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Abstract 

Adverse drug reactions (ADRs) are among the global public health events that seriously 
endanger human life and cause high economic burdens. Therefore, predicting the pos-
sibility of their occurrence and taking early and effective response measures is of great 
significance. Constructing a correlation matrix between drugs and their adverse 
reactions, followed by effective correlation data mining, is one of the current strate-
gies to predict ADRs using accessible public data. Since the number of known ADRs 
in real-world data is far less than the number of their unknown counterparts, the drug-
ADR association matrix is very sparse, which greatly affects the classification perfor-
mance of machine learning methods. To effectively address the problem of sparsity, we 
proposed a novel weighted pseudo-labeling framework that mines potential unknown 
drug-ADR pairs by integrating multiple weighted matrix factorization (MF) models 
and treating them as pseudo-labeled drug-ADR pairs. Pseudo-labeled data is added 
to the training set, and the MF model is fine-tuned to improve the classification perfor-
mance. To prevent overfitting to easily found pseudo-labels and improve the quality 
of pseudo-labels, a novel weighting approach for pseudo-labels was adopted. This 
paper reproduces the baselines under the same experimental conditions to evalu-
ate the performance of the proposed method on sparse data from the Side Effect 
Resource (SIDER) database. Experimental results showed that our method outper-
formed other baselines in the Area Under Precision-Recall and F1-scores and still main-
tained the best performance in sparser scenarios. Furthermore, we conducted a case 
study, and the results showed that our proposed framework efficiently predicted ADRs 
in the real world.

Keywords: Adverse drug reaction prediction, Weighted pseudo-labeling, Matrix 
factorization, Semi-supervised learning

Background
Adverse drug reactions (ADRs) are one of the major factors causing high morbid-
ity and mortality during treatment and are also a source of economic burden for the 
medical system [1]. According to the recently released U.S. Food and Drug Adminis-
tration (FDA) data, the total number of ADR reports in 2022 reached 2,347,431, with 
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the highest proportion of cases reporting serious ADRs reaching 53.86%, and the death 
rate reaching 7.46%. In  vitro and in  vivo experiments in the preclinical stage, human 
safety testing in the clinical stage, and monitoring of ADRs after marketing should be 
evaluated for drug safety to reduce the negative impact of ADRs [2]. However, it is dif-
ficult to fully detect ADRs before the drug is approved for marketing due to the insuf-
ficient number of volunteers in the clinical stage. According to statisticians, monitoring 
approximately 10,000–20,000 patients during clinical trials to rule out an incidence rate 
of 1/3000–1/6000 ADRs is undoubtedly difficult [3]. While it is impossible to verify all 
ADRs through experiments, using machine learning methods to predict unknown ADRs 
that may occur presents a feasible solution.

Through our investigation, we discovered that Matrix factorization (MF) and Neu-
ral Networks (NNs) are the two most commonly used methods for predicting ADRs in 
recent studies. Firstly, Matrix factorization is a straightforward and effective technique 
utilized in ADR prediction tasks. Galeano et al. [4] decomposed the drug-ADR associa-
tion matrix into a drug latent matrix and an adverse reaction latent matrix by MF, and 
achieved an AUPR of 0.342 for the reconstructed drug-ADR association matrix. In 2015, 
Li et  al. [5] integrated drug-target interactions as features and combined them with 
matrix decomposition to predict ADRs. In 2018, Zhang et  al. [6] proposed a feature-
driven graph regularized matrix factorization (FGRMF) model, which predicts ADRs by 
integrating multiple types of similarities, including drug structure similarity and associ-
ated protein similarity. Fukuto et  al. [7] proposed the LogitMF model, which employs 
Kernel principal component analysis (KPCA) to reduce the dimensionality of the 
2048-dimensional extended-connectivity fingerprints (ECFP) features of the drug to 100 
dimensions, subsequently inputting them into the MF model. In addition to MF-based 
methods, Neural Network-based methods are also widely used for ADR prediction. 
Convolutional Neural Networks (CNNs), which have outperformed in image classifica-
tion tasks, were employed by Uner [8] in DeepSide model to extract similarity informa-
tion between drugs, achieving satisfactory prediction results. Molecular graphs are key 
data for representing drug structures. And Graph Neural Networks (GNNs) are used to 
encode the molecular graphs because they can capture complex relationships and topol-
ogies within graphs through massage passing and readout mechanisms [9]. A recent 
model, named idse-HE, encodes molecular graphs and drug-ADR bipartite graphs using 
GNNs and predicts ADRs by reconstructing the drug-ADR association matrix [10]. Xu 
et al. [11] developed a Graph Attention Network to predict the frequencies of ADRs and 
achieved an AUC of 0.922. Recurrent Neural Networks (RNNs) and Transformers have 
been widely used for extracting drug-ADR association information from text, thereby 
providing more information for ADR prediction [12–14].

Although many improved methods for ADR prediction have been proposed, there are 
still challenges associated with the above two basic methods. For NNs, there is the issue 
of unavoidable negative sample selection errors, and for MF, there is the problem of 
matrix sparsity. Most models require converting the ADR prediction into a binary clas-
sification task and treat unknown drug-ADR pairs as negative samples. Unknown drug-
ADR pairs include (1) cases where the drug does not cause the ADR, (2) cases where the 
drug can cause an ADR, and this fact is known but missing from the source database, 
and (3) cases where the drug can cause the ADR but is not yet known [15]. Therefore, 



Page 3 of 21Chen et al. BMC Bioinformatics           (2025) 26:54  

treating unknown drug-ADR pairs as negative samples would undoubtedly introduce 
bias in model training. For NNs, data balancing methods and treating indications of drug 
as negative samples are commonly used in ADR prediction and have achieved great per-
formance on balanced test sets [8, 15]. However, the performance of NNs-based meth-
ods in ADR prediction under imbalanced conditions needs to be verified. Additionally, 
the limited number of drug-indication pairs may not comprehensively capture the nega-
tive samples. Recent studies show that MF-based methods perform well in imbalanced 
situations, constructing all known and unknown ADR pairs into a drug-ADR association 
matrix [10–13]. Despite this, they are still influenced by noisy labels and matrix spar-
sity. Recent studies have demonstrated that employing semi-supervised learning is an 
effective approach to addressing these challenges. Ding et al. [16] proposed the Maxi-
mize the Cosine Similarity-based Multiple Kernel Learning method (MCS-MKL), which 
improves the performance of MF in predicting ADRs by using soft-labels with Weighted 
K Nearest Known Neighbors (WKNKN) to preprocess unknown drug-ADR pairs. Based 
on the common assumption that similar drugs tend to exhibit similar interaction and 
non-interaction patterns with ADRs, MCS-MKL assigns probabilities to unknown drug-
ADR pairs by calculating their similarity with the K most similar drugs. Although more 
prior knowledge is given to unknown drug-ADR pairs through soft labels, they are still 
treated as negatives. An intuitive solution to these challenges is to treat unknown drug-
ADR pairs as unknown rather than negative. Unlike soft-labeling, pseudo-labeling uses 
an existing model to make predictions on unlabeled data and assigns those with high 
confidence as labels for this data. However, it is often used in conjunction with NNs [17, 
18].

Inspired by the success of MF on ADR prediction and the success of pseudo-labels in 
addressing the label scarcity problem [19], this study explores the possibility of combin-
ing pseudo-labeling with MF model, which could play a significant role in ADR predic-
tion tasks. Unlike NN-based methods, the output of a MF-based method consists of a 
limited number of elements. Drugs or ADRs that appear more frequently in the database 
are more easily predicted by MF, leading to a concentration of pseudo-labels on high-
frequency drug-ADR pairs and overfitting of the model to these pairs (Supplement 2). 
To better combine the MF and pseudo-labeling, this study proposes a novel weighted 
pseudo-labeling framework with MF (WPLMF), aiming to predict potential unknown 
drug-ADR pairs by leveraging multiple MF models. In the WPLMF framework, node-
2vec was initially used to embed drugs from the knowledge graph to capture their bio-
logical information. WPLMF treats positive samples predicted by MF from unknown 
drug-ADR pairs as pseudo-labels. Subsequently, these pseudo-labels are assigned dif-
ferent weights based on their prediction scores to prevent the model from overfitting 
to pseudo-labels that are easily discoverable. Pseudo-labels were then incorporated into 
the training set to fine-tune the MF model and optimize the classification hyperplane, 
thereby providing additional learnable data for the prediction model and addressing 
the matrix sparsity issue of the drug-ADR association matrix. The main contributions 
of this study are as follows. First, unlike traditional pseudo-labels combined with NNs, 
this study explored the possibility of combining MF with pseudo-labels. Second, we 
proposed novel pseudo-label weighting methods to address the issue of pseudo-labels 
concentrating on high-frequency adverse drug reactions when MF is combined with 
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pseudo-labels. Finally, we proposed a method that combines pseudo-labeling with MF to 
solve the matrix sparsity problem of the drug-ADR association matrix, thereby improv-
ing the performance of ADR prediction.

Materials and methods
Datasets

The data were collected from the DrugBank (https:// go. drugb ank. com) and Side Effect 
Resource (SIDER, http:// sidee ffects. embl. de) databases. The source data was down-
loaded from SIDER and Drugbank, which contained 1430 and 14,315 drugs, respectively, 
with SIDER also including 5868 ADRs. Additionally, Drugbank provided extra drug-
protein interaction information, with proteins consisting of targets, enzymes, transport-
ers, and carriers. During the data preprocessing phase, drugs that could not be matched 
between the SIDER and DrugBank databases were removed, such as ‘x’ and ‘v’, among 
others. The ADRs were mapped to the preferred term (PT) using the Medical Diction-
ary for Regulatory Activities (MedDRA). Then we retained the proteins from the Drug-
Bank that relate to the drugs that in our dataset. The final dataset included 1177 drugs 
and 4247 ADRs. Then all drugs and ADRs were constructed into an 1177 × 4247 drug-
ADR association matrix M . If drug i can cause ADRs j , then the elements in the matrix 
Mij = 1 , otherwise Mij = 0 . After the statistics of the dataset, the ratio of the number of 
known drug-ADR pairs to the number of unknown drug-ADR pairs was approximately 
0.027, which shows that the drug-ADR association matrix was sparse. In addition, our 
dataset contains 1749 proteins, including targets, enzymes, transporters, and carriers, 
as well as 10,715 drug-protein pairs. There were 49 types of drug-protein interactions in 
our dataset, such as inhibitors and substrates, among others.

To obtain more robust model evaluation results and prove the applicability of the pro-
posed framework to different datasets, the SIDER4 dataset [20] was used as additional 
data for evaluation. The details on the benchmark datasets are shown in Table  1. The 
SIDER4 dataset comprises 5579 Lowest Level Term (LLT) ADRs as defined by Med-
DRA, which differ from our preferred term (PT) ADRs. Hence, the number of ADRs in 
our dataset was lower than that in the SIDER4 dataset. In addition, the SIDER4 dataset 
is sparser than our compiled dataset, with the ratio of the number of known drug-ADR 
pairs to the number of unknown drug-ADR pairs being approximately 0.020.

Pseudo‑labeling framework

Overview of pseudo‑labeling framework

To solve the problem of matrix sparseness, we propose a pseudo-labeling framework to 
achieve data augmentation so that the MF model can obtain more reliable data to train 
and receive better performance. The overview of our proposed pseudo-labeling frame-
work is shown in Fig. 1. The framework includes four crucial processes: (a) representa-
tion of drugs and ADRs; (b) pseudo-labeling; (c) label weighting; and (d) acquisition of 
the best prediction results.

Process a. Since the drug-ADR association matrix is sparse, it is difficult to effec-
tively mine pseudo-labels using only the MF model, such as facing the cold start 
problem. Therefore, drug-protein association can be used as a feature to improve 
the efficiency of pseudo-label mining. We constructed a biological knowledge graph 

https://go.drugbank.com
http://sideeffects.embl.de
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(KG) containing proteins and drugs, then used the Node2vec [21] algorithm for node 
embedding to obtain potential features of drugs in preparation for improving the 
accuracy of initial pseudo-label mining.

Process b. A generalized matrix factorization model (GMF) is used to predict 
ADRs. If the model’s predicted probability for an element originally labeled 0 in the 
drug-ADR association matrix is higher than the preset threshold, it is regarded as a 
noisy label and relabeled as 1. It is noteworthy that multiple GMF models were used 
to predict ADRs simultaneously to obtain more robust prediction results.

Process c. To reduce the impact of erroneous pseudo-labels, we propose a novel 
weighting scheme to adjust the contribution of different samples to the loss by con-
trolling the weight of the labels to achieve better model fine-tuning.

Process d. The mean ensemble was applied to combine all GMF model prediction 
results.

Processes b to d are reiterated until the output from process d is optimal, and the 
output is regarded as the final prediction result.

Knowledge graph representation

In recent years, KGs have been widely used in ADR prediction. Joshi et al. and Zhang 
et  al. [7, 8] showed that using word2vec-based methods to embed biological maps 
of drug-associated proteins can effectively improve the performance of ADR predic-
tion. From a biological perspective, incorporating drug-protein associations into the 
model is efficacious. Off-target effects are one of the causes of ADRs. Besides act-
ing on targets related to disease treatment, drugs might also exert effects on other 
non-therapeutic targets, which could give rise to adverse effects. For instance, tyros-
ine kinase inhibitors (TKIs) are often not specific to the intended tyrosine kinase, 
and thus unintended off-target effects can occur. Some of these off-target effects 
can lead to cardiotoxicity, particularly arrhythmias [22]. To enhance the efficiency of 
initial pseudo-labels mining, we first obtained effective representations of drug and 
ADR features by embedding a biological KG before implementing MF. Specifically, 
we constructed this biological KG using data from the DrugBank and SIDER data-
bases, which included entities such as drugs, indications (ADRs), targets, carriers, 
and enzymes. We then employed Node2vec, a variant of the Word2vec algorithm, to 
embed the nodes within the KG.

Fig. 1 Overview of the pseudo-labeling framework
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The Node2vec calculates the transition probabilities for all pairs of nodes that exist 
in the KG using a fixed length l of the node sequences. Assuming c0 = u is the starting 
node of a sequence, ci represents the ith node, and its probability coming from ci−1 is:

where πvx is the non-normalized transfer probability from node v to x , and Z is the nor-
malized term. Nevertheless, the transition probabilities above cannot fully consider the 
homogeneity and structure of the graph. A factor αpq is utilized to control the random 
walk strategy. Specifically, αpq(t, x)πvx takes place of πvx in formula 1.

where t is the previous node ci−1 and x is the next node ci+1 . If node t and node x are the 
same, dtx = 0 ; if node t and node x are connected directly, dtx = 1 ; otherwise, dtx = 2 . 
p and q are two hyperparameters. When the value of p is large (> max(q, 1)) , the cur-
rent node ci is more likely to wander to the previous node t to capture the structure of 
the graph. If p is small (< min(q, 1)) , it is more likely to return to the previous node to 
capture homogeneity. For the parameter q , if q > 1 , it tends to wander near the previous 
node t, and if q < 1 , it tends to wander to a farther node. Finally, the skip-gram is used 
to train all sequences obtained through partial random walks to obtain the latent feature 
representation of all nodes.

Pseudo‑labeling

MF is one of the effective methods for recommendation systems and ADR prediction [4, 
23, 24]. Therefore, we use MF to achieve efficient pseudo-label prediction. This model is 
classically modeled as:

where P is the m× k drug feature matrix, which contains the k-dimensional features of 
all m drugs. Q is an n× k ADR feature matrix, which contains the k-dimensional fea-
tures of all n ADRs, k ≪ min{m, n}.

We used the GMF model with better performance to replace the traditional MF model. 
The definition of GMF is shown in Eq. (5), and binary cross-entropy loss is used as the 
objective function.

where w is a shared k × 1 dimensional parameter matrix, pi and qj are the representation 
of the i th drug and the representation of the j th ADR respectively. σ(·) is the sigmoid 
activation function, which converts the predicted value into a probability value between 

(1)P(ci = x|ci−1 = v) =

{

πvx
Z if (v, x) ∈ E
0 otherwise

(2)αpq(t, x) =







1/p if dtx = 0
1 if dtx = 1
1/q if dtx = 2

(3)Y ≈ Y ′ = PQT

(4)yij ≈ yij′ = σ

(

(

pi ⊙ qj
)

wT
)

(5)loss = −
∑

i

∑

j

yij log
(

yij′
)

+
(

1− yij
)

log
(

1− yij′
)
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0 and 1. Drug-ADR pairs originally labeled as 0 in the matrix but whose output value is 
higher than the preset threshold is regarded as pseudo-labels, and their labels are rela-
beled as 1 to form a new drug-ADR association matrix for fine-tuning the GMF model.

Threshold adjustment is an effective method to achieve a trade-off between pseudo-
label quality and quantity [25]. However, this method may not be suitable for ADR 
prediction because numerous unknown drug-ADR pairs exist in the matrix. A fixed 
threshold was utilized to screen suitable pseudo-labels. With the addition of pseudo-
labels, the classification hyperplane is optimized to a certain extent, and the overall pre-
diction score by the model increases, eventually leading to more pseudo-labels exceeding 
the threshold, as shown in Supplement1(a). Therefore, using a fixed threshold to fil-
ter pseudo-labels can still make pseudo-labels play a similar role as curriculum learn-
ing [26]. Specifically, simple and high-confidence samples in the early stages of training 
are labeled as pseudo-labels to fine-tune the model first, thereby guiding the model to 
achieve a better optimal solution.

As shown in Supplement1 (b), when GMF was trained with 50 epochs, the hitting rate 
of the pseudo-labels was the highest, and pseudo-labels with a higher hitting rate can 
better improve the pseudo-label method. Therefore, we trained each GMF model with 
50 epochs.

Label weighting

In Sect. Pseudo labeling, we mentioned that the number of pseudo-labels will gradually 
increase with the fine-tuning training of GMF. This leads to the problem of excessive 
labeling, which reduces the quality of pseudo-labels and ultimately results in poor model 
performance. GMF is more likely to predict high-frequency ADRs (i.e., drugs or ADRs 
that occur frequently in the dataset), causing pseudo-labels to concentrate on high-
frequency drug-ADR pairs and leading to overfitting of GMF to such pseudo-labels. To 
address this issue, we propose a novel weighting method inspired by Focal loss and Error 
L2-Norm (EL2N) [27, 28]. This method is designed to mitigate the influence of errone-
ous pseudo-labels and overfitting to easily detectable pseudo-labels by assigning appro-
priate weights to them. Specifically, the weight of each label is defined as follows:

where α is the penalty factor, which makes the model concentrate on the quality of 
pseudo-labels rather than the quantity; γ is the adjustment factor; ε is the minimum 
value; and yij′ and 1− yij′ are the forms of EL2N scores in the binary classification 
problem. Since the label before the pseudo-labeling is marked as 0, yij′ is used to meas-
ure the distance of the model output to the original label, while 1− yij′ is the distance 
to the output of 1. The smallest weight of the pseudo-label with a model output is 
ymin′ ≈

αγ

αγ−(1−α)γ
 . We treat ymin′ as a dividing point; when the prediction score of the 

pseudo-label is higher than ymin′ , the weight of the pseudo-label becomes larger, and 
vice versa. Thus, at large values of alpha, pseudo-labels with relatively high scores are 
assigned low weights, while those with relatively low scores are assigned high weights. t 
represents the current number of times of pseudo-label labeling. For non-pseudo-label 

(6)wij =

{

−
(

αγ ln
(

yij′ + ε
)

+ (1− α)γ ln
(

1− yij′ + ε
))

x is pseudo
1/t otherwise
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samples, a weight of 1/t is given to prevent overfitting. After combining the weights, the 
objective function is redefined as:

Model evaluation

The MF model often treats ADR prediction as a binary classification problem, that 
is, pairs of existing drug-ADR pairs are regarded as positive samples, while pairs of 
unknown ADRs are regarded as negative samples. As mentioned in Sect. 2.1, there are 
far more unknown drug-ADR pairs than known ones; thus, our drug-ADR association 
matrix for training is extremely sparse. The following indicators were used to evaluate 
the performance of the model.

AUPR: Area Under Precision-Recall (AUPR) curve, which is widely used in imbalance 
problems.

F1: The F1 score can be interpreted as a harmonic mean of the precision and recall.
MRR: Mean Reciprocal Rank, which focuses on measuring the accuracy of highly pre-

dicted samples. For better presentation, we use the accumulation of the reciprocal rank-
ing instead of taking the average.

Precision: Precision indicates the proportion of positive identifications that are actu-
ally correct.

Recall: Recall is the proportion of actual positive cases that are correctly identified by 
the model.

Precision@15: Top15 precision, macro mean precision of the top 15 ADRs of all drugs.
Recall@15: Top 15 recall, macro mean recall of the top 15 ADRs of all drugs.
The metrics above are formulated as follows:

We believe that to predict ADRs, more attention should be paid to ADRs with higher 
model prediction scores because they can better provide warnings for safe drug use. 
Therefore, we used Precision@15 and Recall@15 to replace the traditional Precision and 
Recall.

Results and discussion
Experiment setup

The present study used five-fold cross-validation to evaluate the classification predic-
tion performance of the model. In each fold, we constructed a biological KG using all 
drug-protein pairs in the training set. Then Node2vec with five different walking strate-
gies or parameters was used to embed the nodes of the biological KG, and five GMF 
models were initialized with the obtained five different sets of initial representations 

(7)loss = −
∑

i

∑

j

wij(yij log
(

yij′
)

+
(

1− yij
)

log
(

1− yij′
)

)

(8)F1 = 2×
precision× recall

precision+ recall

(9)MRR =
1

N

|N |
∑

i=1

1

ranki
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of drugs and ADRs. Five different parameter settings of Node2vec were as follows: 
p = [0.5, 0.7, 1, 1.5, 2] and q = [2, 1.5, 1, 0.7, 0.5] . The length of the Node2vec walking 
sequence was set to 5, and each node obtained 100 sequences through partial random 
walk; the embedding dimension of the node was 12. The hyper-parameters p and q were 
aimed at capturing homophily or structural equivalence from the KG, thereby providing 
different representations of drugs and improving the overall generalization ability of the 
model.

For the pseudo-labeling framework, five GMF models were tuned using an Adam opti-
mizer and 0.02 learning rate to minimize the cross-entropy loss with 50 epochs at each 
step. Then the pseudo-labels were marked and added to the training set. The threshold 
for labeling pseudo-labels was set to 0.8. Alpha and gamma were set to 0.9 and 2 respec-
tively. The entire framework was implemented on PyTorch.

The detailed settings for the baseline methods are shown in Table 2:

Performance analysis and comparison

In this section, we compared the performance of WPLMF with other baselines. In 
FGRMF, a graph was constructed based on a drug features, and graph regularization, 
which preserves the structure of the drug, is incorporated into FGRMF to fully take 
advantage of the drug’s characteristics [12]. idse-HE captures the drug-ADR association 
using a GNN, and multi-view structure features of drugs, transformed by MPNN + Set-
2Set and molecular fingerprint algorithms, are used to provide abundant features [15]. 
Galeano’s method projects the drug-ADR relationship into a low-dimensional space, 
uncovering the latent features of drugs and side effects [10]. LogitMF employed Ker-
nel Principal Component Analysis (KPCA) to reduce the dimensionality of the drug’s 
2048-dimensional extended-connectivity fingerprints (ECFP) features to 100 dimen-
sions, thereby removing redundant structural features to enhance performance [13]. 
MSC-MKL improved the performance of MF in predicting ADRs by using soft-labeling 
with Weighted K Nearest Known Neighbors to preprocess unknown drug-ADR pairs 
and employing multi-kernel learning to capture more information through different 
similarity matrices of drugs and ADRs [21].

Existing MF algorithms typically treat ADR prediction as a binary classification prob-
lem. However, unlabeled data far exceeds labeled data, which limits their effectiveness. 
Therefore, we propose a new weighted pseudo-labeling MF framework that can address 

Table 2 The detailed settings for the baseline methods

CS Chemical Structure, DAA Drug-ADR association, DPI Drug-Protein Interaction

Method Features Setting

MCS-MKL CS, DAA μ = 2e−3, v = 2e−5, k = 17

FGRMF CS, DAA, DPI μ = 8, λ = 4

idse-HE CS, DAA lr = 1e−3, dropout = 0.1, α = 0.02, λ = 5e−3

Galeano’s DAA lr = 1e−2, λ = 15

Logit MF CS, DAA lr = 1e−2, λ = 1e−4, α = 1, β = 0.2

WPLMF DAA, DPI lr = 1e−2, p = [0.5,0.7,1,1.5,2], 
q = [2,1.5,1,0.7,0.5], α = 0.9, γ = 2, thresh-
old = 0.8
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these limitations. Firstly, it reduces the obstacles caused by the matrix sparsity problem 
during training through pseudo-labeling. Secondly, pseudo-labeling is equivalent to 
entropy regularization, which reduces the overlap between different categories of data 
[29]. Thus, pseudo-labeling has certain theoretical advantages.

Tables 3 and 4 present the results of WPLMF and baselines in our dataset and SIDER4 
dataset, with the average values and standard deviations obtained from a fivefold valida-
tion. WPLMF exhibits superior performance compared to all baselines, particularly in 
terms of AUPR and MRR. The AUPR reached 0.6553, and the F1-score reached 0.6095. 
These results indicate that our method excels at distinguishing existing drug-ADR pairs, 
attributing greater credibility to its predictions compared to other baselines. However, 
MCS-MKL performs better in MRR, precision@15, and recall@15. This suggests that 
MCS-MKL is more accurate in predicting ADRs with higher scores. In the sparser 
SIDER4 dataset, the proposed WPLMF still maintained the best performance, exceed-
ing MCS-MKL in MRR, precision@15, and recall@15. Hence, our model may maintain 
better performance in sparse scenarios. MRR, precision@15, and recall@15 are metrics 
used to evaluate the performance of the model for samples with high prediction scores. 

Table 3 Results of the proposed WPLMF framework and baselines in Ours Dataset (The best 
performance is highlighted in bold)

Method AUPR F1 MMR Precision@15 Recall@15 Precision Recall

MCS-MKL [16] 0.6428 
(1.3e−3)

0.6082 
(1.2e−3)

10.1247 
(1.4e−2)

0.6567 
(7.6e−3)

0.7813 
(1.9e−2)

0.6145 (1.2e−2) 0.6082 
(1.1e−2)

FGRMF [6] 0.5117 
(4.5e−3)

0.4993 
(2.6e−3)

9.7799 
(7.6e−2)

0.4932 (5.9e−3) 0.7842 
(1.3e−2)

0.4953 (1.4e−2) 0.5043 
(1.5e−2)

idse-HE [10] 0.5888 
(1.1e−2)

0.5564 
(1.1e−2)

8.128 
1(7.4e−1)

0.5676 (8.5e−3) 0.9136 
(1.3e−2)

0.4738 (3.5e−2) 0.6804 
(3.9e−2)

Galeano’s [4] 0.6294 
(2.8e−3)

0.5924 
(1.9e−3)

10.0803 
(3.4e−2)

0.6081 (5.2e−3) 0.7748 
(1.1e−2)

0.6049 (1.9e−2) 0.5804 
(1.2e−2)

Logit MF [7] 0.6124 
(3.3e−3)

0.5766 
(3.5e−3)

10.0619 
(3.0e−2)

0.6370 (6.6e−3) 0.7263 
(5.0e−3)

0.5819(1.3e−2) 0.5714 
(1.6–3)

WPLMF (ours) 0.6553 
(3.0e−3)

0.6095 
(1.8e−3)

10.0918 
(1.9e−1)

0.6440 
(11.8e−2)

0.77981 
(5.5e−3)

0.6172 (1.4e−2) 0.6024 
(1.1e−2)

Table 4 Results of the proposed WPLMF framework and baselines in SIDER4 (The best performance 
is highlighted in bold)

The asterisk (*) indicates that SMILES data is not included in the SIDER4 dataset; instead, an 881-dimensional Pubchem 
fingerprint is used

Method AUPR F1 MMR Precision@15 Recall@15 Precision Recall

MCS-MKL 0.5747 
(3.6e−3)

0.5624 
(2.1e−3)

9.8289 
(5.8e−2)

0.6061 (1.1e−2) 0.7741 
(2.0e−2)

:0.5693 
(1.2e−2)

0.5590 
(1.7e−2)

FGRMF 0.5434 
(4.4e−3)

0.5347 
(3.4e−3)

9.7910 
(1.5e−2)

0.7304 (1.0e−2) 0.5416 
(6.7e−3)

0.5347 
(9.2e−3)

0.5351 
(1.1e−2)

idse-HE* 0.5303 
(7.7e−3)

0.5069 
(2.6e−2)

8.1523 
(7.0e−2)

0.5228 (1.9e−2) 0.9026 
(1.3e−2)

0.4267 
(5.8e−2)

0.6402 
(4.5e−2)

Galeano’s 0.5698 
(3.6e−3)

0.5457 
(7.1e−3)

9.7946 
(5.8e−2)

0.7500 
(1.3e−2)

0.5567 
(2.3e−2)

0.5617 
(9.4e−3)

0.5306 
(1.3e−2)

Logit MF* 0.5479 
(4.9e−3)

0.5402 
(4.1e−3)

9.6442 
(3.9e−3)

0.7324 (1.3e−2) 0.6135 
(6.7e−3)

0.5379 
(1.8e−2)

0.5425 
(2.1e−2)

WPLMF (ours) 0.6031 
(3.8e−3)

0.5744 
(2.9e−3)

9.9028 
(1.3e−2)

0.61004 
(7.5e−3)

0.7816 
(8.2e−3)

0.5858 
(9.4e−3)

0.5635 
(4.3e−3)
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The performance of WPLMF in predicting samples with high prediction scores is poorer 
than that of MCS-MKL. This may stem from the fact that WPLMF shows minimal 
improvement in predicting the adverse effects of high-frequency drugs, as detailed in 
Fig. 5.

To further investigate the effectiveness of the pseudo-labeling framework in sparse 
scenarios, we varied the ratio of our training set from 100 to 60% and reported the 
F1-scores of WPLMF and all baselines. Figure 2 shows that when the data is sparser, the 
pseudo-labeling framework maintains the best performance, while the performance of 
MCS-MKL is unsatisfactory. When 40% of the known drug-ADR pairs were removed, 
the F1-score of MCS-MKL dropped to 0.5607, close to the performance of Galeano’s 
method, while our model still performed better than all other baseline models. The rea-
son for the poor performance of MCS-MKL in sparse scenarios may be that MCS-MKL 
relies on known drug-ADR pairs to calculate drug-drug similarity and ADR-ADR simi-
larity. This approach reduces the available data when the ADR data is sparser, leading to 
poorer similarities, and eventually, the errors are transferred to the prediction results, 
resulting in reduced model performance. Additionally, we examined our framework 
without pseudo-labeling (WPLMF_NOPL) in sparse scenarios. In contrast to WPLMF, 
WPLMF_NOPL exhibits inferior classification performance in various sparse scenarios. 

Fig. 2 Results of WPLMF and other baselines in sparse scenarios. The blue line denoted WPLMF, with the best 
F1-score in sparse scenarios
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Nevertheless, as the matrix becomes increasingly sparser, the disparity in F1-score 
between them gradually diminishes. The results above show that the addition of pseudo-
labels can effectively improve the performance of MF in sparse scenarios, but the effect 
of pseudo-labels may be limited in extremely sparse scenarios.

Trade‑off between quality and quantity

The trade-off between the quality and quantity of pseudo-labels is crucial. It is difficult 
to improve model performance if the number of pseudo-labels is too high with poor 
quality, or if the pseudo-labels are of grate quality but fewer in number. The proposed 
WPLMF can achieve a better balance between the quality and quantity of pseudo-labels 
in two ways. The hit rate of pseudo-labels, which means the accuracy of the pseudo 
labels, was used to measure their quality. The first way is by adjusting the filtering thresh-
old for pseudo-labels. To explore the effect of the threshold on the trade-off between 
quality and quantity of pseudo-labels, we examined the hit rate and number of pseudo-
labels along with F1-score of WPLMF. As shown in Fig. 3, a high threshold is more likely 
to yield high-quality pseudo-labels. Conversely, a low threshold is more likely to yield a 
higher quantity of pseudo-labels. The F1-score increases until the threshold reaches 0.6, 
which indicates that WPLMF performs better with high-quality pseudo-labels.

Another way is to adjust the penalty coefficient α value in Formula 6. As shown in 
Fig.  4, we fixed γ = 2 . As α increases, numerous pseudo-labels are abandoned and 
replaced by higher-quality ones. When α is small, pseudo-labels have a higher quantity. 
This is attributed to the fact that an increase in α can restrain the learning of high-con-
fidence pseudo-labels in the model, thereby enabling the model to selectively disregard 
them. A high value of α can constrain the number of pseudo-labels, thus avoiding the 
filling of the objective drug-ADR association matrix with noisy pseudo-labels. In our 
experiments, when α was set to 0.8, the number of pseudo-labels was twice that when it 
was set to 0.1, but the hit rate was reduced by approximately 0.2. The weighting method 

Fig. 3 Impact of threshold on Trade-off between quality and quantity of pseudo labels
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we purposed improved the F1 score of the model from 0.6082 to 0.6095 under fivefold 
cross-validation.

Above all, it is beneficial to obtain higher-quality pseudo-labels by setting a higher fil-
tering threshold and a higher penalty coefficient α.

Ablation study

An ablation study was implemented to explore the real effect of the components of 
WPLMF on ADR prediction. We removed one of the major components of WPLMF, 
such as the ensemble process, and recorded the change in the model’s performance. 
As shown in Table 5, the performance of WPLMF worsens when major components 
are removed. The ensemble process shows significant improvement in WPLMF. 

Fig. 4 Impact of different values of α on the quality and quantity of pseudo-labels. When the hit rate is high, 
the color of the grid tends toward green; otherwise, it tends toward blue

Table 5 Results of the Ablation Study (The best performance is highlighted in bold)

Variants AUPR F1

Without ensemble 0.6403 0.5981

Without pseudo labeling 0.6522 0.6076

Without node2vec 0.6548 0.6082

WPLMF 0.6553 0.6095
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Ensemble methods can reduce generalization errors by integrating diverse models 
[30]. Ensemble methods in WPLMF can improve the accuracy of the pseudo-labels, 
thereby improving the overall performance of WPLMF. In addition, pseudo-labeling 
and node2vec play key roles in WPLMF. Pseudo-labeling provides more drug-ADR 
association information to mitigate the impact of matrix sparsity and bias. In addi-
tion to providing more information about drug-protein associations, node2vec also 
differentiates between different base models in the ensemble method by setting differ-
ent hyperparameters to capture homophily or structural equivalence from the drug-
protein network.

Furthermore, we conducted a comprehensive study of the prediction performance 
of WPLMF for drugs and ADRs ranked with different frequencies. We sorted and 
binned the drugs or ADRs in descending order based on their frequency rankings 
and compared the prediction errors on the test set under different conditions: when 
pseudo-labels were used, when weighting was not employed, and when pseudo-
labels were not used. Specifically, the frequency ranking of a drug or ADR refers to 
the number of times the drug or ADR appears in the database. The frequency of a 
drug was equal to the sum of the corresponding row in the drug-ADR association 
matrix (Fig. 5). Similarly, the ADR frequency was calculated in the same manner. Sub-
sequent binning involved 200 ADRs per bin for ADRs and 50 drugs per bin for drugs. 
The results are shown in Fig.  5: pseudo-labels mainly reduced the prediction error 
in high-frequency (high-ranking) drugs and high-frequency (high-ranking) adverse 
drug reactions (ADRs), as well as in mid-frequency (mid-ranking) drugs. However, 
for extremely low-frequency (low-ranking) ADRs and low-frequency (low-ranking) 
drugs, the model could not provide better predictions.This suggests that prediction 
error can be reduced by using weighted pseudo-labels, which also helps prevent the 
model from overfitting to easily detected pseudo-labels.

Fig. 5 Prediction errors of drugs and ADRs with different frequency rankings. Drugs or ADRs are ordered by 
their frequency of concurrence in descending order. NOPL: WPLMF without pseudo-labeling, NOWT: WPLMF 
without weighting. a Predict relevant drugs given ADRs. b Predict relevant ADRs given drugs
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Case study

Considering that not all possible drug-ADR pairs are recorded in the SIDER database, 
traditional model evaluation indicators such as F1-score may not reflect the true per-
formance of the model. Therefore, case studies should be performed to further evaluate 
the model’s performance by analyzing drug-ADR pairs that are not recorded in SIDER. 
To achieve this, we selected the top 30 drug-ADR pairs that are not recorded in SIDER 
and were predicted by WPLMF for a case study. In other words, their labels in the drug-
ADR matrix are 0, and the supporting evidence was screened from drugs.com and other 
literature databases. The case study results are shown in Fig. 6.

Of note, we assume that a given drug can causes ADR A, then ADR B may be associ-
ated with the drug in following situations:

• ADR A may lead to ADR B. For example, Octreotide has been reported to cause 
stomach pain, and stomach pain can induce upper abdominal pain. Therefore, we 
believe that Octreotide may cause epigastric pain.

Fig. 6 Illustration of the links of the top 30 drug-ADR pairs predicted as positive using our method. However, 
they are considered negative samples in our dataset. The blue nodes represent drugs, and the orange nodes 
represent ADRs. The supported drug-ADRs pairs are linked by black lines. The drug-ADR pairs connected by 
the red line indicate that they have not been proven so far
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• ADR A and ADR B exhibit a parent–child relationship. For example, desmopressin 
can cause corneal edema, and corneal edema and eye edema have a father-son rela-
tionship. Therefore, we postulate that desmopressin may cause ocular edema.

• ADR B is a synonym for ADR A.

Out of the top 30 unknown drug-ADR pairs predicted by model pseudo labeling 
framework and original labels of 0, 23 pairs were verified through additional evidence. 
Among the top 10 pairs of adverse drug reactions, 8 pairs were verified; among the top 
20 pairs of adverse drug reactions, 15 pairs were verified. Hence, it can be asserted that 
the approach introduced in this study exhibits a robust capability to forecast unknown 
drug-ADR associations. However, case study for top 30 drug-ADR pairs cannot fully 
evaluate the true performance of our method owing to the long-tail problem in SIDER, 
especially for ADR [31]. For this reason, a case study comprising only the top 30 pre-
dictions cannot fully evaluate our method. According to the Pareto Principle, we divide 
drugs or ADRs according to their frequency. The drugs or ADRs with the top 20% of 
the frequencies are considered head drugs or ADRs, whereas drugs or ADRs with the 
bottom 80% of the frequencies are considered long-tail drugs or ADR. Taking long-tail 
drugs as an example, we delete all drug-ADR pairs associated with head drugs in the 
prediction results, and randomly select 10 drug-ADR pairs predicted by our method 
as positive but with actual labels of negative from the remaining prediction results, 
and then external database is utilized to verify the selected drug-ADR pairs. The same 
applies to long-tail ADRs. The case study results for long-tail situation are presented 
in Tables  6 and 7. The former refers to a case study outcome for long-tail drug-ADR 
pairs, while the latter relates to long-tail ADR-drug pairs. The results demonstrate that 
our method achieves a precision of approximately 0.5 for long-tail drug-ADR pairs, 
significantly surpassing random chance. Importantly, the performance of random for 
long tail pairs is lower than 0.5, as they account for a small proportion of the dataset. 
In addition, although some examples predicted by our method have not been verified, 
some relevant cases have been reported. For example, WPLMF predicts that tumor lysis 
syndrome (TLS) is an ADR of cisplatin. According to a recent study, TLS occurred in 
a 58-year-old patient after transcatheter arterial infusion of cisplatin and embolization 
therapy for liver metastases of melanoma [32]. Therefore, we cannot completely rule out 

Table 6 Results of the case study for low-frequency drugs

Low‑frequency Drug ADR Verified Resource

Flecainide Dysarthria F –

Felodipine Hypertension F –

Ranolazine Disturbance in sexual arousal T Drugs.com

Diethylpropion Syncope T Drugs.com

Bimatoprost Endophthalmitis T Drugs.com

Micafungin Weight decreased F –

Nortriptyline Dyskinesia T Drugs.com

Vancomycin Angioedema T [33]

Dantrolene Oedema T Drugs.com

Deferasirox Rhabdomyolysis F –
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the association between cisplatin and tumor lysis syndrome. In summary, the developed 
model can accurately predict real-world ADRs. 

Discussion
In addition to NNs-based methods, MF-based methods have achieved remarkable suc-
cess in predicting ADRs by overcoming negative sample selection errors; however, their 
prediction performance is significantly influenced by label noise and matrix sparsity. In 
this study, we propose a novel weighted pseudo-labeling framework based on MF named 
WPLMF for ADR prediction tasks, aimed at solving these problems. The experimen-
tal results indicate that WPLMF outperforms other methods, achieving 0.6553 in AUPR 
and 0.6095 in F1-score. We then further investigate the effectiveness of the proposed 
WPLMF framework in sparse scenarios. As the sparsity of the drug-ADR association 
matrix increases, MF-based methods show a decline in prediction effectiveness to 
varying degrees. However, WPMLF, which combines MF with pseudo-labeling, main-
tains the best performance in F1-score, indicating that the weighted pseudo-labels can 
address the matrix sparsity problem faced by MF. Moreover, the results presented in 
Fig. 5 indicate that the incorporation of weighted pseudo-labels can improve the predic-
tion efficacy of high-frequency and mid-frequency drug-ADR pairs. This simultaneously 
and indirectly implies that the proposed method of weighting pseudo labels can prevent 
overfitting to high or intermediate frequency ADRs. In the ablation experiments, after 
removing different modules in WPLMF respectively, the model’s prediction declined to 
varying degrees. This suggests that these modules play an important role in WPLMF. 
For instance, the inability of MF to obtain sufficient prior knowledge of drug-protein 
interactions from the KG after the deletion of node2vec may lead to vulnerability to 
the cold start problem when discovering pseudo-labels. In our proposed novel weight-
ing method, the processing can achieve a trade-off between the quality and quantity of 
pseudo-labels by adjusting the hyperparameters. It can also reduce the weight of those 
pseudo-labels that are easy to find, thus preventing the model from overfitting to this 
kind of pseudo-labels.

Data imbalance and matrix sparsity are crucial problems in machine learning. Data 
imbalance or matrix sparsity may cause the model to be biased toward the majority 
class, thus performing poorly on the minority class. The model may over-rely on the 

Table 7 Results of the Case Study for Low-Frequency ADRs

Drug Low‑frequency ADR Verified Resource

Decitabine Non-cardiac chest pain T Drugs.com

Cefoxitin Clostridium difficile colitis F –

Paroxetine Glucose tolerance Decreased F –

Sulfasalazine Hepatic cytolysis T Drugs.com

Aripiprazole Electrocardiogram st segment depression T Drugs.com

Medroxyprogesterone Acetate hepatic cancer F –

Amiodarone Haemolytic uraemic syndrome F –

Lenalidomide Non-cardiac chest pain T Drugs.com

Aripiprazole High density lipoprotein decreased F –

Clomiphene Ectropion of cervix F –
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features of the majority class and neglect the features of the minority class, leading to 
inaccurate predictions for the minority class [34]. Taking gradient descent as an exam-
ple, the majority classes have more training iterations, so they are easier to fit than the 
minority classes, which may eventually lead to overfitting of the majority class or under-
fitting of the minority class. The proposed WPLMF further balances the two classes by 
adding weighted pseudo-labels to avoid overfitting of the majority class or underfitting 
of the minority class as far as possible. However, our approach has some limitations. 
Firstly, the prediction of extremely low-frequency drug-ADR pairs using our pseudo-
labeling approach does not achieve significant improvements. To address this problem, 
we plan to incorporate more relevant features, such as the structure of the drug, into 
the model in future work. Multi-view features have been demonstrated to offer abun-
dant features for drug representation [35]. Hence, transforming the structures of drugs 
via diverse methods to acquire more abundant features might be feasible for our future 
work. Secondly, WPLMF cannot predict ADRs for new drugs since node2vec is trained 
on a knowledge graph constructed from all known drug-protein pairs. In addition, the 
performance of GMF, as the basic method for mining pseudo-labels in the framework 
proposed in this paper, may not be optimal. In the future, we will explore the use of 
other classification models with better performance to replace the GMF in the pseudo-
labeling framework and improve the performance of the framework.

Conclusion
In this study, a novel weighted pseudo-labeling framework named WPLMF for ADRs 
prediction is proposed. The framework consists of three crucial steps, each with distinct 
roles. The first step involves the use of the Node2vec algorithm to extract features from 
biological networks, provide additional drug features for GMF models, and reduce the 
impact of data sparsity on pseudo-label mining for GMF for the first time. In the second 
step, pseudo-labeling is conducted using GMF and mean ensemble methods. Pseudo-
labels are incorporated into the training set based on their scores surpassing a prede-
fined threshold. The combined outcomes are then considered as the final prediction 
results. In the third step, a new weighting method is employed to achieve a trade-off 
between the quality and quantity of pseudo-labels and prevent the model overfitting to 
high-frequency pseudo-labels. The second and third steps are repeated until the predic-
tion result of the model ensemble in the second step reaches the best performance of 
ADRs prediction. This model can achieve great performance even when the matrix is 
sparse, demonstrating the feasibility of combining MF with pseudo-labeling. Therefore, 
the method proposed in this study can maintain excellent prediction of ADRs when data 
are hard to acquire and offers a more effective approach for the discovery of ADRs.
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