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Abstract 

Background:  Drug–drug interactions (DDIs) especially antagonistic ones present 
significant risks to patient safety, underscoring the urgent need for reliable prediction 
methods. Recently, substructure-based DDI prediction has garnered much attention 
due to the dominant influence of functional groups and substructures on drug proper-
ties. However, existing approaches face challenges regarding the insufficient interpret-
ability of identified substructures and the isolation of chemical substructures.

Results:  This study introduces a novel framework for DDI prediction termed HDN-
DDI. HDN-DDI integrates an explainable substructure extraction module to decom-
pose drug molecules and represents them using innovative hierarchical molecular 
graphs, which effectively incorporates information from real chemical substructures 
and improves molecules encoding efficiency. Furthermore, the enhanced dual-view 
learning method inspired by the underlying mechanisms of DDIs enables HDN-DDI 
to comprehensively capture both hierarchical structure and interaction information. 
Experimental results demonstrate that HDN-DDI has achieved state-of-the-art per-
formance with accuracies of 97.90% and 99.38% on the two widely-used datasets 
in the warm-start setting. Moreover, HDN-DDI exhibits substantial improvements 
in the cold-start setting with boosts of 4.96% in accuracy and 7.08% in F1 score on pre-
viously unseen drugs. Real-world applications further highlight HDN-DDI’s robust 
generalization capabilities towards newly approved drugs.

Conclusion:  With its accurate predictions and robust generalization across differ-
ent settings, HDN-DDI shows promise for enhancing drug safety and efficacy. Future 
research will focus on refining decomposition rules as well as integrating external 
knowledge while preserving the model’s generalization capabilities.
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Introduction
In the treatment of complex diseases, the co-administration of two or more drugs can 
target various biological processes implicated in disease development thereby achiev-
ing therapeutic effects that are unattainable with monotherapy [1–3]. However, drug-
drug interactions (DDIs) such as antagonism between different drugs potentially lead to 
severe side effects or adverse drug events [4–6]. Therefore, it is crucial to identify these 
potential DDIs.

Traditional methods which rely on pharmaceutical research and clinical trials are both 
costly and time-consuming when applied to numerous potential drug combinations 
[7–9]. Computational-based methods offer a more cost-effective and expedited means 
of identification [10–12]. In recent years, machine learning and deep learning-based 
methods have exhibited superior performance in predicting DDIs [13–15]. Molecular 
graph-based methods have especially attracted interest for their ability to adapt to new 
drugs without relying on external knowledge [16–18]. These methods represent drug 
molecules using undirected graphs where atoms and chemical bonds are represented as 
nodes and edges respectively. Subsequently, a variety of graph neural networks (GNNs) 
are utilized for molecular representation learning and DDI prediction [19–21].

Given that drugs comprise various functional groups or substructures that determine 
their pharmacodynamics and pharmacokinetic properties and ultimately influence their 
interactions [22, 23], substructure-based methods have been successively proposed [24–
27]. Yang et al. [24] introduced a substructure-aware network SA-DDI to capture size-
adaptive and shape-adaptive substructures. Nyamabo et al.  [25] explicitly decomposed 
DDI prediction into substructure-substructure interactions prediction and employed a 
gated message passing network to learn substructures of different sizes and shapes. Li 
et al.  [26] proposed a dual-view representation learning framework DSN-DDI to learn 
substructures through intra-molecular and inter-molecular views. Ning et al.  [27] fur-
ther developed the framework with a bilinear representation extraction layer. However, 
there exist differences between the substructures identified by models and those known 
in medicinal chemistry and the differences require supplementary manual interpreta-
tion. In essence, current methods suffer from insufficient interpretability of identified 
substructures.

In addition to data-driven methods, molecule decomposition based on chemical 
rules has been gradually attracting attention [28, 29]. For instance, Zang et al. [29] pre-
sented HiMol which employed the BRICS algorithm [30] and additional chemical rules 
to decompose molecules. Furthermore, it learned molecular representation using novel 
hierarchical molecular graphs and achieved superior performance in molecular property 
prediction. Fan et al. [31] proposed PMSE-DDI that utilizes the BRICS algorithm to frag-
ment drug molecules into chemical substructures and encodes them to predict DDIs. 
Notably, the substructures employed in PMSE-DDI adhere to chemical rules without 
the need for additional manual explanation. However, chemical substructures within the 
same molecule are isolated from each other, which prevents them from accessing both 
local and global information about the molecule.

To address the limitations of existing methods such as the insufficient interpretability 
of identified substructures and the isolation of chemical substructures, we introduced 
a novel framework named HDN-DDI. This framework utilizes hierarchical molecular 
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graphs and enhanced dual-view representation learning method for DDI prediction. The 
main innovations of this framework are as follows:

•	 An explainable substructure extraction module that decomposes drug molecules 
using an interpretable chemical decomposition algorithm, which fundamentally 
enhances the interpretability of substructures.

•	 A novel way for molecular representation learning, which fully integrates hierarchi-
cal structure and the information from real chemical substructures in the molecules.

•	 An enhanced dual-view representation learning method that focuses on key sub-
structures, which aligns more with the actual process of DDIs and effectively improve 
the model’s performance.

The experimental results on two widely-used datasets demonstrate that HDN-DDI out-
performs existing models in both warm-start and cold-start settings. In the warm-start 
setting, HDN-DDI achieves an accuracy of 97.93% and an AUPR of 99.72% on the Drug-
Bank dataset along with an accuracy of 99.38% and an AUPR of 99.97% on the Twosides 
dataset. In the cold-start setting, HDN-DDI achieves accuracies of 79.84% and 89.43% 
on two partitions, showcasing significant improvements of 4.96% and 4.08% respectively. 
Moreover, HDN-DDI also has significant improvements in other metrics including 
AUROC, AUPR and F1 score. These results collectively indicate the ability of HDN-DDI 
to generate more precise DDI predictions. Additionally, HDN-DDI’s recognition accu-
racy surpasses that of the current state-of-the-art by 5.79% in real-world applications, 
further validating its effectiveness in predicting DDIs involving novel drugs.

Method
This section begins by formally defining the problem to be solved. Subsequently, it intro-
duces each module within the framework including the input, the substructure extrac-
tion module, the HDN Encoder and the HDN Decoder. Finally, it illustrates the loss 
function employed in the framework.

Problem definition

Given a set of drugs D and a set of interaction types R , the DDI prediction can be for-
malized as a function: f : D ×R×D → [0, 1] . Herein, 1 means that the tuple (Dx, r,Dy) 
is valid which signifies the presence of an interaction r between the drugs Dx and Dy 
while 0 indicates the absence of such a tuple. The primary objective of this paper is to 
find an approximation function for f and predict the existence of the corresponding 
tuple given two drugs and an interaction type.

Input

The chemical structure of a drug molecule is initially represented by an undirected 
graph G = (V ,E) where V is the set of all nodes representing atoms in the molecule 
and E ⊂ V × V  is the set of all edges representing the chemical bonds between atoms. 
Each node in the graph has an original 66-dimensional vector x ∈ R

66 for input and the 
detailed chemical meanings of nodes are provided in Additional file 1. Consistent with 
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previous studies[23, 24, 26], edges in the graph simply represent neighboring relation-
ships between nodes, enabling information to flow between them.

Overview of HDN‑DDI

HDN-DDI initially decomposes drug molecules using an explainable substructure 
extraction module and then obtains representations of drugs at varying depths through 
the HDN Encoder. Finally, it aggregates the layer-wise representations of drugs and pre-
dicts DDIs using the HDN Decoder. The overall framework of HDN-DDI is illustrated in 
Fig. 1A.

Specifically, given the molecular graphs of drugs Dx and Dy , HDN-DDI decomposes 
them into several chemical substructures using the refined BRICS algorithm [29] and 
transforms the original molecular graphs into atomic-substructure-molecular hierarchi-
cal molecular graphs Gx and Gy . The HDN Encoder composed of several HDN Blocks 
accepts the hierarchical molecular graphs of both drugs as input. As depicted in Fig. 1B, 
each HDN Block learns the hierarchical representation from respective molecules and 
the interaction representation from both molecules and updates the hierarchical molec-
ular graphs using the Graph Attention Network (GAT) [32]. The updated representa-
tion of molecular-level nodes is taken as the global molecular representations. The HDN 

Fig. 1  The general sketch of HDN-DDI. A The overall framework of HDN-DDI. B The learning process of the 
HDN Block
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Decoder employs a co-attention mechanism to integrate drug representations of differ-
ent depths and makes the final DDI prediction.

Substructure extraction module

In the substructure extraction module, we utilize the refined BRICS algorithm[29] 
to decompose drug molecules and represent them using novel hierarchical molecular 
graphs. The processing flow of the module is illustrated in Fig. 2. Given a drug’s SMILES 
(Simplified Molecular Input Line Entry System) sequence, we convert it into a molecular 
graph using RDKit [33] and apply the BRICS algorithm [30] to preliminarily decompose 
the graph into fragments. Any large ring fragments that cannot be decomposed by the 
BRICS algorithm are further partitioned into several smaller ring fragments based on 
additional rules [29]. As a result, we decompose an entire drug molecule into several 
chemical substructures that reveal the drug’s properties as depicted in Fig. 2A.

Following the method proposed by Zang et  al.  [29], we construct the hierarchical 
molecular graph from the original graph based on the decomposition results, as illus-
trated in Fig. 2B. Initially, for each chemical substructure identified in the decomposition, 
we introduce a corresponding substructure-level node into the original graph which ini-
tially contains only atomic-level nodes. We then establish bidirectional edges between 
the substructure-level nodes and the atomic-level nodes based on the inclusion relation-
ships between the corresponding substructures and their constituent atoms. For example, 
if a substructure Si includes an atom Aj , a bidirectional edge vSi ↔ vAj will be established 
between the substructure-level node vSi and the atomic-level node vAj . This process is 
repeated for all relevant substructure-level and atomic-level nodes, as shown in the middle 

Fig. 2  The flowchart of the substructure extraction module in HDN-DDI. A The procedure of drug molecule 
decomposition. B The process for constructing a hierarchical molecular graph
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part of Fig. 2B. This approach explicitly records the relationships between atoms and sub-
structures, allowing for the integration of structural information for subsequent molecular 
encoding.

Furthermore, we introduce a molecular-level node vM and establish bidirectional edges 
between this node and all substructure-level nodes. Specifically, for each substructure-level 
node vSi , a bidirectional edge vM ↔ vSi will be added, facilitating both the aggregation of 
local information and the dissemination of global information.

Ultimately, we construct a hierarchical molecular graph that includes all atomic-level 
nodes, which represent individual atoms; all substructure-level nodes, which correspond to 
the decomposed chemical substructures; and a molecular-level node, which represents the 
entire molecule. Additionally, the hierarchical molecular graph retains the original edges 
between atomic-level nodes, representing chemical bonds, along with all added bidirec-
tional edges, which reflect relationships across different levels. In accordance with the origi-
nal method [29], there are no edges between substructure-level nodes within a molecule.

In hierarchical molecular graphs, nodes at different levels can perceive information from 
other levels. Specifically, atomic-level nodes gather local information while molecular-level 
nodes aggregate global information. Furthermore, the substructure-level nodes learn the 
information of functional groups or substructures. Additionally, the atomic-level nodes can 
acquire information about the entire molecule and the molecular-level nodes can integrate 
and summarize all atomic information. Throughout this process, the substructure-level 
nodes play a pivotal role in facilitating the transmission of information between atomic-
level nodes and molecular-level nodes.

HDN encoder

As depicted in Fig. 1B, the HDN Encoder comprises a series of HDN Blocks and each HDN 
Block consists of a hierarchical-view layer for individual drugs, an interactive-view layer for 
drug pairs and an update layer for information aggregation. Within both the hierarchical-
view layer and the update layer, nodes can aggregate information from all their neighboring 
nodes, regardless of their levels. For instance, an atomic-level node can gather substructure 
information from neighboring substructure-level nodes while concurrently aggregating 
data from adjacent atomic-level nodes. Ultimately, a single-layer GAT is utilized to facilitate 
message transmission. The representation h(l+1)

i  of the node i at the (l + 1)-th block is cal-
culated as illustrated from Equation (1) to Equation (3).

where W (l+1) ∈ R
d(l+1)×d(l) and a(l+1) ∈ R

d(l+1) represent the trainable weights of the 
GAT in (l + 1)-th block and b(l+1) ∈ R

d(l+1) denotes the trainable bias. T signifies 

(1)h
(l+1)
i =σ


 �

j∈Ni∪{i}

αijW
(l+1)h

(l)
j + b(l+1)




(2)αij =
exp

(
LeakyReLU(eij)

)
∑

k∈Ni∪{i}
exp

(
LeakyReLU(eik)

)

(3)eij =a(l+1)T
[
W (l+1)h

(l)
i �W (l+1)h

(l)
j

]



Page 7 of 20Sun and Zheng ﻿BMC Bioinformatics           (2025) 26:28 	

transpose operation. LeakyReLU(·) [34] and sigmoid function σ(·) are the activation 
functions. d(l) and d(l+1) are the input and output feature dimensions of the layer in 
(l + 1)-th block respectively. Ni represents the set of all neighbors of the node i. h(l)j  
denotes the representation of the node j at the l-th block and αij denotes the attention 
coefficient between the nodes i and j.

In the interactive-view layer, the bipartite graph G̃ = V
(x)
s × V

(y)
s  serves as the input 

where V (x)
s  and V (y)

s  represent the sets of substructure-level nodes in the hierarchical 
molecular graphs Gx and Gy respectively. Like the hierarchical-view layer, the interac-
tive-view layer captures information from interactions between substructures using 
a single-layer GAT. Notably, the rationale for applying GAT in both layers is well-
supported by previous studies [26, 27]. Although the GATs in these layers follow simi-
lar computational steps, they employ different weights, allowing each layer to capture 
distinct structural and interaction-specific characteristics.

Given that DDIs typically arise from a limited number of key substructures [23, 25], 
connections within the bipartite graph are randomly dropped during the encoding 
process. The computation steps for acquiring interaction representation h̃(l+1)

i  of the 
node i at the (l + 1)-th block are detailed from Equation (4) to Equation (6).

where W̃ (l+1) ∈ R
d(l+1)×d(l) and ã(l+1) ∈ R

d(l+1) represent the trainable weights of the 
GAT in the (l + 1)-th block while b̃(l+1) ∈ R

d(l+1) denotes the trainable bias. Ñi refers to 
the set of neighboring nodes of the node i in the bipartite graph after random connec-
tion pruning. Specifically, if the substructure-level node i is from the drug Dx , Ñi repre-
sents a subset of substructure-level nodes from the drug Dy and vice versa. βij denotes 
the attention coefficient between the nodes i and j.

Unlike existing methods that consider all atomic nodes in the molecules [26, 27], 
HDN-DDI constructs bipartite graphs exclusively comprising substructure-level 
nodes. This novel approach prioritizes interaction information between substruc-
tures while filtering out noise from atomic-level nodes. Moreover, strategically 
dropping connections enables substructure-level nodes to capture diverse scopes 
of interest, which effectively prevents the homogenization of node representations 
during encoding. Furthermore, it broadens the scope of interest of identical nodes 
across different depths, which significantly enhances the effectiveness of deep net-
works. Consequently, this refined methodology yields an improved dual-view learn-
ing framework that aligns with the underlying mechanisms of DDIs and enhances the 
model’s capability to identify key chemical substructures.
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To maintain consistency in the representation dimensions of nodes, a nonlinear transfor-
mation is applied to all atomic-level and molecular-level nodes as illustrated in Eq. (7). It’s 
worth noting that this transformation shares the same weight with the GAT in the interac-
tive-view layer.

where h̃(l+1)
k  is the interaction representation of the node k.

Given the hierarchical representation h(l+1)
i  and interaction representation h̃(l+1)

i  of the 
node i, the update layer aggregates them through a nonlinear layer as shown in Equation 
(8). Subsequently, it updates the entire graph through a single-layer GAT. The updated rep-
resentations of all nodes serve as the inputs for the next HDN Block.

where ELU(·) is a nonlinear activation function.
As described in Sect. 2.4, the molecular-level nodes are capable to aggregate information 

from all substructure-level nodes during encoding. Consequently, the hierarchical molecu-
lar graphs can directly obtain global molecular representations through these molecular-
level nodes as illustrated in Equation (9).

where h(l+1)
x_mol and h(l+1)

y_mol are the respective representations of molecular-level nodes 
within the hierarchical molecular graphs Gx and Gy . Additionally, g (l+1)

x  and g (l+1)
y  denote 

the global representations of the drugs Dx and Dy in the (l + 1)-th block. Compared to 
traditional graphs, hierarchical molecular graphs eliminate the need for additional pool-
ing operations which effectively reduces computational costs.

HDN decoder

By iteratively learning with the HDN Blocks, the HDN Encoder effectively acquires multi-
depth molecular representations that incorporate both hierarchical structure and inter-
action information of drugs. Subsequently, the HDN Decoder employs a co-attention 
mechanism [23, 26] to condense these representations. Specifically, the HDN Decoder ini-
tially assesses the layer-wise association strength between the global representations of two 
drugs across various depths as depicted in Eq. (10). It then learns the embedding represen-
tations of different interaction types and calculates the interaction scores between the two 
drugs at different depths. Finally, it combines the association matrix and the global repre-
sentations at varying depths through point-wise multiplications to compute the DDI prob-
ability, as illustrated in Eq. (11).

(7)h̃
(l+1)
k = σ
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)

(8)h
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where Mr ∈ R
d×d represents the embedding matrix of the interaction r. Moreover, 

α ∈ R
d is a learnable weight vector and Wx,Wy ∈ R

d×d denote learnable weight matri-
ces. L is the number of the HDN Blocks while d is the dimension of molecular represen-
tation. g (l)x , g

(l)
y ∈ R

d denote the global representations of the drugs Dx and Dy in the l-th 
block respectively. σ is the sigmoid function and s

(
Dx, r,Dy

)
 stands for the probability of 

the interaction r occurring between the drugs Dx and Dy.

Loss function

As mentioned in Sect. 2.1, DDI prediction aims to predict whether the tuple (Dx, r,Dy) 
exists or not so it can be regarded as a binary classification problem. Since there are only 
positive samples in the dataset, we generate negative samples by replacing drugs [23, 26]. 
Specifically, a negative sample (Dx, r,D

′
y) or (D′

x, r,Dy) is generated from a positive sam-
ple t = (Dx, r,Dy) by replacing Dx with D′

x or Dy with D′
y . Note that there are no existing 

records of interactions between D′
x and Dy as well as Dx and D′

y before generation. After 
generation, there is an equal number of positive and negative samples in the dataset. 
Finally, the model is trained end-to-end with a binary cross-entropy as shown in Equa-
tion (12).

where pt is the existence probability of the tuple t which equals to s
(
Dx, r,Dy

)
 in Equa-

tion (11) and T  denotes the set of both positive and negative samples.

Results
Datasets

We conducted experiments on two widely-used datasets: DrugBank [35] and Twosides 
[36]. DrugBank comprises 1,706 drugs with 86 types of interactions, yielding 191,808 
positive DDI instances. Twosides is derived by Zitnik et al. [36] from the original dataset 
[37] and it includes 645 drugs with 963 types of interactions and 4,576,287 positive DDI 
instances. Both datasets lack negative DDI instances and to our knowledge there is cur-
rently no other database containing negative ones [17, 18], hence we generated negative 
samples in the same manner as in previous researches [25–27].

In addition to the size of the dataset, the two datasets differ in the meaning and num-
ber of drug-drug interaction types. DrugBank contains a single interaction between 
two drugs that describes how one drug affects the metabolism of another. For example, 
#Drug1 may increase the sedative activities of #Drug2 [35]. In contrast, Twosides has 
multiple interactions between two drugs that describe potential side effects. For exam-
ple, the co-administration of #Drug1 and #Drug2 may result in headaches and fever [25]. 
Therefore, the two datasets could not be merged and were used separately for evaluation.

Finally, we conducted evaluations in two settings: warm-start and cold-start. In the 
warm-start setting, a drug might appear in both the training and testing sets and the 

(11)s
(
Dx, r,Dy

)
=σ
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l=1
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(l)
x Mrg

(l′)
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split ratio for training, validation and testing in DrugBank and Twosides was 6:2:2. In 
the cold-start setting, each drug would be exclusively assigned to either the training or 
testing set so that there was no overlap between drugs in the two sets. Following previ-
ous works [23–27], we used only the DrugBank dataset in the cold-start setting due to 
its larger number of drugs, totaling 1706. Additionally, we randomly selected 20% of the 
drugs as unseen for testing and another 5% for validation. Both the warm-start and cold-
start settings employ split ratios that align with those found in existing studies [25–27].

The scale of positive samples in the datasets is detailed in the Table 1. In the cold-start 
setting, the evaluation was conducted in three times and the testing sets were further 
split into S1 and S2 partitions, which will be introduced in Sect. 3.6. It’s worth notable 
that the final sample size used for evaluation is twice the number of positive samples, 
as the number of generated negative samples is equal to the number of original positive 
samples.

Parameters

As shown in Fig. 1, HDN-DDI consists of the HDN Encoder and the HDN Decoder with 
the former comprising multiple HDN Blocks. Each HDN Block contains a hierarchical-
view layer, an interactive-view layer and an update layer and all of layers employ a multi-
head GAT for message transmission. The optimal hyperparameters are determined 
through random search on the validation set and the search space is detailed in Addi-
tional file 2. Specifically, HDN-DDI contains six HDN Blocks. In each block, both the 
hierarchical-view and interactive-view layers produce a 64-dimensional representation 
while the update layer generates a 128-dimensional representation. All GATs in HDN-
DDI utilize two attention heads. Additionally, the batch size used during model training 
is 512 and the learning rate is set to 0.001.

Evaluation metrics

Due to a single evaluation metric is often insufficient to effectively and comprehensively 
reflect the performance of the models [17, 38, 39], we evaluated HDN-DDI and baselines 
with four metrics which are widely-used in previous studies [23–27]. These metrics are 
listed as follows:

•	 Accuracy (ACC): it’s the proportion of correct predictions in all predictions.

Table 1  The scale of positive samples in the warm-start and cold-start setting

The symbol “–” indicates that there were no S1 and S2 partitions in the warm-start setting

Setting Warm-start setting Cold-start setting

Dataset DrugBank Twosides DrugBank Fold 0 DrugBank Fold 1 DrugBank Fold 2

Training set 115,085 2,745,772 108,396 114,617 110,094

Validation set 38,361 915,257 15,388 11,733 15,217

Testing set 38,362 915,258 68,024 65,458 66,497

   - S1 partition – – 7,369 6,719 6,935

   - S2 partition – – 60,655 58,739 59,562

Total 191,808 4,576,287 191,808 191,808 191,808
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•	 Area under the receiver operating characteristic curve (AUROC): it equals to the 
probability that the model scores a randomly selected positive example higher than a 
randomly selected negative one [26].

•	 Area under the precision-recall curve (AUPR): it reflects the model’s ability to main-
tain high precision and high recall. In the case where positive samples are more 
important, AUPR is a more suitable metric [39, 40].

•	 F1 score (F1): it’s the harmonic mean of precision and recall. This metrics also intui-
tively reflects the model’s prediction reliability for positive samples [41].

In this work, the original datasets contain only positive samples while negative sam-
ples are generated through replacing drugs hence we focused on the model’s prediction 
of positive samples. Furthermore, the DDI predictions is regarded a binary classifying 
problem and both AUPR and F1 score can reflect the model’s performance on positive 
samples, so we focused more on these two metrics.

Baselines

We compared HDN-DDI with the current state-of-the-art in both warm-start and cold-
start settings and the baselines include both substructure-based algorithms and dual-
view representation learning algorithms:

•	 MHCADDI [20]: utilizes a co-attention mechanism to integrate the joint informa-
tion of drug pairs into the representation learning for individual drugs.

•	 SSI-DDI [23]: employs a multi-layer GAT to extract substructures and calculates the 
probability of interactions between substructures to predict DDIs.

•	 SA-DDI [24]: employs a substructure-aware GNN to capture size-adaptive substruc-
tures and predicts DDI through a novel substructure attention mechanism.

•	 GMPNN-CS [25]: learns the substructure information across various scales and 
models the interactions between substructures for DDI prediction.

•	 DSN-DDI [26]: employs local and global representation learning modules iteratively 
and learns substructures from respective drugs and drug pair simultaneously.

•	 BDN-DDI [27]: captures pairwise atomic interactions through an interactive GNN 
and learns substructures through dual-view representation learning.

Results in warm‑start setting

In the warm-start setting, there is an overlap between drugs in the training and testing 
sets. Additionally, we conducted three runs and reported the average as the final per-
formance. In each run, the dataset was randomly stratified to split training, validation 
and testing sets with an equal ratio of interaction types. For a fair comparison, negative 
samples were generated and datasets were split before training so that all models were 
trained and tested on the same data.

The average performance of all models over the three runs is shown in Table 2. It can 
be observed that HDN-DDI outperformed all baselines on both DrugBank and Twosides 
across all evaluation metrics. While the current state-of-the-art has achieved impres-
sive accuracies of 96.94% and 99.07% on these two datasets, HDN-DDI surpassed them 
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with even higher accuracies of 97.93% on DrugBank and 99.38% on Twosides. Moreover, 
HDN-DDI achieved a superior AUPR of 99.72% on DrugBank and 99.97% on Twosides, 
underscoring its outstanding predictive ability for positive samples. These results dem-
onstrate that HDN-DDI excels in predicting DDIs involving existing drugs with remark-
able metrics.

Results in cold‑start setting

In the cold-start setting, there is no overlap between the drugs in the training and testing 
sets. In other words, the training and testing sets are partitioned by drugs. The cold-start 
setting can be used to evaluate the models’ ability to identify DDIs involving previously 
unseen drugs. Since the models lack prior structural information about the drugs in the 
testing set, predicting DDIs in this setting becomes more challenging and it requires 
models to have better generalization capabilities [26, 42]. Formally, let G denote the set 
of all drugs, Gnew represent the set of new drugs and Gold denote the set of drugs used 
for training. Evidently, Gnew ∪ Gold = G and Gnew ∩ Gold = ∅ . In the cold-start setting, the 
dataset is partitioned into the following parts:

where Dtrain_val is the set which contains tuples only involving seen drugs while Ds1 and 
Ds2 are testing sets that include tuples consisting of at least one new drug. Moreover, the 
training and validation set will be split from Dtrain_val in the same way.

Finally, we repeated three times and reported the average performance. In each run, 
we randomly sampled 20% drugs as new drugs to construct different testing sets across 
three runs. Notably, negative sample generation on the training and testing sets was con-
ducted based on their own contained drugs so that the generated samples align with the 
condition of the cold-start setting. Both drug selection and negative sample generation 
were conducted before training to ensure that all models shared the same training, vali-
dation and testing sets.

Dtrain_val = {
(
Dx, r,Dy

)
|Dx ∈ Gold ∧ Dy ∈ Gold}

Ds1 = {
(
Dx, r,Dy

)
|Dx ∈ Gnew ∧ Dy ∈ Gnew}

Ds2 = {
(
Dx, r,Dy

)
|Dx ∈ Gnew ∧ Dy ∈ Gold}

∪ {
(
Dx, r,Dy

)
|Dx ∈ Gold ∧ Dy ∈ Gnew}

Table 2  The performance of HDN-DDI and baselines on two datasets in the warm-start setting (%)

The highest value in each column is shown in bold

Model DrugBank Twosides

ACC​ AUROC AUPR F1 ACC​ AUROC AUPR F1

MHCADDI 83.80 91.16 89.26 85.06 – 88.20 – –

SSI-DDI 96.33 98.95 98.57 96.38 78.20 85.85 82.71 79.81

GMPNN-CS 95.30 98.46 97.94 95.39 82.83 90.07 87.24 84.08

SA-DDI 96.23 98.80 98.36 96.29 87.45 93.17 90.57 88.35

DSN-DDI 96.94 99.47 99.37 96.93 98.83 99.90 99.89 98.83

BDN-DDI 96.33 99.34 99.28 94.40 99.07 99.92 99.90 99.07

HDN-DDI 97.93 99.73 99.72 98.03 99.38 99.97 99.97 99.38
Improvement 0.99 0.26 0.35 1.10 0.31 0.05 0.07 0.31
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The average performance of all models over three runs is presented in Table  3 and 
it can be observed that the cold-start setting significantly impacted the performance of 
all models. However, HDN-DDI consistently outperformed the baseline models with 
remarkable enhancements. Compared with the current state-of-the-art, the accuracy 
of HDN-DDI improved by 4.96% on Ds1 and 4.08% on Ds2 and its F1 score enhanced 
by 7.08% on Ds1 and 5% on Ds2 . Although the F1 score of the BDN-DDI’s wo_bilinear 
variant reached 71.30% [27], HDN-DDI still led with a 6.12% advantage. Moreover, the 
AUROC and AUPR of HDN-DDI also demonstrated improvement varying 2.24% to 
3.81%. These results suggested that HDN-DDI can predict DDIs involving new drugs 
with greater accuracy. Although the negative samples in the datasets are artificially gen-
erated, HDN-DDI was still able to learn well and showed greater predictive ability for 
original positive samples. In conclusion, HDN-DDI has achieved the state-of-the-art 
performance in both the warm-start and cold-start settings.

Ablation study

To further explore the contribution of each module in HDN-DDI, we conducted an abla-
tion study in the cold-start setting which better distinguished the performance of mod-
els. The variants utilized in this study are as follows:

•	 wo-SEM: a model that omits the substructure extraction module and learns only 
from traditional molecular graphs, thus validating the effectiveness of the module in 
molecular representation learning and DDI prediction.

•	 wo-EDV: a model that replaces the enhanced dual-view representation learning 
method with the initial method [26], to confirm the superior capability of the former 
in capturing interaction information.

•	 with-pool: a model that acquires global representations through a simple sum func-
tion without distinguishing the contribution of substructures, to underscore the sig-
nificance of capturing key substructures in molecules.

•	 with-SAG: a model that generates global representations through the widely-used 
method SAGPooling [43] rather than from the molecular-level nodes, thus verifying 
the latter’s effectiveness in global representation learning.

Table 3  The performance of HDN-DDI and baselines on DrugBank in the cold-start setting (%)

The highest value in each column is shown in bold

Model Ds1 (new drug ↔ new drug) Ds2 (new drug ↔ old drug)

ACC​ AUROC AUPR F1 ACC​ AUROC AUPR F1

MHCADDI 66.50 72.53 71.06 67.21 70.58 77.84 76.16 72.74

SSI-DDI 65.40 73.43 75.03 54.12 76.38 84.23 84.94 73.54

GMPNN-CS 68.57 74.96 75.44 65.32 77.72 84.84 84.87 78.29

SA-DDI 67.15 73.62 73.39 63.40 75.55 82.95 84.11 71.94

DSN-DDI 73.42 81.79 81.82 70.34 81.92 91.01 91.09 80.18

BDN-DDI 74.88 86.10 85.84 70.21 85.35 93.68 93.64 84.34

HDN-DDI 79.84 89.48 89.65 77.42 89.43 95.92 95.95 89.34
Improvement 4.96 3.38 3.81 7.08 4.08 2.24 2.31 5.00
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As shown in Table  4, HDN-DDI has surpassed all its variants, which highlights the 
importance of each module for improving model performance. A detailed analysis of the 
ablation experiment results reveals the following insights:

(1) The substructure extraction module plays a crucial role in HDN-DDI, because 
there was a significant performance drop in wo-SEM while the variants retaining this 
module outperformed all baselines. This underscores the effectiveness of the module in 
enhancing drug molecular representation learning by integrating information form real 
chemical substructure and hierarchical structure in molecules.

(2) The enhanced dual-view learning method proposed in this work exhibited supe-
rior efficacy in encoding drug pairs than the initial method[26], which yielded accuracy 
enhancements of 3.69% and 4.45% on two partitions. This highlights the effectiveness of 
the enhanced method in improving dual-view representation learning.

(3) The method of extracting global representation from molecular-level nodes sur-
passed pooling methods such as sum pooling and SAGPooling while reduced computa-
tional costs. This finding further substantiates the superiority of hierarchical molecular 
graphs in molecular representation learning.

In summary, the ablation study underscores that modules within HDN-DDI such as 
hierarchical molecular graphs and the enhanced dual-view representation learning 
method significantly improve the model’s learning capabilities.

Real‑world applications

To evaluate the effectiveness of HDN-DDI in real-world scenarios, we trained the model 
using existing drugs and predicted DDIs for new FDA-approved drugs [44]. For each 
drug molecule in DrugBank, we collected all FDA-approved drugs containing it as the 
active ingredient and identified the earliest approval date among these drugs as its own 
approval date. Subsequently, we categorized the drugs into two groups based on their 
approval dates: existing drugs (approved before 2015) and new drugs (approved in 2015 
or later). The former group comprised 1,585 drugs, while the latter consisted of 121 
drugs. Ultimately, the training dataset comprised 166,342 positive DDI tuples involving 
only existing drugs, while the test dataset comprised 25,466 positive DDI tuples involv-
ing at least one newly approved drug.

Since DSN-DDI [26] and BDN-DDI [27] have demonstrated superior performance 
among all baseline models, our study focused on comparing HDN-DDI with these two 

Table 4  The performance of HDN-DDI and its variants on DrugBank in the cold-start setting (%)

The highest value in each column is shown in bold.

Model Ds1 (new drug ↔ new drug) Ds2 (new drug ↔ old drug)

ACC​ AUROC AUPR F1 ACC​ AUROC AUPR F1

wo-SEM 69.96 77.23 77.62 66.83 78.01 85.80 85.79 78.15

wo-EDV 76.15 85.44 84.91 74.00 84.98 92.60 92.17 84.97

with-pool 78.56 87.56 87.33 76.89 87.18 94.42 94.22 87.24

with-SAG 78.20 88.05 88.15 75.41 87.67 94.71 94.70 87.60

HDN-DDI 79.84 89.48 89.65 77.42 89.43 95.92 95.95 89.34
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models. To ensure fairness, we evaluated DSN-DDI and its variant with six encoding 
blocks, which aligned with the structure of HDN-DDI and BDN-DDI that comprised 
six encoding blocks. Hyperparameters for all models were initialized according to the 
default values specified in their respective original papers. The results presented in Addi-
tional file 3 underscore HDN-DDI’s significant superiority across all evaluation metrics, 
with notable enhancements of 5.86% in accuracy, 4.62% in AUPR and 6.09% in F1 score. 
Moreover, as shown in Fig.  3, the area under the curves (i.e. AUROC and AUPR) of 
HDN-DDI substantially surpassed those of the other models. This observation remains 
consistent in the cold-start setting and it highlights HDN-DDI’s robust generalization 
capability and promising applicability in real-world scenarios.

Case study

To verify the rationality of HDN-DDI for distinguishing key substructures, we con-
ducted visualizations of the prediction cases as shown in Fig. 4. Within each HDN Block, 
the GAT in the update layer calculates and outputs the contribution of each substructure 
in the molecules. For HDN-DDI with multiple HDN Blocks, we averaged the contribu-
tion output of each block to obtain an average contribution value for each substructure. 
Subsequently, we selected the substructures with the top 40% contribution value as the 
extracted key substructures and analyzed these cases from the perspective of drugs’ 
characteristics and interaction mechanisms:

(1) Amyl Nitrite and Vardenafil. The former is an organic nitrate commonly used to 
alleviate angina pectoris and the latter is a Phosphodiesterase-5 inhibitor employed for 
erectile dysfunction treatment. Both drugs have antihypertensive effects and their con-
current usage can precipitate a swift reduction in blood pressure [35, 45]. Specifically, 
Vardenafil serves as a substrate of P-glycoprotein (P-gp) while Amyl Nitrite is an inhibi-
tor of P-gp activity. Their co-administration enhances the bioavailability of Vardenafil 
which potentially amplifies its therapeutic efficacy [27, 45]. The efficacy of Amyl Nitrite 
predominantly hinges on its nitroso functional group while Vardenafil’s primary func-
tional groups include the pyridine ring and amide bond [27]. The same is true for Eryth-
rityl tetranitrate and Tadalafil [35]. As shown in (a) and (b) as well as (c) and (d) of Fig. 4, 
HDN-DDI accurately identified these crucial functional groups.

Fig. 3  The prediction curves of the HDN-DDI and baseline models for new FDA-approved drugs. A The 
receiver operating characteristic (ROC) curve of models on the testing set. B The precision-recall (PR) curve of 
models on the testing set. The AUC denotes area under the curve
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(2) Amobarbital and Dicoumarol. The former is a barbiturate derivative commonly 
used for hypnosis and sedation while the latter is an anticoagulant agent. Their co-
administration diminishes coagulation activity of Dicoumarol [35, 46]. Specifically, 
Amobarbital can enhance the activity of liver microsomal enzymes which expedites the 
metabolism of Dicoumarol and weakens its efficacy. A similar interaction is observed 
between Methylphenobarbital and Dicoumarol [46]. Barbituric acid emerges as the piv-
otal functional group among barbiturate derivatives while in Dicoumarol both the ben-
zene ring and the furan ring play crucial roles [26, 47]. As shown in (e) and (f ) as well 

Fig. 4  The visualization of HDN-DDI for five groups of DDI prediction cases. The substructures that contribute 
to the top 40% are highlighted. A darker shade indicates a greater contribution of the corresponding 
substructure
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as (g) and (h) in Fig. 4, HDN-DDI accurately these critical functional groups within the 
respective drugs.

(3) Cefadroxil and Picosulfuric acid. The former is a cephalosporin antibiotic utilized 
to treat bacterial infections with the cephalosporin β-lactam ring as the principal func-
tional group [48]. The latter is a colon-cleansing laxative characterized primarily by its 
sulfonic acid group [23]. The co-administration of these drugs results in a reduction in 
the efficacy of Picosulfuric acid [23, 35]. As depicted in (i) and (j) of Fig. 4, HDN-DDI 
accurately identified the β-lactam ring and the sulfonic acid group. These findings under-
score the capability of HDN-DDI to precisely pinpoint crucial substructures within drug 
molecules.

Discussion
Here, we propose an accurate and robust DDI prediction model, named HDN-DDI. 
Comprehensive experiments including warm-start and cold-start settings demonstrate 
that HDN-DDI exhibits superior prediction performance. Additionally, the ablation 
study further validates the importance of each module in HDN-DDI. By employing an 
explainable substructure extraction module to decompose drug molecules, HDN-DDI 
effectively harnesses information from real chemical substructures. By representing 
drug molecules with “atomic-substructure-molecular” hierarchical molecular graphs, 
HDN-DDI incorporates hierarchical structures that significantly enhance subsequent 
molecular representation learning. Furthermore, the enhanced dual-view representation 
learning focuses on interactions between chemical substructures rather than individual 
atoms, which reduces learning noise and helps the model identify chemical substruc-
tures that critically influence DDIs. As a result, HDN-DDI excels in predicting DDIs and 
demonstrates robust generalization ability for novel drugs.

While the HDN-DDI model shows promise, there are areas for improvement. First, 
some drug molecules may not undergo sufficient decomposition due to the constraints 
imposed by the current decomposition rules. Additionally, we observe that incorporat-
ing edge attributes leads to a decline in model performance, a trend also observed in 
DSN-DDI. We hypothesize that this is due to the initial GAT architecture not consider-
ing edge attributes during encoding. Effectively incorporating edge information requires 
a more complex network structure, which could increase the risk of over-fitting and 
reduce model performance. Moreover, the case study suggests that DDIs are also influ-
enced by drug metabolism, underscoring the importance of combining external knowl-
edge with chemical substructures for prediction.

Future research will focus on refining the decomposition rules and expanding the sub-
structure library to enhance the model’s ability to extract substructures from a broader 
range of drugs. Furthermore, incorporating external knowledge, utilizing edge attrib-
utes, and constructing more effective hierarchical molecular graphs will provide promis-
ing avenues for improvement.

Conclusion
In this study, we introduce a novel DDI prediction model that addresses challenges 
encountered in previous studies, such as the interpretability of identified substruc-
tures and the isolation of chemical substructures. HDN-DDI utilizes hierarchical 
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molecular graphs combined with an enhanced dual-view representation learning 
method, attaining state-of-the-art performance. Our experimental results on two 
widely-used datasets show that HDN-DDI achieves high accuracies of 97.93% and 
99.38% in the warm-start setting. Furthermore, HDN-DDI exhibits notable enhance-
ments with a 5% increase in accuracy and a 7% improvement in F1 score in the 
cold-start setting and real-world applications. These results highlight its superior 
generalization capability for previously unseen drugs, which is crucial for practical 
applications. With its integration of real chemical substructure information and its 
generalization ability for new drugs, HDN-DDI represents a significant advancement 
in DDI prediction.

In summary, by offering accurate predictions and robust generalization across vari-
ous scenarios, HDN-DDI provides a valuable tool for identifying potential DDIs, pro-
moting safer and more effective drug development and co-administration.
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