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Abstract 

Background: Alterations of metabolism, including changes in mitochondrial metabo‑
lism as well as glutathione (GSH) metabolism are a well appreciated hallmark of many 
cancers. Mitochondrial GSH (mGSH) transport is a poorly characterized aspect of GSH 
metabolism, which we investigate in the context of cancer. Existing functional annota‑
tion approaches from machine (ML) or deep learning (DL) models based only on pro‑
tein sequences, were unable to annotate functions in biological contexts.

Results: We develop a flexible ML framework for functional annotation from diverse 
feature data. This hybrid ML framework leverages cancer cell line multi‑omics 
data and other biological knowledge data as features, to uncover potential genes 
involved in mGSH metabolism and membrane transport in cancers. This framework 
achieves strong performance across functional annotation tasks and several cell line 
and primary tumor cancer samples. For our application, classification models predict 
the known mGSH transporter SLC25A39 but not SLC25A40 as being highly probably 
related to mGSH metabolism in cancers. SLC25A10, SLC25A50, and orphan SLC25A24, 
SLC25A43 are predicted to be associated with mGSH metabolism in multiple biological 
contexts and structural analysis of these proteins reveal similarities in potential sub‑
strate binding regions to the binding residues of SLC25A39.

Conclusion: These findings have implications for a better understanding of can‑
cer cell metabolism and novel therapeutic targets with respect to GSH metabolism 
through potential novel functional annotations of genes. The hybrid ML framework 
proposed here can be applied to other biological function classifications or multi‑
omics datasets to generate hypotheses in various biological contexts. Code and a tuto‑
rial for generating models and predictions in this framework are available at: https:// 
github. com/ lkenn 012/ mGSH_ cance rClas sifie rs.
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Background
Glutathione (GSH) is a highly abundant tripeptide antioxidant within cells, crucial 
for many biological processes with its major role in regulation of reactive oxygen spe-
cies (ROS). Metabolic changes are one of the hallmarks of cancer [1], with well docu-
mented alterations in GSH metabolism foremost among them. These alterations of 
metabolism appear to benefit cancer cells, aiding in tumor proliferation and survival, 
through not yet fully understood mechanisms and interactions [2]. Alterations of 
GSH metabolism are essential for tumor proliferation in several cancers [3, 4] either 
directly where they mitigate perturbations in redox homeostasis [5–7], or indirectly 
through ferroptosis [7] and metabolism of chemotherapeutics [7–9].

Central to the contributions of GSH in the metabolic characteristics of cancer 
cells is mitochondrial GSH (mGSH), which is found at millimolar concentrations in 
the organelle, at similar levels to those in the cytoplasm. Mitochondria are the pri-
mary source of ROS, largely as a byproduct of the oxidative phosphorylation system 
(OXPHOS), and alterations in redox balance and ROS signaling are central to the role 
of mitochondria in cancer cell proliferation [9]. Many GSH-utilizing enzymes with 
altered expression patterns in cancers are found in mitochondria, most notably glu-
tathione peroxidase 4 (GPX4) which is a major regulator of the ferroptosis pathway. 
Also important are mitochondrial glutathione enzymes such as glutathione S-trans-
ferase, which conjugates and detoxifies xenobiotics and the peroxiredoxins, which 
lower ROS via GSH and have also been shown to promote cancer cell survival [10].

The processes involved in the uptake of GSH into mitochondria are poorly under-
stood. While high concentrations of GSH are present in both mitochondria and the 
cytosol, the synthetic enzymes are exclusively within the cytosol [11]. SLC25A10 and 
SLC25A11, also known as the mitochondrial dicarboxylate and oxoglutarate carriers, 
respectively, were initially proposed as the proteins responsible for GSH transport 
into mitochondria over 25 years ago [12]. However, detailed functional experiments 
in lipid vesicle systems in 2014 convincingly showed that no GSH transport was 
mediated by these two proteins [13].

Recent evidence from two groups demonstrated mGSH transport roles for 
SLC25A39 and SLC25A40 [14, 15]. Specifically, Wang et al. [14] identified the trans-
porters through quantitative proteomics of mitochondria from GSH-depleted HeLa 
cells. In this work authors have shown that SLC25A39 and SLC25A40 provide essen-
tial and sufficient mGSH transport into mitochondria in HeLa cells. Subsequently, 
Shi et  al. [15] leveraged CRISPR screening of gene and environment interactions to 
demonstrate buffering interactions between SLC25A39 and the mitochondrial iron 
transporter SLC25A37, revealing SLC25A39 as a candidate and further supported 
by in vitro metabolomics and GSH transport experiments. The roles of these trans-
porters in neurodegenerative diseases and cancer have recently been explored [16]. 
However, it remains unclear if the remaining GSH import in SLC25A39 knockouts 
observed in these studies is facilitated by SLC25A40, which is expressed at roughly 
one tenth the level of SLC25A39, or if other transport mechanisms exist, such as 
those for other GSH species [17, 18]. Interactions affecting mGSH metabolism and 
transport, having secondary effects on transport may also be relevant and are even 
less well understood.
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With recent successes of AlphaFold [19] and RosettaFold [20] in the elucidation of 
protein structure, there is a promising future for computational biology in the related 
problem of protein function prediction. However, competitions such as Critical Assess-
ment of Functional Annotation [21] have not yet found a solution for de novo func-
tion prediction from sequence. General function annotation models like DeepGO and 
DeepGOPlus [22, 24] represent major advances for the field. Along with sequence-based 
methods, models that leverage non-sequence features for function annotation exist [23, 
26] as alternative approaches to sequence-based approaches. In addition to the general 
function prediction models, there are many sequence-based models designed for spe-
cific protein feature annotation such as protein–protein interactions [24] and antibody 
design [25].

Omics-based methods for functional annotation are limited. Recent work by Kunc and 
Kléma [26] utilize characteristics in co-expression networks constructed from genes to 
predict shared KEGG pathways between genes. Similarly, Wekesa et  al. [27] combine 
differential gene expression information and knowledge of protein–protein interac-
tions through a neighbor-voting algorithm for prediction of shared functions between 
yeast proteins. Finally, Wang et al. [28] predict gene–gene interactions by combining co-
expression features with prior biological knowledge features (e.g., subcellular localiza-
tion, homology, Reactome similarity).

The approaches of Wekesa et  al. and Wang et  al. can be classified as hybrid ML 
approaches, which aim to capture “the best of both worlds” by combining the predictive 
powers of data-driven approaches of ML with the interpretability of theory-based mod-
els such as mechanistic or knowledge-based models. These types of models have been 
applied to several domains, most notably in physics-informed ML models [29], and with 
respect to computational biology, hybrid modeling has been applied through diverse 
frameworks. Non-ML approaches have been used to uncover biological phenomena, 
which would otherwise be missed; a recent example integrates behavioral, transcrip-
tomic, and network modeling to reveal the role of brain mitochondria and organization 
in mouse behavior [30]. Alternatively, ML models have been integrated with mecha-
nistic models of metabolism to determine kinetic parameters and predict downstream 
metabolic effects [31]. P-net uses a neural network architecture based on biological 
knowledge of hierarchical gene-pathway-process interactions to predict prostate cancer 
discovery from gene features, such as methylation and copy number [32]. On the other 
hand, AlphaFold [19] incorporates evolutionary information through multiple sequence 
alignments and physical structural constraints to inform its protein structure predic-
tions. These hybrid models retain the predictive power of data-driven methods, often 
performing better than, or comparable to, standard data-driven models, while increasing 
the interpretability of predictions that are in-part based on biological knowledge. Perfor-
mance of hybrid models depends on specific application where increase in accuracy with 
hybrid models was explored in great detail in Mavaie et  al. [33], showing that hybrid 
approaches can provide a combination of strengths from different methodologies and 
improve performance.

With this, we sought to develop a ML framework that leverages multi-omics data 
from human cancer cells and existing knowledge to identify potential genes involved in 
mGSH transport and potential interacting metabolic processes. We developed several 
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ML classifier models that utilize cancer cell line encyclopedia (CCLE) [34, 35] transcrip-
tomics features to predict gene ontology (GO) annotations for genes of relevant GO 
terms. Specifically, three classifiers were developed for annotating to: glutathione meta-
bolic process (GO:0006749), mitochondrion (GO:0005739), and transmembrane trans-
porter activity (GO:0022857). Additionally, we developed hybrid models for this task 
which include prior knowledge as features through MitoCarta [36] scores for mitochon-
drial localization classification, TrSSP [37] scores for transporter classification, or CCLE 
GSH & glutathione disulfide (GSSG) metabolomics data for glutathione classification. 
We find that Random Forest (RF) classifiers perform the best from our models tested, 
with hybrid models outperforming strictly transcriptomics models.

Methods
All pre-processing, models and other computational work were conducted using in-
house code written in Python (Python Software Foundation. Python Language Refer-
ence, version 3.8. Available at www. python. org). All algorithms and methods used in ML 
model building and training were implemented via Python’s scikit-learn package [38] 
unless stated otherwise. Figures for evaluations of classifier models were produced via 
the matplotlib and seaborn libraries [39, 40]; GO enrichment plots were produced using 
ShinyGO 0.77 [41]; and all other images were created with BioRender.com.

Data collection & pre‑processing

Metabolomic & transcriptomic datasets

The Broad Institute’s Cancer Cell Line Encyclopedia (CCLE) provides multi-omics data 
across over 1000 human cancer cell lines (CCLs). Details of the data experimentation 
and validation are provided in the original publication [34, 42]. Transcriptomics data 
was preprocessed in the original work using RSEM quantification of transcripts per mil-
lion (TPM) method; metabolomics data was quantified using liquid chromatography 
mass spectrometry and preprocessed using standardized LC–MS peak batch correc-
tion and median normalization across metabolites and cell lines. CCLE transcriptomics, 
and metabolomics data were used in building our models [34, 42]. Raw transcriptomics 
(1019 cell lines) and metabolomics (225 metabolites, 928 cell line samples) data were 
downloaded from broadinstitute.org (available at the time of writing via depmap.org/
portal/download/).

Data were cleaned and imputed by removing all CCLs and transcripts/metabolites 
with > 30% missing values or standard deviation values of 0 across samples. The result-
ing dataset had 49,308 transcripts, and 225 metabolites presented across 878 samples 
coming from cancer cell lines derived from 23 tissues. Remaining missing values were 
imputed using the k-nearest neighbors (k-NN) imputation algorithm (using Euclid-
ean distance and k = 5, selected to minimize impact of the data structure on the miss-
ing data imputation [43]). For metabolomics features, pairwise Spearman correlations 
were generated across common CCLs between transcript levels in CCLE transcriptom-
ics data and metabolomics levels for each metabolite of interest (GSH, GSSG, 2-oxoglu-
tarate, glutamate, and carnitine). Non-significant correlations (p-value ≥ 0.05, Student’s 
t-test with 2 degrees of freedom) were set to 0. Spearman rho values were normalized by 
Fisher transformation [44].

http://www.python.org
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For comparison, transcriptomics data for The Cancer Genome Atlas (TCGA) [45] were 
also downloaded via the National Cancer Institute’s Genomic Data Commons (https:// 
gdc. cancer. gov/ about- data/ publi catio ns/ panca natlas), containing gene expression data 
for 20,531 genes from 11,069 primary tumor samples spanning 33 cancer types. Like the 
CCLE data, expression values are preprocessed using RSEM quantification of TPM val-
ues. Relevant TCGA samples were selected for use in classifiers via mapping of TCGA 
and CCLE samples over 22 common tumor types identified by Yu et  al. [46] via the 
“CCLE_meta.txt” file available at https:// github. com/ katha rineyu/ TCGA_ CCLE_ paper.

Feature space reduction while selecting major variances in transcriptomics was per-
formed using principal component analysis (PCA) on z-score normalized expression 
values. These principal components (PCs) were used as features in classifier models (fur-
ther described in “Model development and feature selection process”).

Knowledge‑based features

Mitochondrial localization scores for genes were based on MitoCarta 3.0 [36] (broad-
institute.org/mitocarta). MitoCarta scores are determined through manual curation 
following prediction by a Naïve-Bayes model which combines features from several 
independent domains from features used in our analysis, such as homology, sequence 
domain, and tandem mass spectrometry of purified mitochondria. CCLE genes were 
assigned MitoCarta scores according to these data, with 1 indicating mitochondrial 
localization, and 0 indicating non-mitochondrial localization. For genes that are not 
assigned scores in MitoCarta, a value of − 1 is assigned.

Transporter activity was based on TrSSP [37] values, obtained from Zhao lab web-
page (www. zhaol ab. org/ TrSSP). TrSSP utilizes support vector machine (SVM) models 
to predict membrane transport proteins and their substrate classes using primary pro-
tein sequence features along with position-specific scoring matrices to predict transport 
function and specificity. Like MitoCarta scores, TrSSP scores were incorporated into 
the model as classifications for positive, negative, or no prediction by TrSSP (1, 0, − 1, 
respectively).  For use as features in our classifiers, these knowledge-based categorical 
scores were transformed to two Boolean features using one-hot encoding. Final models 
use two vectors to represent the positive and negative classifications, the “no classifica-
tion” vector is redundant as it is inferred where both other classification vectors are 0.

mGSH transporter classifier models

Training and test gene sets selection

For each GO term classification task, classifier training and test genes were selected 
based on existing knowledge of gene functions. Gene ontology [47] terms were used 
to determine genes related to mGSH metabolism: glutathione metabolic process 
GO:0006749 (65 genes), mitochondrion GO:0005739 (1685 genes), transmembrane 
transporter activity GO:0022857 (1154 genes). These terms cover all classes of ontol-
ogy terms: biological process, cellular component, and molecular function, respectively. 
Annotated genes for each term were identified via AmiGO 2 [48] and those genes anno-
tated based on only low confidence computational or inferred evidence were removed. 
This left 40 genes for GO:0006749, 781 genes for GO:0005739, and 700 genes for 
GO:0022857 annotated based on experimental evidence to create the final list of positive 

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://github.com/katharineyu/TCGA_CCLE_paper
http://www.zhaolab.org/TrSSP
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class genes for the classifier models. We found that there is little overlap among these 
gene sets (Supp. Fig.  1a); primarily, common genes are found between mitochondrial 
and transmembrane transporter activity genes (72 genes), with 5 genes overlapping the 
mitochondrial and glutathione metabolic process sets and only one gene found in both 
transmembrane transporter activity and glutathione metabolic process genes. There 
are no genes annotated by all three GO terms. AmiGO annotations based on sequence 
similarities were retained along with the experimental AmiGO annotations used for the 
other GO annotations to generate the 40 genes used in the final positive gene set for 
glutathione metabolic process term. These annotations were retained due to the small 
number of genes annotated by experimental evidence for the GO term, thus creating a 
larger positive gene set for model training. bioDBnet [49] was used to link gene symbols 
from AmiGO to Ensembl gene IDs found in the CCLE transcriptomics data.

The negative classification gene set was generated by randomly sampling from genes 
that were not included in the positive set based on GO annotations. Genes were ran-
domly selected from the unannotated gene set (i.e. not positive genes) without replace-
ment until an equivalent number of genes to the positive samples were selected. This 
resulted in balanced positive and negative genes (samples) for model training and test-
ing. However, training a model through this process is biased by the specific set of 
randomly selected negative class genes in the training set. To ensure robustness of the 
models, 100 bootstrap iterations of random sampling were performed to create different 
sets of samples for model training. Final predictions and evaluations are average results 
over training and testing iterations on the 100 different data sets.

Model development and feature selection process

To determine the best methodology for our task, several common ML algorithms and 
feature sets were tested. Random Forest (RF), Decision Tree (DT), Naïve Bayes (NB), and 
Support Vector Machine (SVM) classifiers were trained and tested for our three inde-
pendent classification tasks of mitochondrial, transmembrane transporter activity, and 
GSH metabolic process GO terms (see Supp. Tables 1 & 2 for algorithm parameters). 
Models were tested with several sets of features that combine experimental features 
from CCLE data with knowledge-based features, or feature sets containing only experi-
mental features. Experimental feature sets include the first 5, 14, 30, or 50 CCLE tran-
scriptomics PCs which are selected to capture 93%, 95%, 97%, or 98% of the variance, 
respectively (Supp. Fig. 2a). For a set of PCs to be used as features, component values are 
used directly as features. For classifying the GSH metabolic process GO term, Spearman 
correlations values between gene transcriptomics and GSH or GSSG metabolomics were 
included as features as well. Features from existing biological knowledge were included 
through MitoCarta scores for mitochondrial localization in the mitochondrial classifica-
tion task, and TrSSP prediction scores for membrane transport proteins in the trans-
porter classification task.

For comparisons of feature sets in models, either metabolomics or knowledge features 
were replaced with additional PC features to create the transcriptomics-only models 
with an equivalent number of features (i.e., a mitochondrial classifier with the first 5 PCs 
and two MitoCarta score vectors as features is comparable to a transcriptomics-only 
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classifier using the first 7 PCs as features). This gave transcriptomics-only models with 7, 
16, 32, and 52 PC features.

Model evaluation

Model performance was analyzed from predicted class probabilities using common eval-
uation metrics including receiver operating characteristic (ROC) and precision-recall 
curves (PRC). These methods provide a balanced approach to evaluating classifier per-
formance, which considers the effects of true positives (TPs), true negative (TNs), false 
positives (FPs), and false negatives (FNs). Models were evaluated and selected based on 
values for the areas under ROC (AUROC) and PRC (AUPRC), precision, recall, accu-
racy, F1 score, and Matthew’s correlation coefficient (MCC) [50, 51]. These evaluation 
metrics were calculated across all test-set predictions from five-fold cross-validations of 
randomly sampled training/test sets. Reported metrics are calculated as average values 
across 100 iterations of training/testing using the different gene sets.

GEPIA gene expression analysis

For evaluation of gene expression in datasets other than the CCLE data used in classi-
fier models, paired TCGA [45] and GTEx [52] transcriptomics data were obtained via 
GEPIA2 [53]. This database includes 9736 tumor samples from TCGA and 8587 normal 
samples from GTEx. Data were obtained from the GEPIA2 webpage (http:// gepia2. can-
cer- pku. cn/).

Protein structural analysis

SLC25 structures Protein structures are obtained from the AlphaFold [19] structure 
database (alphafold.ebi.ac.uk) for use in structural analyses. Additionally, homology 
models from SWISS-MODEL [54] for both SLC25A39 and SLC25A40 are included in our 
analyses due to different conformational states of AlphaFold models for these proteins 
relative to the other SLC25 structure models. Homology based structures are modeled on 
the crystal structure of the bovine ADP/ATP carrier (PDB:OKC1) [55] and cryo-electron 
microscopy determined structure of human UCP1 (PDB:8HBV) [56] for SLC25A39 and 
SLC25A40, respectively.

Multiple sequence alignment Protein sequences for relevant SLC25 proteins were 
obtained from Uniprot, and multiple sequence alignment (MSA) was performed via the 
EMBL Clustal Omeg6 [57] web server (https:// www. ebi. ac. uk/ jdisp atcher/ msa/ clust alo) 
using default parameters. MSA result visualization and pairwise alignment were deter-
mined using Jalview (version 2.11.0) [58, 59].

Protein structure alignments Comparisons of 3D protein structures were conducted 
using sequence-independent alignment through the TM-align algorithm [60] and quan-
tified by the corresponding TM-scores, which quantifies similarities through similari-
ties in protein structure topology. This method performs comparably to other common 
alignment methods and does not consider sequence similarity for alignment, which could 
skew the alignments due to conserved sequences within the SLC25 family. Alignments 

http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
https://www.ebi.ac.uk/jdispatcher/msa/clustalo
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were implemented using the TMalign module for PyMOL [61] and predicted mGSH 
transporter structures were compared to known mGSH transporters (SLC25A39, A40).

The CAVER PyMOL plugin version 3.0.3 [62] was used to identify tunnel residues 
for each SLC25 structure. Tunnels were identified by initializing the tunneling at the 
base or innermost point of the transporters tunnel with maximum starting point dis-
tance and desired radius of 3Å for starting point optimization. From this base, the tun-
neling algorithm probed outward to generate an interior tunnel channel. CAVER default 
parameters were specified for the tunneling algorithm, using 12 approximating balls 
with minimum probe radius of 1.5Å, shell depth of 20Å, shell radius of 7Å (or 10Å for 
structures where a smaller radius fails to fill the tunnel space), and a clustering thresh-
old of 3.5. Default parameters were used for computation memory and speed, and were 
adjusted as described, if necessary, for finding transporter tunnels. Relevant tunnels 
were identified from the top-ranked tunnels identified by CAVER as those tunnels which 
traversed and filled the length of the proteins’ tunnel without escaping to the protein 
surface through a side gap or by “overflowing” the interior tunnel.

In the same fashion as the full structure alignments, analysis of the tunnel regions for 
the SLC25 family were performed by aligning the tunnel-interacting residues identified 
from CAVER using TM-align.

GSH and GSSG docking simulations Binding of GSH and GSSG to SLC25 protein struc-
tures were simulated in PyRx [63] (version 0.80). Metabolite structures were downloaded 
from the human metabolome database (HMDB) [64, 65]. For each protein structure, tun-
nel regions, as identified by CAVER, were estimated manually as boundaries for docking 
simulations. Exhaustiveness values of 8 were used for each docking simulation, reported 
binding affinities and displayed poses are the top-ranked position returned by PyRx.

Results
Classifier models for mGSH transporters in cancer

To identify top mGSH transporter candidates, three independent classifier models were 
developed to classify genes based on our desired candidate characteristics: mitochon-
drial localization, association with GSH metabolism, and transmembrane transport 
function (see Fig. 1a for overview and Methods for details). Genes classified by all three 
models to possess each characteristic are considered candidate mGSH transporters. 
Each model uses features from CCLE transcriptomics data along with one or more fea-
tures from other sources; GSH and GSSG metabolomics correlations for GSH metabolic 
process classification, MitoCarta scores for mitochondrial localization classification, and 
TrSSP scores for transmembrane transporter activity classification (Fig. 1b).

Our classifiers performed well in the tasks of mitochondrial, GSH, and transporter 
annotation classification across our evaluation metrics, as shown in Table 1. Across all 
models and feature selections, mean five-fold cross-validations shows AUROC is 0.820, 
and RF classifiers being the best performer with mean AUROC values of 0.900. Classifier 
performance varied across our three classifier types, with mitochondrial classifiers per-
forming the best and glutathione classifiers performing the worst, on average, which may 
be attributed to two factors. First, the set of annotated genes related to GSH metabolism 
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Fig. 1 Overview of mGSH transporter classifier model design and evaluation. a Schematic of the workflow 
for ML model development (inspired by designs by Fellows Yates et al. [66]). In this diagram, lines represent 
the flow of information from the initially collected raw data through several transformation steps to the 
processed model features, and then through the ML training, evaluation, and selection steps to obtain the 
final classification of our unknown genes. b Example feature vectors assigned to genes in this framework, 
where transcriptomic features are PCs and model‑specific features are MitoCarta scores, for example. Genes 
in train and test sets are assigned a binary classification based on GO term annotation, novel annotation 
classification can be applied to unknown genes. ROC curves are presented for mitochondrial (c), transporter 
(d) and glutathione (e) classifiers with various feature sets. Models which incorporate transcriptomics and 
other feature data (“hybrid”) are solid while transcriptomics‑only models are dashed. Differently shaded 
curves represent models with different numbers of PC features obtained from transcriptomics data (5–50 PCs 
for hybrid, comparable transcriptomics‑only models have 7–52 PCs)

Table 1 Average performance of classifiers in mGSH transporter classification

Scores are mean values across each classifier type using transcriptomics features combined with other feature sources 
(“hybrid”), or transcriptomics features alone (“transcriptomics-only”). Individual scores are calculated as averages across 
bootstrap iterations. The highest scoring model for each evaluation metric is bolded
* Low MCC values relative to other evaluation metrics due to low positive class accuracy

Algorithm Metric

Model AUROC AUPRC MCC

Decision tree Hybrid 0.7663 0.8270 0.5371

Transcriptomics‑only 0.6896 0.7692 0.3840

Naïve‑Bayes Hybrid 0.8553 0.8422 0.3517*

Transcriptomics‑only 0.7433 0.7334 0.2028*
Random forest Hybrid 0.9003 0.8941 0.6349

Transcriptomics‑only 0.8380 0.8156 0.5437
Support vector machine Hybrid 0.7614 0.7558 0.3487

Transcriptomics‑only 0.7130 0.7250 0.3125
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is much smaller than the gene sets for the other classifiers (~ 40 genes vs. ~ 700 genes), 
thus providing a smaller training set for these models. Additionally, the GSH term clas-
sifiers rely solely on CCLE multi-omics data unlike the other two classifiers which also 
include data from existing knowledge-sources.

Along with testing several ML algorithms in our classifiers, multiple feature sets were 
explored to determine the best selection for our task. Specifically, variations of the num-
ber of top PCs as linear combinations of transcriptomic features (described in Methods) 
from 5 to 50, were tested. Increasing the number of these features in our models did not 
notably improve performance by our metrics (Supp. Fig. 1b). Based on these results, a 
small number of the first several PCs are sufficient for effective classification. However, 
specific gene classification probabilities are variable across models with different num-
bers of PC features used. Since performance is similar across these models, rather than 
selecting a specific model, we used mean gene classification probabilities with standard 
error (SE) calculated from models with different numbers of PC features (5, 14, 30, 50) 
for final classification results.

Comparison of hybrid models and transcriptomics‑based models

Consistently across all tested models, classifiers that incorporate both experimental data 
from CCLE transcriptomics data and data from other knowledge bases as features out-
perform comparable models where knowledge-based features are replaced with addi-
tional experimental data features (Fig. 1c, d., Table 1, Supp. Fig. 1c). Models contain a 
total of 7, 16, 32, or 52 features. Although no knowledge component exists for the GSH 
term classifiers, transcriptomics-based models were compared to models which incor-
porate GSH and GSSG metabolomics data from the CCLE along with the CCLE tran-
scriptomics data for features. Interestingly, the additional data source does not seem to 
similarly improve performance in the GSH term models, with performance of transcrip-
tomics-only GSH term classifiers comparable to classifiers using both transcriptomic 
and metabolomic features (Fig. 1e).

Supporting these findings, classifier feature importance defined as the mean impurity 
decrease across random forest trees illustrates that while MitoCarta and TrSSP scores 
are amongst the most important features, metabolomic correlations are the least impor-
tant for the GSH classifier (Supp. Fig. 1d, e). Interestingly, certain low explained variance 
(high rank number) transcriptomics features appear to be relatively important -indicat-
ing function-specific variations captured by those components.

Comparison of hybrid models to knowledge‑based models

Like the previous analysis, we sought to evaluate the effects of adding transcriptomics 
information to the existing predictive models from the literature. Mean classifications 
from the hybrid RF mitochondrial and transporter classifiers using 5, 14, 30 and 50 PC 
features were compared to those of MitoCarta and TrSSP. The combined transcriptomic 
and MitoCarta/TrSSP classifiers appear to only show slight differences to the existing 
models (Fig. 2a, b). The mitochondrial classifier identifies slightly more mitochondrial 
genes than MitoCarta alone, however, there are more false positives (FPs) in this classi-
fier (at a classification threshold of 0.75).
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Novel mitochondrial and transporter annotations from hybrid models

While the number of true positives and false negatives are similar, the RF classifiers 
predict more false positives and less true negatives compared to the results of Mito-
Carta and TrSSP. To further explore differences between the models, and the poten-
tial for identifying novel functions, mitochondrial FP genes were compared to other 
sources of mitochondrial genes beyond the high confidence GO annotations used 
for classifier training. Low confidence GO annotations that were originally removed 
from the training set, Human Protein Atlas subcellular localization annotations 
from histology images [67], Swiss-Prot annotations [68], and integrated mitochon-
drial protein index (IMPI) annotations based on MitoMiner [69] were used for other 
sources of localization evidence. Of the 844 FP genes predicted by the mitochondrial 

Fig. 2 Confusion matrices of existing mitochondrial (MitoCarta) and transporter (TrSSP) models (left) and 
mean of proposed RF classifiers (right). a MitoCarta annotations compared to mean mitochondrial RF 
classifier annotations. b TrSSP compared to mean transporter RF classifier annotations. All unannotated 
genes are included as negative samples in matrices. Matrices are colored based on the number of samples 
contained within each quadrant. A classification threshold of 0.75 was used for the mitochondrial and 
transporter classifiers as it provided the best balance of maximizing true positives and minimizing false 
positives. c Venn diagram of false positive mitochondrial genes predicted by MitoCarta 3.0 and mitochondrial 
RF classifiers. d Venn diagram of false positive transporter genes predicted by TrSSP and transporter RF 
classifiers. e–h GO enrichment analysis of genes predicted to localize to mitochondria by RF classifiers with 
no existing evidence in localization databases. Enrichment plots of false positive mitochondrial genes for 
KEGG pathways (e) cellular component (f), molecular function (g), and biological process (h) GO terms
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RF classifier, 615 were predicted by both MitoCarta and RF, and 229 were predicted 
by RF only (Fig. 2c). 206 of these RF FP genes have no evidence in the other datasets, 
while the remaining have evidence in at least one source (Supp. Data). Enrichment 
analysis revealed that the 206 unannotated FPs without existing evidence are sig-
nificantly enriched in KEGG pathways (Fig.  2e) and GO terms (Fig.  2f–h) that are 
associated with degradation pathways, such as the proteasome, RNA stability, deg-
radation and processing pathways, and are furthermore highly associated with one 
another based on high confidence evidence through STRING [70] (Supp. Fig.  3a). 
The proteasome system is closely linked to mitochondrial remodeling in several 
physiological and disease states, including cancer [71, 72].

Comparisons of FPs in TrSSP and our transporter RF classifier find less overlap 
between the two (Fig. 2d). 147 FPs are exclusive to TrSSP, 218 are exclusive to the RF 
classifier, and 1477 are common to both models. In the same fashion as mitochon-
drial genes, other evidence sources beyond the high confidence GO term annota-
tions were compared to the FPs predicted by transporter models. Low confidence 
AMiGO annotations, Transporter Classifier Data Base annotations [73], and the 
SLCAtlas [74] were used as alternate evidence sources. Swiss-Prot annotations were 
excluded as these were used in TrSSP model training. For both TrSSP and our RF 
classifier, only a small number of FP genes have evidence from other sources (2 for 
TrSSP, and 8 for the RF classifier, Supp. Data). Unlike the mitochondrial FPs by our 
RF classifier, transporter FP genes are not extensively enriched in specific GO terms 
(Supp. Fig.  3b–d), and no enrichment of KEGG pathways is observed. The most 
apparent enrichment is in biological process terms related to cell–cell interactions, 
such as cell adhesion, cell junctions, and synapses (Supp. Fig. 3d).

While the majority of predicted functional annotations are similar between knowl-
edge-based models (MitoCarta or TrSSP), RF classifiers combining these features 
with transcriptomics features diverge mainly in terms of novel positive predicted 
annotations (false positives). Exploring these genes reveal notable enrichment of 
certain functional terms relevant to cancers.

mGSH transporter candidates

Considering the top SLC25 transporters by mean GSH probabilities, the classifi-
ers identify several potential mGSH transporters. The top 10 SLC25 family mem-
bers by GSH probability have mean probabilities across RF classifiers greater than 
0.73 and includes the known mGSH transporter SLC25A39 (Table 2). Surprisingly, 
SLC25A40, the homolog of SLC25A39, has a very low GSH probability by the RF 
classifier models and is not predicted to be related to GSH. Low expression of 
SLC25A40 relative to SLC25A39 may explain the lack-of GSH function annotation 
(Supp. Fig. 4). Amongst the top 10 candidates are several well characterized proteins 
such as SLC25A1, SLC25A10, and SLC25A11 as well as some orphan members like 
SLC25A43 and SLC25A50. To understand the possible roles of these members in 
GSH transport, existing evidence from the literature is described in the Discussion 
section.
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Non‑SLC25 mGSH‑related proteins

Alongside the SLC25 family, the remaining genes in our dataset were considered for 
roles in mGSH transport. Top candidates were identified by their mean GSH probabil-
ity across RF classifiers. Additionally, the mean mitochondrial and transporter classifier 
scores were considered. To identify high confidence candidates and minimize potential 
false positives, only genes with probabilities greater than 0.80 across all classifications 
are selected (i.e., genes already annotated with one of our GO terms are said to have 
probabilities of 1). This thresholding removes 99.95% of the available 49,309 genes in the 
datasets, leaving only 27 genes that meet these strict criteria (Supp. Table 3). Of these, 
4 genes are already annotated with the glutathione metabolic process GO term, 13 are 
annotated with the mitochondrion GO term, and 5 with the transmembrane transporter 
activity term.

A number of these genes have previously been associated with GSH, in particular we 
highlight Pyruvate Carboxylase (PC) [75], Mitochondrial calcium uniporter (MCU) 
[76, 77], ATP-binding cassette family B6 (ABCB6) [78], and neudesin neurotrophic fac-
tor (NENF) [79]. We provide a review of GSH associations for these in the Discussion 
section.

Transporter structural comparisons

To further examine the SLC25 proteins most probably relevant to GSH transport, 
we next conducted structural analyses. Experimental determinations of protein 
structures for the SLC25 family are currently lacking, with the only human SLC25 
structure determined for UCP1 by cryo-electron microscopy [56]. Beyond this, 
structures for orthologs in model species have been determined through X-ray crys-
tallography for the bovine [55] and Thermothelomyces thermophila [80] ADP/ATP 
carriers (SLC25A4), and by NMR molecular fragment searching for the yeast UCP2 
(SLC25A8) [81]. Predicted protein structures by AlphaFold and homology modeling 
must be used for comparison of family members with unknown structures. Particu-
larly, we were interested in structural comparisons between our candidates with the 

Table 2 Top 10 SLC25 proteins by mean GSH RF classifier probability

GSH probabilities are mean probabilities for GSH metabolism GO term classification with standard error for RF classifiers 
over different feature sets (5–50 PC features). The known GSH transporters SLC25A39 and SLC25A40 are in bold

Rank Gene Symbol GSH probability

1 SLC25A1 0.7891 (0.0173)

2 SLC25A10 0.7800 (0.0256)

3 SLC25A13 0.7737 (0.0156)

4 SLC25A39 0.7716 (0.0230)
5 SLC25A50 0.7620 (0.0222)

6 SLC25A43 0.7603 (0.0318)

7 SLC25A24 0.7577 (0.0345)

8 SLC25A37 0.7494 (0.0260)

9 SLC25A3 0.7410 (0.0489)

10 SLC25A11 0.7322 (0.0074)

37 SLC25A40 0.4702 (0.0152)
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GSH transporters SLC25A39, and SLC25A40 to reveal any similarities in structure 
and potential function. AlphaFold structures for all relevant SLC25 proteins were 
obtained in the conformational state open to the cytoplasm and intermembrane 
space (C-state) except for SLC25A39 and SLC25A40 whose predicted structures are 
in the M-state, open to the mitochondrial matrix. Thus, homology models for these 
two transporters, which are in the C-state, are also used in the analysis for compari-
son. Pairwise structural alignments were determined using TM-align (see Methods) 
for full 3D structures (“global” alignments) or tunnel-interacting residues within 
structures (“local” alignments). The residues for local alignments were identified via 
CAVER [62] (Supp. Fig.  5a). Rather than considering the entire transporter struc-
ture, of more relevance to transporter function and specificity is the interior tunnel 
of the protein surface, along which substrates interact and move across the IMM [80, 
82]. By aligning only potentially substrate binding residues we get a more relevant 
analysis of the SLC25 family with respect to substrate binding as these structures are 
expected to be more variable and better indicators of shared transport activities.

Pairwise global alignments showed high similarities (TM-scores close to 1) across 
the transporter family (Supp. Data). This is expected due to common structural 
domains across the family, namely the six transmembrane helices and evident in 
regions of high conservation in multiple sequence alignment (MSA) (Supp. Fig.  6) 
computed for all proteins used in structural and docking experiments.TM-scores 
for local alignments of tunnel residues are much lower relative to the global align-
ment scores (mean scores excluding self-alignments 0.376 vs. 0.701) (Supp. Fig. 5b) 
and more variable (coefficient of variation of 0.350 vs. 0.172 for global alignments), 
indicating the diversity of transport tunnels and functions of the SLC25 proteins. 
Figure  3a details the TM-scores for local pairwise alignments between top mGSH 
candidate SLC25s as well as SLC25A39 and SLC25A40.

Amongst these results, low alignment scores between homology and AlphaFold 
models for SLC25A39 and SLC25A40 indicate the dramatic changes in conforma-
tional state and thus comparisons to the C-state (i.e., homology models) are inves-
tigated. Relatively high scores between SLC25A24, SLC25A43, and SLC25A39 
indicate similarities in transporter tunnels and possible overlapping transport func-
tions of the proteins. Shi et  al. [15] identify R225, D226, and K329 as important 
residues for GSH transport in SLC25A39. Based on local structural alignments of 
tunnel regions with SLC25A43 and SLC25A24 (Fig. 3b, c), the position of the K329 
residue is conserved by K275 in SLC25A43 and by K453 in SLC25A24. However, the 
R225, D226 motif of SLC25A39 appears less conserved in the aligned structures. In 
the SLC25A43 alignment, residues G173 and A174 are in closest proximity to the 
A39 binding residues, and these non-polar residues are not identified by CAVER as 
tunnel-interacting residues. Interestingly, the sidechains of SLC25A43 residues K226 
and R227 appear near R225 and D226 sidechains in SLC25A39, where the positively 
charged K226 replaces the negative charge of D226 in SLC25A39. Like SLC25A43, 
the closest aligned residues of SLC25A24 to the GSH binding residues of SLC25A39 
are the non-polar G353 and I354, which do not interact with the transporter tunnel. 
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Where K226 and R227 are found in SLC25A43, instead there is R410 and T411 in 
SLC25A24.

GSH and GSSG binding in mGSH transporter candidates

Docking experiments were conducted on transporter proteins using AlphaFold and 
homology structure models to evaluate GSH and GSSG binding by predicted mGSH 
transporters. We observe similar binding affinities across protein structures (Table 3), 
ranging − 6.8– − 5.3  kcal/mol for GSH and − 8.0– − 5.6  kcal/mol for GSSG. Interest-
ingly, SLC25A10 shows the strongest affinity (i.e., more negative) for both GSH and 
GSSG. SLC25A40 shows a distinct preference for GSSG (− 7.0 kcal/mol) rather than 
GSH (− 5.6  kcal/mol), it has the weakest affinity for GSH of the structures docked 
here. SLC25A39 and the predicted transporters, SLC25A24, and SLC25A43 have 
relatively weak binding with slight preference for GSSG. Binding poses for GSH in 
SLC25A10, SLC25A24, and SLC25A43 structures are similar to SLC25A39 GSH bind-
ing (Fig. 3d–f ), with SLC25A24 the most distant.

Fig. 3 Structural alignment by TM‑align of CAVER‑identified transporter tunnels in SLC25 family members 
predicted to be associated with glutathione metabolic processes. a Heatmap of TM‑scores for pairwise 
alignments of tunnel‑interacting regions identified by CAVER for candidate SLC25 members. Values are 
TM‑scores normalized to the sequence length of the column protein. b & c Visualization of pairwise 
transporter tunnel alignments for SLC25A39 (dark purple) and most similar SLC25 candidates by TM‑score, 
SLC25A43 (green) and SLC25A24 (orange). Indicated residues are those identified as relevant for GSH 
transport by SLC25A39 and corresponding residues in SLC25A43 and SLC25A24. Protein tunnels visualized 
from the intermembrane space with tunnel‑interacting residues identified by CAVER highlighted and 
non‑tunnel residues faded. d–f In silico binding of GSH by known and predicted mGSH transporters. 
GSH‑bound SLC25A39 (purple) is aligned to GSH‑bound structures of SLC25A43 (orange), SLC25A24 (green), 
and SLC25A10 (blue). GSH structures are coloured according to their bound protein structure
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Comparison to DeepGOPlus

For a comparison to the models developed here, genes from our GO terms of inter-
est were annotated by DeepGOPlus. DeepGOPlus [22] is a general function anno-
tation deep learning model based on protein amino acid sequences. The model is 
constructed as a convolutional neural network (CNN) in which protein sequences are 
taken as inputs and the predicted GO term annotation and probabilities are returned. 
Gene ontology terms with predicted annotation probabilities were obtained through 
the DeepGOWeb API [83] (Version 1.0.13) using FASTA sequences obtained from 
canonical Ensembl transcript IDs for the genes under each ontology term. All 39 high 

Table 3 Top binding affinities (kcal/mol) for GSH and GSSG in docking experiments for predicted 
mGSH transporter structure models

“_AF” and “_HOMOLOGY_” suffixes indicate the structure is predicted by AlphaFold2 or homology modeling, respectively. 
The PDB ID for the homology modeling structural template is also included. Strongest binding affinities (most negative) for 
each ligand are bolded

Protein structure model GSH binding affinity (kcal/mol) GSSG binding 
affinity (kcal/
mol)

SLC25A1_AF − 5.6 − 5.5

SLC25A10_AF − 6.8 − 8.0
SLC25A11_AF − 5.6 − 6.9

SLC25A13_AF − 6.2 − 5.9

SLC25A24_AF − 5.9 − 6.7

SLC25A3_AF − 6.1 − 7.1

SLC25A37_AF − 6.0 − 6.8

SLC25A43_AF − 5.6 − 6.3

SLC25A50_AF − 6.2 − 6.2

SLC25A39_AF − 5.7 − 5.8

SLC25A40_AF − 5.8 − 6.3

SLC25A39_homology_1okc − 5.9 − 6.4

SLC25A40_homology_8hbv − 5.6 − 7.0

Fig. 4 Evaluation of gene ontology annotation predictions by DeepGOPlus (dashed) and RF classifier 
models (solid). Sensitivity, or TPR, are calculated at various classification thresholds for GSH metabolism, 
mitochondrial, and transporter GO term annotation tasks



Page 17 of 27Kennedy et al. BMC Bioinformatics           (2025) 26:48  

confidence glutathione metabolic process annotations, and 150 randomly selected 
genes from each other ontology term were annotated using DeepGOWeb. The true 
positive rates (TPRs) or sensitivity measures of annotations were determined for 
model comparison (Fig. 4, Supp. Table 4).

In all comparisons across classification thresholds and annotation tasks, DeepGOPlus 
performs worse than the proposed hybrid RF classifier (Supp. Data). This is most evi-
dent for glutathione metabolism GO term classification, where DeepGOPlus achieves an 
average sensitivity of 0.070 over classification thresholds of 0.3–0.5 compared to 0.867 
for the RF classifier over the same range. This range was chosen for comparison because 
DeepGOPlus rarely assigns probabilities > 0.5 for a single GO term due to its multi-clas-
sification architecture, favouring the proposed hybrid model in any comparisons using 
the full range of classification thresholds (see Supp. Data). For mitochondrial localiza-
tion and transporter activity annotations, DeepGOPlus reaches mean TPRs of 0.525 and 
0.722, respectively, though the hybrid RF classifier still outperforms with mean values of 
0.930 and 0.948, respectively.

DeepGOPlus is trained to classify all GO terms with at least 50 annotations, as noted, 
in this multi-classification approach the probabilities assigned for any specific GO term 
annotation may be inaccurate. This limitation is most notable in the classification of the 
GSH metabolic process term, which is underrepresented in the training of DeepGOPlus 
due to its small size.

Validation of metabolism GO term annotation framework

In comparison to GSH term annotation classifiers, several other classifier models were 
trained and evaluate the performance on GO term classification for other metabolites. 
Like the GSH term classifiers, RF models with 5–50 CCLE transcriptomic PCs and 
corresponding metabolomic correlations as features were trained for the annotation 
of genes related to 2-oxoglutarate, glutamate, and carnitine. Unlike GSH which has a 
reduced and oxidized form, these metabolites have only one relevant form, thus one cor-
relation feature is included for each of these metabolite classifiers. Following the pro-
cedure for the GSH classification task, positively classified genes were identified from 
GO terms for these metabolites to generate training and test gene sets for classifiers. 
2-oxoglutarate, glutamate, and carnitine were selected for this evaluation because, out of 
metabolites found in the CCLE metabolomics set, they have a relatively larger number 
of annotated genes, making classifier training possible. Additionally, there is evidence 
for transport of each by one or more SLC25 proteins, which allows for some measure of 
classifier validation.

For each of these classifiers, performance was comparable to the GSH term classifier 
by our evaluation metrics (Supp. Table  5). Like GSH term classifications, SLC25 can-
didates were ranked by mean metabolite RF classifier probability (from classifiers with 
5–50 PC features) and top 5 candidates are reported (Table 4). Across models, top can-
didates have a minimum probability of 0.76 by their respective classifiers.

Robustness of CCLE transcriptomics principal components

Alternate principal components were generated from CCLE transcriptomics data 
and compared to the whole dataset, “baseline” components used in classifier models 
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to evaluate the effect of sample selection, size, and biological conditions on the gene 
expression variances captured by PCA. Principal components generated from whole 
CCLE transcriptomics explain most variance in the first 10 components (Supp. Fig. 2a) 
and through random sampling of the data, principal components generated from smaller 
subsets of the dataset behave similarly (Supp. Fig.  2b), where the first components 
explain similar variances. Higher ordered components are less similar, in proportion to 
the number of random samples.

Along with randomly subsetting the dataset, samples were selected according to the 23 
cell line-associated tissue types, and principal components generated. Though the num-
ber of samples, and thus principal components, for each tissue-type varied, similar pat-
terns of explained variance are observed across tissue-types compared to the baseline 
components (Supp. Fig. 3a).

We also observe that, like the random sampled components, tissue-type components 
are highly similar to the baseline components, with tissue-specific variations explained 
by the higher-ranked components (Supp. Fig. 7). Additionally, there does not appear to 
be any relationship between similarity of tissue-type components to the baseline and the 
number of tissue-type samples, indicating that the larger tissue-type samples (for exam-
ple, lung) do not bias the baseline components.

GO term annotation with cancer‑specific cell line and primary tumor classifiers

To investigate the influence of gene expression on predicted GO annotation by classi-
fier models, several additional RF classifiers were trained using different gene expression 
datasets. First, tissue-specific CCLE PCs were used as classifier features to develop sev-
eral tissue-type classifiers. These classifiers follow the framework for mitochondrial and 
transporter transcriptomics-only models, where classifiers have 7, 16, or 32 transcrip-
tomics PC features, with identical sampling, bootstrap iterations, and training regimes. 

Table 4 Top 5 SLC25 candidates for non‑GSH metabolites by RF classifiers

Candidates ranked by mean RF classifier probabilities (5–50 PC features) with standard error. Known metabolite transporters 
are bolded

Rank Gene 
symbol

Glutamate 
probability

Rank Gene 
symbol

2‑oxoglutarate 
probability

Rank Gene 
symbol

Carnitine 
probability

1 SLC25A39 0.7998 
(0.0409)

1 SLC25A39 0.8408 (0.0166) 1 SLC25A30 0.8204 
(0.0361)

2 SLC25A1 0.7889 
(0.0357)

2 SLC25A11 0.8304 (0.0228) 2 SLC25A29 0.8116 
(0.0196)

3 SLC25A50 0.7784 
(0.0322)

3 SLC25A1 0.8287 (0.0351) 3 SLC25A36 0.7682 
(0.0131)

4 SLC25A5 0.7706 
(0.0148)

4 SLC25A28 0.8060 (0.0145) 4 SLC25A25 0.7632 
(0.0249)

5 SLC25A10 0.7617 
(0.0248)

5 SLC25A10 0.8059 (0.0292) 5 SLC25A38 0.7618 
(0.0211)

11 SLC25A13 0.7378 
(0.0305)

28 SLC25A20 0.6415 
(0.0345)

23 SLC25A22 0.6847 
(0.0304)

36 SLC25A12 0.6139 
(0.0469)

42 SLC25A18 0.4663 
(0.0178)
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Due to the lack-of samples in datasets, no 52 PC feature classifiers were used and liver 
CCLE classifiers contain a maximum of 24 PC features rather than 32. In total, indi-
vidual mitochondrial and transporter classifiers were trained and tested on three subsets 
of CCLE samples from skin cutaneous melanoma, pancreatic adenocarcinoma, or liver 
hepatocellular carcinoma.

Classifier models trained on specific sample subset retain similar, or slightly lower in 
the case of transporter classification, performance as measured by our evaluation com-
pared to whole CCLE transcriptomics-only models (Supp. Table 6). The major variances 
in gene expression captured by tissue-specific samples sufficiently classify GO functional 
terms. Further illustrating this point, despite biological differences between the CCLE 
subsets we observe that the various classifiers show good agreement in their predicted 
GO term annotations of unlabeled genes. Pearson correlations for genes with annota-
tion probabilities greater than 0.6 or less than 0.4 were computed for pairs of classifiers 
for mitochondrial and transporter classification tasks. This finds that predicted annota-
tions are correlated across datasets, with median Pearson correlation values (± standard 
deviation) of 0.93 ± 0.01, and 0.78 ± 0.02 with pairwise correlation p-values < 0.001 for 
mitochondrial and transporter classifications, respectively.

To further validate this, gene expression values from TCGA primary tumor samples 
were used to train classifier models. Classifiers were trained to most closely mirror 
CCLE classifiers, using either all TCGA samples for cancer types found in the CCLE, 
or the same subsets of skin cutaneous melanoma, pancreatic adenocarcinoma, or liver 
hepatocellular carcinoma samples. TCGA classifiers used 7, 16, or 32 transcriptomics 
PC features for annotation mitochondrial or transport GO terms. The whole data TCGA 
classifiers include 52 PC features, and classifiers trained for GSH GO term annotation.

Classifiers using TCGA transcriptomics features show similar, though consistently 
lower, performance metrics when compared to their most similar CCLE classifier (Supp. 
Table  6). Lower explained variance by components of TCGA transcriptomics (Supp. 
Fig.  9, Supp. Data) relative to CCLE likely contribute to the decreased performance. 
Median cumulative explained variance by the first 10 PCs across CCLE and TCGA can-
cer-type datasets are 0.985 ± 0.003 and 0.877 ± 0.047, respectively. Pearson correlations 
for confident annotations (i.e., greater than 0.6, or less than 0.4) of unlabeled genes show 
correlations of 0.83 ± 0.01 and 0.71 ± 0.03 (p-values < 0.001) between TCGA tumor types 
for mitochondrial and transporter classifications, respectively. Pairing cell lines and pri-
mary tumors from the same cancer type gives median correlations of 0.77 ± 0.03 and 
0.29 ± 0.06 (p-values < 0.001) for mitochondrial and transporter classifications. Unsur-
prisingly, differences in extracellular environments, membranes, and thus transporters, 
between cell lines and in vivo tumor samples contribute to substantially to differences 
in transporter classifications, but less-so to mitochondrial classifications. Other TCGA-
CCLE divergences may result from a combination of overall lower TCGA classifier per-
formance, and low gene expression correlations between paired CCLE-TCGA sample 
[34, 46].

As a final validation, a GSH GO term classifier was trained using whole TCGA tran-
scriptomics as features, for comparison to mGSH candidates predicted by the hybrid 
CCLE GSH classifier. Again, the TCGA classifier displays slightly lower performance 
metrics compared to the CCLE classifier (Supp. Table 6). We compare the top 10 SLC25 
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proteins by GSH probability predicted by either model (Table 5) and note that despite 
many differences between the two models, roughly half of the SLC25 family members 
are common to both. In particular, the most confident top 5 candidates in either and 
placement of the known mGSH transporters SLC25A39 and SLC25A40 are similar 
between models—indicating common patterns between datasets and across cancer sub-
types which is supported by relative expression levels in TCGA and GTEx (Supp. Fig. 9).

Discussion
The importance of mitochondria and GSH in cancers is widely appreciated. Mitochon-
dria have a major role in metabolic shifts, one of the hallmarks of cancer, while mGSH is 
important in metabolism, ROS processing, post-translational protein modifications and 
tumor drug resistance. An improved understanding of mitochondrial transport mecha-
nisms in cancer cells, including GSH transport mechanisms, is important for advancing 
the cancer biology field. To this end we developed a hybrid ML framework that utilizes 
multi-omics data and existing knowledge for annotating genes with GO terms of inter-
est. We applied this model to the problem of mitochondrial GSH metabolism, specifi-
cally focusing on the aspect of transport. We propose several potential candidates that 
are predicted to be related to, and possibly modulated by, mGSH transport that are iden-
tified by this model to guide future experimentation in this area of research.

Random forest classifiers were developed here for the annotation of mGSH transporter 
characteristics: mitochondrial localization, relation to GSH metabolism, and transporter 
function. Models combine CCLE transcriptomics and metabolomics data for annota-
tion of genes related to GSH metabolism, and knowledge from existing predictive mod-
els for mitochondrial localization and transporter activity annotation. This framework 
resulted in models with high performance (mean RF AUROC of 0.900) across each clas-
sification task. Furthermore, the proposed method is effective even with the minimal 
number of CCLE multi-omics features that were tested (5 PCs), achieving, at worst, an 

Table 5 Top 10 SLC25 proteins by mean GSH RF classifier probability predicted by CCLE and TCGA 
classifiers

GSH probabilities are mean probabilities with standard deviation for RF classifiers over different feature sets (5–50 PC 
features for CCLE classifier, 7–52 for TCGA classifier). The known GSH transporters SLC25A39 and SLC25A40 and any SLC25 
proteins common to both models are in bold

CCLE top SLC25 GSH candidates TCGA top SLC25 GSH candidates

Rank Gene GSH prob. (std) Rank Gene GSH prob. (std)

1 SLC25A1 0.7891 (0.0173) 1 SLC25A10 0.7092 (0.0969)
2 SLC25A10 0.7800 (0.0256) 2 SLC25A39 0.6492 (0.0490)
3 SLC25A13 0.7737 (0.0156) 3 SLC25A50 0.6458 (0.0368)
4 SLC25A39 0.7716 (0.0230) 4 SLC25A5 0.6333 (0.0775)

5 SLC25A50 0.7620 (0.0222) 5 SLC25A42 0.6071 (0.0428)

6 SLC25A43 0.7603 (0.0318) 6 SLC25A25 0.5944 (0.0809)

7 SLC25A24 0.7577 (0.0345) 7 SLC25A11 0.5931 (0.0550)
8 SLC25A37 0.7494 (0.0260) 8 SLC25A13 0.5894 (0.1315)
9 SLC25A3 0.7410 (0.0489) 9 SLC25A4 0.5743 (0.0925)

10 SLC25A11 0.7322 (0.0074) 10 SLC25A28 0.5737 (0.0456)

37 SLC25A40 0.4702 (0.0152) 41 SLC25A40 0.3231 (0.0373)
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AUROC of 0.808 for GSH metabolism classification. By the performance metrics used 
here, the hybrid framework outperforms comparable RF classifiers utilizing only tran-
scriptomics features for classification. Hybrid models were also compared to the exist-
ing “knowledge-based” models for mitochondrial genes and transporters, MitoCarta and 
TrSSP, respectively. The hybrid models show similar performance by confusion matrices, 
but we observe increased false positive classifications relative to the knowledge-based 
models. These genes may represent shifts in function in cancer cells compared to normal 
cells, or genes associated with mitochondria or transporters but which themselves do 
not possess these functions. Evidence for functionally associated genes is observed in 
enrichment of proteasome genes for false positive mitochondrial genes, and for cell–cell 
interaction genes for false positive transporter genes.

For comparison, we attempted similar classifications using DeepGOPlus [22, 83] 
for annotation of our terms of interest. This general GO annotation model performed 
worse, as measured by sensitivity in correctly classifying annotated genes, than our 
framework. This is most evident in GSH metabolic process classification. The mutli-clas-
sification GO term task for DeepGOPlus may explain this poor performance, where rel-
atively small set of annotated GSH metabolism term is underrepresented relative to the 
many other, well-annotated, GO terms during training. Annotating small GO term gene 
sets is a weakness of these general frameworks and a strength of our proposed approach. 
Furthermore, as a sequence-based approach, DeepGOPlus cannot be applied to disease 
contexts as we do with our proposed method, in this case using cancer cell transcrip-
tomics and metabolomics data to focus analysis on a cancer context.

As a further validation of our methodology, several other classifiers using our frame-
work were developed and tested for annotating other GO terms. Identical RF models 
to the GSH term classifier were developed which instead use genes annotated with GO 
terms for glutamate, 2-oxoglutarate, and carnitine metabolic process for training. These 
models show similar performance to the GSH term classifier despite a small number of 
annotated genes for training, indicating the robustness of this framework for annotating 
a variety of biological functions. Furthermore, with respect to our interest in transport, 
these classifiers correctly identify many previously known SLC25 transporters as their 
most probable candidates.

While whole cancer dataset predictions are explored in detail, to understand the effect 
of different biological datasets in classifiers, specific cancer types were investigated. 
Classifiers trained on selections of samples from specific cancer types, skin cutaneous 
melanoma, pancreatic adenocarcinoma, and liver hepatocellular carcinoma have both 
comparable performance to whole cancer classifiers in mitochondrial and transporter 
classification tasks and strong agreement of predicted annotations for unlabeled genes. 
Furthermore, classifiers using gene expression from TCGA primary tumor samples 
rather than cancer cell lines show similar performance and strong agreement in mito-
chondrial gene classifications and divergent transporter classifications.

Considering the SLC25 family of mitochondrial carriers, we find several predicted to 
be related to GSH metabolic processes. Most notably, SLC25A39, the recently identi-
fied GSH transporter, is amongst our top hits (ranked 4th). Furthermore, several SLC25 
which are known to be relevant to mGSH metabolism are amongst the top candidates: 
SLC25A1 [84, 85] (ranked 1st), SLC25A10 [86, 87] (ranked 2nd), SLC25A13 [88] (ranked 
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3rd), and the iron transporter SLC25A37 [15] (ranked 8th). Surprisingly, in both CCLE 
and TCGA datasets, the homolog of SLC25A39, SLC25A40, is not predicted to be 
involved in GSH metabolism, ranking 37th of the 53 SLC25 family proteins. This may 
be due to the very low expression of SLC25A40 across the CCLE cell lines (Supp. Fig. 4), 
suggesting that SLC25A40 is quantitatively less relevant to mGSH transport in cancer 
cells. Similar expression patterns are also observed in TCGA tumor and GTEx normal 
samples accessed via GEPIA (Supp. Fig.  9). SLC25A40 expression is much lower than 
SLC25A39 expression, which is increased in many tumor samples compared to the 
paired normal samples, while SLC25A40 changes are minimal. In agreement of this, 
classifiers trained on TCGA gene expression data maintain a high SLC25A39 GSH prob-
ability, but low SLC25A40. Other potential mitochondrial carriers of interest include 
SLC25A43 (ranked 6th), SLC25A24 (ranked 7th), and the OMM transporter SLC25A50 
(ranked 5th). SLC25A43 is an orphan transporter which has recently been found to 
affect redox homeostasis [89]. In both TCGA and CCLE GSH metabolism classifiers, 
SLC25A10 and SLC25A50 are amongst the most probable SLC25 proteins, which may 
be due to their close associations with energy metabolism [86, 87, 90], of which GSH is 
crucial.

Structural similarities in the candidates, specifically within the tunnel region of the 
proteins, can inform potential roles of these transporters in mGSH metabolism. We 
investigated this through sequence-independent structural alignment of SLC25 trans-
porters using TMalign. We find that, aside from its homolog SLC25A40, SLC25A39 
shows the most similarities to our candidates SLC25A43, and SLC25A24. Important 
GSH binding residues in SLC25A39 are somewhat conserved in our candidates where, 
specifically, SLC25A43 shows a shift in residue position within the transporter tun-
nel and a substitution of an aspartate to a lysine residue, and SLC25A24 substitutes a 
threonine. These findings indicate that despite overall similarities in transporter tunnels 
between the GSH transporter and our candidates SLC25A43 and SLC25A24, substrate 
binding and transport mechanism are likely somewhat different, e.g., binding to alter-
nate forms of GSH species such as GSSG or glutathione esters.

Expanding our search beyond the SLC25 family, 27 genes were classified with high 
probability (> 0.80) for all classification tasks. Of these, some of the most probable can-
didates are discussed here for their possible roles in mGSH metabolism and transport.

Pyruvate carboxylase (PC) catalyzes the conversion of pyruvate to oxaloacetate in 
mitochondria. PC links glucose to GSH synthesis and plays roles in the control of redox 
and oxidative stress [75]. Recently, pyruvate metabolism has been associated with GSH 
metabolism and ferroptosis in lung cancer cells through the plasma membrane cysteine 
transporter SLC7A11 [91] (ranked 3rd by GSH metabolic process GO term annotation 
probability in RF classifiers). PC is reported to specifically localize to the mitochondrial 
matrix with little evidence supporting it being membrane-bound; thus, it may be that PC 
interacts with the IMM-bound transporters to facilitate and modulate mGSH transport.

Mitochondrial calcium uniporter (MCU) is also a top hit in our models and a well-
known mitochondrial transporter. Associated with its role in  Ca2+ homeostasis are roles 
in iron and redox homeostasis, and cell death pathways [76]. With respect to GSH, MCU 
is regulated via s-glutathionylation [76] and downregulation is associated with enriched 
GSH metabolism in melanoma cells [77]. It is possible that MCU plays a greater role in 
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mitochondrial iron and GSH metabolism and transport in the context of cancer metabo-
lism than has been reported thus far.

ATP-binding cassette family B6 (ABCB6) is a transporter protein with evidence for 
both plasma membrane and mitochondrial localization [92]. This protein transports the 
heme precursor porphyrin [93], however the mechanism of transport has been shown 
to be GSH-dependent, with significantly increased activity in the presence of GSH [78]. 
These suggest GSH-mediated transport of substrates by ABCB6, but it is unclear if GSH 
merely modulates transport, or if it is transported as well, likely through GSH-conju-
gated species. Similarly, neudesin neurotrophic factor (NENF) is a mitochondrial local-
ized protein primarily involved in the differentiation/development of neuronal cells [94]. 
NENF activity is modulated by the binding of heme [79], which presents a connection to 
GSH that, to the best of our knowledge, has not yet been explored. Some evidence sug-
gests NENF is membrane-associated [94].

The results of our models find several genes that may play roles in mGSH metabolism 
and transport, and thus could guide future experimental analyses. Our findings are lim-
ited by our relatively small training dataset, in which more data would improve model 
performance and confidence of predictions. Furthermore, our models are generalized 
across cancer cell data from a range of tissue and cancer types. Future work, leverag-
ing larger datasets, or datasets of specific cancer types would provide promising avenues 
for uncovering interactions of high relevance to the specific diseases. Another limitation 
of this work is the use of gene ontology terms for identifying relevant genes. Specific 
and manually curated databases for these functions, similar to MitoCarta, likely pro-
vide a more accurate set of relevant genes; however, these databases are limited. Using 
a database like gene ontology provides a resource for the annotation of many functions, 
processes, and cell localizations as demonstrated here, which cannot be replicated by 
specific databases.

Finally, the classifications from the individual models provide novel candidates for 
areas beyond the scope in this work. For example, the classifiers for other metabolites 
here were used for validation of the glutathione classifier, but predicted relevant genes 
for those metabolites were not investigated. Nevertheless, we anticipate that our find-
ings here can be instrumental in the identification of potentially novel proteins involved 
in mitochondrial glutathione metabolism and transport in cancer cells. The results here 
and classifier code provide a tool to accelerate knowledge discovery and identify poten-
tial target genes for other biological functions and contexts.
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