays an important role in explaining the vari-
ability between patients. In the analysis of all signatures, we find a similar pattern to the 
ChRCC/RCC comparison in the pancreatic samples where, although the abundances are 
only markedly different in SBS3, SBS9 and SBS36 (showing shared and possibly tissue-
related mutational processes that were active early in tumour development, or prior to 
it), the differential abundance patterns are not shared.

Deployment of CompSign in cancer genomics
CompSign for the analysis of two-group matched data In summary, applied to the 
PCAWG dataset, the mixed-effects Dirichlet-multinomial model implemented in Comp-
Sign finds ubiquitous differential abundance between clonal and subclonal mutations, 
capturing similar dynamics in signatures known to be related, as well as discovering new 
correlations. Besides differential abundance, we find differential precision, with higher 
dispersion levels in subclonal signature exposures. In this work we begin to explore the 
true correlations between mutational signatures, and not the correlations induced by the 
compositional nature of these data. Validation of these results either experimentally or 
computationally and with orthogonal data would be of interest – notably, in vitro experi-
ments for the analysis of mutational processes can help establish when changes in their 
absolute abundance occur.

Extension of the analysis to other use cases: chromosome analysis Composi-
tional models of differential abundance can help answer a variety of questions in cancer 
genomics, and we indicate how CompSign can be used in two settings different from 
the two-group design with matched observations. In the first extension, we explore dif-
ferential abundance of signatures across chromosomes in the Prost-AdenoCA cohort. 
Matched information about patients is not used, making the analysis comparable to a 
simple comparison of each chromosome to a baseline chromosome (here, Chr1). The 
equivalent of β1 are βChr2 , βChr3 , etc. We use the model FEDMsinglelambda, which 
is our implementation of Dirichlet-multinomial regression without random effects that 
includes a single precision parameter � shared across all patients (Sect. S6.1). Inspecting 
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the fitted β̂ values (Fig. S40) suggests not only that signature abundance varies greatly 
across chromosomes, but that chromosomes can be clustered accordingly (Fig. S41), and 
even allows us to point to some signatures underpinning these chromosome-specific 
patterns of abundance, such as SBS3 (HRD), the relative abundance of which can some-
times be much lower (e.g. in Chr2 or Chr3) or much higher (e.g. Chr17, Chr19) than in 
Chr1.

Extension of the analysis to other use cases: CCF regression Still leveraging infor-
mation across samples, in the second use case we seek to investigate if more granular 
information on the clonal structure of the sample can be used. This use case is inspired 
by TrackSig, which orders mutations by CCF and groups them in bins, looking for 
changepoints in mutational signatures along the series of bins. Using PCAWG data for 
Lung-SCC, we have sorted mutations in decreasing CCF and grouped them in bins of 
100 mutations. Exposures are extracted for each bin. We fit a regression model with two 
covariates: a baseline shared among patients and bins, and the mean CCF for each of 
the bins. The model used is diagREDMpatientlambda from CompSign, in which 
each patient has a corresponding � parameter, and patient uncorrelated random effects 
are used. In this use case, β1 indicates the relationship between signature log-ratios and 
CCF. Fig. S42 shows such coefficients, where the relative abundance of SBS4 (linked to 
tobacco smoke) is shown to be positively correlated with CCF, corroborating the previ-
ous knowledge that it is a clonal signature. Such mixed-effects regression models show 
good performance in simulated data and can be seen as an equivalent of TrackSig where 
information is shared across samples (Fig. S43, Sect. S6.1.1).

Guidelines for using CompSign To help in the deployment of these methods, we give 
some guidance for each step of the pipeline. The signature exposure matrix Y is taken 
as input, but several choices need to be made in order to generate this matrix from a 
sequence of mutations, chiefly whether to extract signatures de novo—in which case the 
number of signatures will specified, possibly by computing the optimal number of signa-
tures based on metrics (see e.g. [40])—or to fit the signatures from a known set of signa-
ture definitions, such as the COSMIC signatures. The latter approach is computationally 
simpler and has the advantage that signature definitions and aetiologies are curated con-
stantly in the COSMIC database, aiding in the interpretation of the output of the model. 
We show that the differential abundance results of the model are robust to the strategy 
used for signature extraction, but ultimately the signature extraction method is deserv-
ing of a conversation in its own right and needs to take into consideration the cancer 
type, the origin of the mutation data, and a variety of technical and clinical covariates. 
It is important not to include signatures which are nearly always zero. Although the 
multinomial model and its extensions support zero (count) exposures, including a sig-
nature which is never active or only active in the clonal and subclonal group can lead 
to problems in estimating β0 and β1 . Alternative methods in the field, such as HiLDA 
and TCSM, have opted for extracting signatures de novo and determining differential 
abundance in a joint model. Indeed, one of the limitations of the models shown here is 
that there is no error propagation between signature extraction and differential abun-
dance testing. On the other hand, in our models it is the incorporation of random 
effects, dispersion parameters, freedom in the choice of input signature exposures, and a 
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flexible fixed-effects structure that allow for an in-depth characterisation of the differen-
tial abundance parameters.

Model choice The next step is the choice of model from the models considered here 
(chiefly, diagREDM, fullREDM). We recommend the use of diagREDM for most pur-
poses, especially if the interest is in the analysis of differential abundance (and not, for 
instance, in the patient random effects that contribute to signature abundance). Espe-
cially, in cases where the number of samples is low and the number of mutations is high, 
estimating the covariance matrix in fullREDM can be difficult and slow. We have intro-
duced several CompSign models, with additional ones listed in Table S2. For instance, 
in regression settings, models with a single � parameter are appropriate. The choice of 
baseline signature can be important for interpretability of the results. If using COSMIC 
signatures, we recommend using SBS1, SBS5 or SBS40 as baseline signatures, as they 
are active in most cancer types (simplifying between-cancer type comparison of coef-
ficients), and they are suggested to be signatures of constant mutation rate. If there is 
good reason, these exposures could even be amalgamated together, and used as a single 
baseline category.

Finally, although the models give differential abundance results as a single p-value, 
they also provide the β̂1 coefficients, as well as all other coefficients in the model, which 
can be analysed in their own right. To account for the compositional nature of the model 
we suggest being careful in drawing any conclusions on the direction of change of sig-
natures, and instead plotting the β̂1 coefficients with their error and in increasing order, 
which gives an indication of which signatures experience a higher increase relative to 
each other, and makes clear which signatures lie at the extremes of the plot. In the same 
plot, it can be useful to see the position of the β̂1 coefficients for any signatures of inter-
est relative to the position of β̂

SBS1
 and β̂

SBS5
 , if those are not used as the baseline.

Number of mutations and samples required for satisfactory results We have 
shown that the differential abundance analysis and signature extraction suffer from a 
reduction in the number of mutations or samples. In practice, for most PCAWG can-
cer types, more than 60% of mutations or samples can be removed yielding practically 
undistinguishable β̂1 values. The number of mutations commonly found in whole exome 
sequencing data correspond to the number of mutations found at the lower end of the 
number of mutations in the PCAWG cohort, where results on bias, coverage and robust-
ness to small perturbations to the data were satisfactory, and so were in simulated data 
where as few as 20 samples and 50 mutations were included. Lack of convergence may 
arise if the ratio of signatures to samples is high, if the number of mutations is low, or if 
the dispersion levels are very high. 

Future applications Besides the two-group design with matched samples from 
PCAWG, we have shown how a regression model can be used to model several time-
points of tumour development, and to interrogate chromosomes separately. The ease 
in applicability of CompSign suggests immediate future directions along this line of 
research, such as to deploy the proposed models to other cancer cohorts, and to extend 
the covariates considered - to test the relevance of clinical covariates, or to compare 
exposures of groups of samples with and without certain driver mutations, before and 
after relapse, or before and after treatment. The models presented are publicly available 
and readily applicable to other types of latently compositional count data to determine 
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differential abundance between groups, or to perform other types of multivariate 
regression.
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