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Introduction
Bioinformatics data analysis research is an interdisciplinary field covering computer sci-
ence, statistics and biomedical science. The field has recently experienced a vast increase 
in the quantity of available data due to the rapid advances in sequencing technologies 
(Next Generation Sequencing or NGS) [1]. Numerous data sources, including DNA 
sequencing, RNA sequencing, electronic medical records, and time series from medi-
cal devices, have further enabled biomedical companies to collect detailed information 
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Biomedical researchers must often deal with large amounts of raw data, and analysis 
of this data might provide significant insights. However, if the raw data size is large, it 
might be difficult to uncover these insights. In this paper, a data framework named 
BioLake is presented that provides minimalist interactive methods to help researchers 
conduct bioinformatics data analysis. Unlike some existing analytical tools on the mar-
ket, BioLake supports a wide range of web-based bioinformatics data analysis for pub-
lic datasets, while allowing researchers to analyze their private datasets instantly. The 
tool also significantly enhances result interpretability by providing the source code 
and detailed instructions. In terms of data storage design, BioLake adopts the data 
lakehouse architecture to provide storage scalability and analysis flexibility. To further 
enhance the analysis efficiency, BioLake supports online analysis for custom data, 
allowing researchers to upload their own data via a designed procedure without wait-
ing for server-side approval. BioLake allows a one-time upload of custom data of up to 
500 MB to ensure that researchers avoid issues with data being too large for upload. 
In terms of the built-in dataset, BioLake applies reactive continuous data integration, 
helping the analysis pipeline to get rid of most preprocessing steps. The only pre-
built-in dataset of BioLake in the first public version is TCGA-PRAD mRNA expression 
data for prostate cancer research, which is the primary focus of the development team 
of BioLake. In summary, BioLake offers a lightweight online tool to facilitate bioinfor-
matic mRNA data analysis with the support of custom online data processing.
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about patients and diseases. These data sources are often joined against public datasets 
such as the UK Biobank [2] which holds sequencing information and medical records for 
500,000 individuals [3].

Modern research in this field can usually be divided into two main categories, namely 
data extraction and analysis of results. The data extraction component is mostly per-
formed by researchers from the field of biomedicine that interact with patients and col-
lect raw data. The analysis component is performed by researcher in bioinformatics with 
expertise in computational science and statistics. The challenge lies in ensuring that the 
data is presented in a format that is easily interpretable by all researchers.

One of the other challenges is to present vast amounts of collected data in an human-
understandable form. In bioinformatics, one of the easiest ways to alleviate this prob-
lem is to collaborate with researchers in computational science or statistics who can 
transform the raw data into a format that can be more easily interpreted by biomedi-
cal researchers. However, this approach makes the bioinformatics research process 
relatively inefficient since the researchers from computational science may not be able 
to quickly understand the requirements of the biomedical researchers. In addition, the 
collaboration requires additional time and effort to discuss the requirements and to 
wait for the results. This paper therefore proposes an alternative way for the biomedi-
cal researchers to conduct the data analysis and interpret result in order to alleviate this 
problem. That is, BioLake is introduced as an interactive web-based framework pow-
ered by a data lakehouse architecture that enables the enhancement and facilitation of 
raw data processing and analysis. The researchers can obtain desired results by following 
simple instructions in BioLake, even if they have no prior data analysis experience and 
computer science background.

BioLake consists of a data analysis layer and a data storage layer. Figure 1 shows the 
overall framework design which includes a facility for users to access BioLake through 

Fig. 1 Overall framework design
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major browsers using a public URL. The data analysis part is handled by virtual machines 
with the help of several processing engines to be described in detail in Sect. 3. The data 
storage layer has adopted a data lakehouse architecture, a data management design 
based on low cost and directly-accessible storage that also provides traditional analyti-
cal database management and performance features [4]. Section 4 details this design and 
analyzes this design from a practical and flexible point of view. Section 5 presents a case 
study to demonstrate the usability of BioLake.

The primary contribution of BioLake is to offer a lightweight, scientific online web tool 
designed to facilitate bioinformatic mRNA data analysis. It eliminates the need for spe-
cialized expertise in software configuration, making it accessible to a broader audience. 
Additionally, BioLake supports custom online analyses, allowing users to process their 
data efficiently and without delays.

Background and related work
The field of biology is experiencing an exponential growth in available data. This growth 
has had the unfortunate effect that the extraction of the knowledge inherent in the data 
is not keeping pace with the data growth. The reason for this is that processing and 
extracting information from the data requires large volumes of processing guided by 
biologists. These biologists have to be conversant with computing and computational 
methods so that they can use the analysis tools effectively. Unfortunately, most biologists 
are not experts in the disciplines of mathematics, statistics or computing [5]. The idea of 
BioLake was inspired during the phase when our prostate cancer team was analyzing the 
public TCGA-PRAD dataset, and we realized that most of the existing tools did not fully 
meet our expectations.

Recent studies [6–14] provide web-based data analysis tools to facilitate the analy-
sis where users can get bioinformatics data visualization plots with a couple of clicks. 
The tools on the market can be roughly divided into three categories of online-based, 
docker-based and on-premised-based. It is worth noting that these categories are not 
mutually exclusive. For example, [15] supports online-based analysis through URL 
[6], while also offering a docker image and R-package for docker-based support, and 
on-premise support. Online-based web interfaces where users interact with the tools 
through public URL, with all the analysis done on the server side, are provided by [7, 8, 
10, 12–14]. Docker-based tools such as [15] includes learning curves which can be quite 
steep, as this technology is unfamiliar to the vast majority of bioinformatical researchers. 
On-premised-based service expects users to set up their own local configuration and 
environment, which can be challenging. For example, [15] packs up the functionalities 
as a R-package, which provides excellent support for the researchers to conduct their 
analysis in a local environment.

In terms of functionality, Table 1 presents the supported features of selected online-
based tools that provide similar functionality to that of BioLake. PcaDB offers users the 
ability to select a specific gene and data source, generating a box-plot for gene expres-
sion analysis, a survival analysis table, and various RNAseq plots. However, this tool 
lacks the capability for users to modify the method of group classification and utilize 
genes as differential conditions, which are typical steps in bioinformatics differential 
analysis. On the other hand, EnrichR provides Gene Set Enrichment Analysis (GSEA). 
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However, it requires users to manually input sorted gene sets, significantly reducing its 
practicality. Moreover, VolcaNoseR and SRplot limits user inputs to maximum 200 MB. 
Consequently, these tools may not be able to analyze commonly used public datasets 
like TCGA. Lastly, while GEPIA and linkedomics offer the most comprehensive func-
tionality, they do not support the use of clinical data for expression analysis. In terms of 
framework flexibility, we evaluate all tools and present the results in the last column of 
Table 1. We define this tool as an “out of the box” tool if it accepts user-defined hyperpa-
rameters and provide users with the last layer data for further refinement, where the last 
layer data refers to the data directly used for final result generation. For instance, both 
differential analysis engines provide the data directly utilized for generating the heatmap 
and volcano plot, enabling researchers to apply statistical analysis, such as identifying 
the similarity of top-ranking genes. The clinical and survival engine returns structured 
tabular data, where the label format and distribution can be adjusted by selecting the 
value type for candidate action. All of the last layer data is stored in CSV format to pro-
vide straightforward visualization and easy access. The linkedomics tool is defined as 
partial “out of the box”, since it does not accept user-defined hyperparameters. And users 
cannot apply custom modification by linkedomics, as it does not provide the last layer 
data. In addition, linkedomics does not support online analysis for custom dataset pro-
vided by the user. In such cases, users need to contact the authors of linkedomics for the 
analysis of this type of data, which can be time consuming.

Implementation
A web-based framework designed to address all issues observed in related works 
has therefore been developed. Rather than duplicating tasks that have already been 
accomplished, BioLake is dedicated to implementing functionalities that have not yet 
been realized by other researchers. That is, the goal of BioLake is to provide users 
with a platform where they can perform a variety of bioinformatics analysis tasks in a 
minimalist-interactive manner. BioLake does not expect any computer science back-
ground from the user. However, since it has clear operational processes and intuitive 
interface design, a user can easily conduct the analysis. Users can also interact with 
BioLake by submitting a feedback form, which enables BioLake to update the dataset 
later in a smooth manner without system interruption. Section  4 presents the data 
analysis Layer of BioLake and Sect. 5 presents the storage strategy of BioLake.

Table 1 Comparison of different approaches

Tool Unit-gene Diff. analysis Clinical analysis GSEA Survival analysis Out-of-box

PcaDB [10] No Partial Partial No Partial Yes

VolcaNoseR [8] Yes Yes No No No No

SRplot [12] Yes Yes Yes Yes Yes No

GEPIA [13] Yes Partial Partial No Partial Partial

EnrichR [7] Yes No No Yes No No

Linkedomics [14] Yes Yes Yes Yes Yes Partial

BioLake Yes Yes Yes Yes Yes Yes
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Data analysis layer
Section 4 presents the data analytic layer of BioLake. BioLake employs dynamic analysis 
as shown in Fig. 2, allowing it to analyze new datasets and genes that it has never seen 
before. BioLake is designed to be a framework where users interact with the underly-
ing engines through a website designed with minimalist interaction concept. The mRNA 
analysis layer consists of (a) Differential Analysis - Heatmap, (b) Differential Analysis - 
Volcano Plot, (c) Expression Analysis - Clinical, (d) Expression Analysis - Survival and e) 
Gene Set Enrichment Analysis.

Differential gene expression (DGE) analysis is one of the most common applications 
of RNA-sequencing (RNA-seq) of bioinformatics data. This process allows for the elu-
cidation of differentially expressed genes across two or more conditions and it is widely 
used in many applications of RNA-seq data analysis [16]. BioLake implements two dif-
ferential analysis engines as the first layer, since most of the mRNA analysis pipelines 
start from these two engines before a following gene set enrichment analysis can be con-
ducted. Heatmap is one of the most popular visualizations of gaze behavior, however, 
increasingly voluminous streams of eye-tracking data make processing of such visu-
alization computationally demanding [17]. BioLake’s heatmap analysis starts from raw 
data extraction where BioLake applies the Z-score algorithm [18] for pre-cleaning. The 
pipeline then computes the Spearman correlation [19] between all genes and the target 
gene selected by the user on the starting page of BioLake. This step analyzes the mono-
tonic relationship and applies build-in checkpoints to further filter the data, where these 
checkpoints are a set of small algorithms that are predefined in BioLake to enhance the 
readability of results.

Algorithm 1 Out-of-range checkpoint

Fig. 2 Fist Layer Interface Design
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Algorithm 1 shows one of the checkpoints in the heatmap analysis pipeline which is an 
Out-Of-Range (OOR) checkpoints for negative heatmap, ensuring that the target gene 
list obtains the global minimum at the far left, preventing the situation shown in Fig. 3. 

Fig. 3 The comparison between analysis with and without a checkpoint
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To interact with the heatmap engine, users are expected to input the number of samples 
and genes involved. The output of the engine contains two plots with positive and nega-
tive correlation information and a summary table is provided below the graphs to clarify 
statistical information. Whenever the engine explores a new gene in a new dataset, it 
caches the z-score ranking information and sends it back to the data lake. It will be fur-
ther used as input for GSEA. Volcano plot, supported by BioLake’s volcano engine which 
visualizes complex datasets generated by genomic screening or proteomic approaches. It 
is essentially a scatter plot, in which the coordinates of data points are defined by effect 
size and statistical significance [8]. Similar to heatmap engine, users can interact with 
this engine by providing the number of P-values and fold-change values. It also caches 
the ranking information related to fold-change, which serves as subsequent input for 
GSEA.

There are three secondary engines, the clinical engine, the survival engine and the 
GSEA engine, implemented within BioLake. The clinical engine is designed to visualize 
the gene expression using a boxplot, and the survival engine is designed to visualize the 
survival result via KM curve. To interact with both engines, users are first expected to 
select a clinical factor to establish an analysis pipeline. The second step is to select how 
the clustering is performed, BioLake supports numeric, discrete and custom clustering 
modes, where numeric is set to be default mode.

Figure  4 illustrates an example showcasing BioLake’s clustering functionalities. In 
numeric mode, each distinct value identified in the target column is treated as an indi-
vidual cluster. In contrast, the discrete mode in BioLake partitions the complete data-
set into three clusters by utilizing the values from the target column. These clusters are 
denoted as “high expression”, “stable expression” and “low expression”, representing the 
respective clinical factor levels. It is worth mentioning that the clinical engine does not 
implement any pre-filtering of clinical data, which implies that users can select all fea-
tures present in submitted raw clinical data. To enhance the readability, a checkpoint 
is implemented within this engine. That is, if user selects a clinical factor, where at least 
one corresponding value of this factor is not numeric, the discrete mode will become 
invalid even if selected. In such cases, the numeric mode will be automatically applied 
instead. Custom mode is a unique feature provided exclusively by BioLake, which allows 
users to create clusters the way they want. When custom mode is selected, users are 
able to create up to five groups for clustering. Custom mode also supports custom A/B 
testing, if users do not assign all items from the top side table to the groups they create, 

Fig. 4 Clustering mode
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a complementary group called “Other” will be generated to store the remaining items. 
BioLake’s clinical engine and survival engines employ this clustering method to facili-
tate the clinical and survival analysis. In terms of minor adjustments to the result, Bio-
Lake provides last-layer data in all cases for users to apply custom modification. Let L be 
the gene set input by the user and S the gene set in the pathway provided by the anno-
tated database such as GO [20] and KEGG [21]. The goal of the GSEA engine is then to 
determine whether the members of S are randomly distributed throughout L or primar-
ily found at the top or bottom [22]. BioLake invokes methods from clusterprofiler, a R 
package implemented by [23], to conduct GSEA. By using BioLake, users do not need 
to input the gene set manually but directly select the data type they want, and the GSEA 
engine will extract the correct gene set according to the user input.

Data storage layer
The data storage layer of the BioLake framework is now presented. It applies data lake-
house architecture implemented with Hadoop File System(HDFS), Amazon S3 and Delta 
Lake [3] to enhance the flexibility and practicality of the framework. Formally, a data 
lakehouse is a data management system design that combines the key benefits of data 
lakes and data warehouses which are low-cost storage in an open format accessible by a 
variety of systems from the data lake to powerful management and optimization features 
from the data warehouse [4]. Unlike OLTP-type data, such as banking data, bioinformat-
ics data is similar to streaming data. For example, a banking data item such as a user’s 
account balance can be frequently updated, but we mainly care about the latest value. 
However, in terms of bioinformatics data, the expression value of a gene at different 
time points is equally important as bioinformatics data does not lose its value over time. 
Cloud object stores such as Amazon S3 are some of the largest and most cost-effective 
storage systems on the planet, making them an attractive target for storing large data 
warehouses and data lakes [3]. However, storing the data in the cloud may lead to some 
privacy issues. Thus, in BioLake, both Amazon S3 and Hadoop have been chosen to be 
the data lake component. There is no restriction on the data format, as the framework 
does not expect S3 and Hadoop to interpret the information. This enhances BioLake’s 
ability to accept a wide range of data formats, which significantly increases its flexibil-
ity. Delta Lake [3] is then applied to manage the data lake, which provides traditional 
analytical DBMS management and performance features to the processing engine. This 
data storage strategy brings great scalability to the framework as the storage capacity can 
be easily expanded through horizontal scaling to accommodate growing data volumes. 
Other than that, the framework is highly portable as it applies analysis-storage separa-
tion, which means that the storage can quickly be migrated to other cloud vendors or 
on-premises servers without updating any data processing logic.

In BioLake, Delta [3] is employed as the preferred storage format to optimize computa-
tional performance. Figure 5 provides a detailed comparison between Delta and CSV for 
all analysis pipelines in BioLake. The result denotes that Delta markedly overperforms 
CSV, which demonstrates Delta’s superior capability in handling large datasets, ensur-
ing faster data retrieval and processing, thereby facilitating more effective data analy-
sis within the BioLake framework. The substantial difference in processing speeds can 
be attributed to the data storage format. Although traditional bioinformatics tools have 
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used custom data formats such as SAM, BAM and VCF [24, 25], many organizations 
are now storing this data in data lake formats such as Parquet. This approach was pio-
neered by The Big Data Genomics project [3, 26]. In BioLake, Delta is the default storage 
format, where expression data is stored in Parquet, an efficient, structured, column-ori-
ented (also called columnar storage), com-pressed, binary file format [27]. The difference 
between row-oriented storage and column-oriented storage was discussed above and in 
greater detail in [28]. In simple terms, column-oriented storage is ideal when we need to 
frequently update the existing data (OLTP), which is not the typical scenario in bioin-
formatics analysis. In fact, Delta is a prevalent storage format for bioinformatics data. In 
2019, an open-source toolkit for genomics data named Glow was released by Databricks 
and Regeneron [29]. This toolkit uses Delta for storage.

Reactive continuous data integration

Data warehouse systems normally have static structures for their schemas and the 
relationships between data, and they are therefore not able to support any dynamism 
in their structure and content. Their data is only periodically updated because they are 
not prepared for continuous data integration [30]. In other words, this approach expects 
a large amount of fixed-format data injection in the early stage of the launching of an 
application which reduces the flexibility for the input data. The reactive continuous data 
integration mechanism for the BioLake framework, which enables greater flexibility, is 
therefore presented now.

Figure 6 presents the design of the reactive continuous data integration mechanism. 
The design framework only pre-stores raw data in the data lake. If a user establishes 
a pipeline, the pipeline first searches if the required data can be found in the server 
cache. If not, the pipeline requests the data from lake and appends the data to the 
data in the cache. A vital point of this mechanism is that the pipelines only directly 
access raw data when necessary, since raw data cannot be used before filtering and 
checkpointing. For example, if a user enables a differential analysis, the most ideal 
scenario is that the pipeline can find directly usable data in the cache, which implies 

Fig. 5 Runtime comparison
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that there is another user who set up a same analysis right before the current user and 
leaves the intermediate data in the cache. The main advantage of this design is that it 
significantly reduces duplication of work.

The working of this mechanism is now presented by an example. Suppose Alex is 
the first user accessing the framework and he selects SETD2 as the target gene. Then 
Alex completes the configuration step and establishes a heatmap differential analysis 
pipeline. The pipeline then checks if there is a usable data set A in the cache that can 
be used for the first step of the mechanism. In this case, A does not exist in the cache 
since this is the first heatmap pipeline in the framework. The pipeline then tries to 
access the data in data lake. Again, it cannot get the expected data as the framework 
only pre-stores raw data in data lake, which is not directly usable. Since the pipeline 
fails to retrieve the data A from either the cache or the data lake, the analysis pipe-
line starts to generate the required data from scratch. For this process it fetches the 
raw data from data lake and builds the data following the differential analysis pipeline 
described in Sect.  3.1. Once completed, the intermediate data will be sent back to 
data lake with configuration tagging, so that the later analysis pipeline can detect the 
usable data by checking the configuration tagging. Suppose later that Bob accesses the 
framework and selects the same gene of interest, which in this case is SETD2. Then 
the analysis pipeline he submits will get the data without creating it from scratch 
since this gene has been analyzed by other users.

This mechanism is an implementation of the idea of space time tradeoffs, where 
we increase the use of space while reducing pipeline processing time. Having said 
that, the framework does not keep all the intermediate data generated by the frame-
work. Only high-frequency and relatively general data can be permanently stored in 
BioLake.

Fig. 6 Reactive continuous data integration
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Custom resource management

The cashing approach used for the resource management is now presented. Caching 
techniques are widely used in today’s computing infrastructure from virtual memory 
management to server caches and memory caches [31]. As noted in Section 4.1, most 
of the intermediate data generated by the pipeline is placed in the server cache for reuse 
purpose. Thus, the framework applies two resource management mechanisms to pre-
vent the infinite growth of the cache size, since the server capacity is limited.

The first mechanism for this approach is for the general custom intermediate data 
where general custom intermediate data is data constructed without the participation of 
a custom configuration. For example, the foldchange table of a specific gene, is defined as 
general custom intermediate data in the BioLake framework. The primary feature of this 
kind of data is the repeated usage by multiple pipelines. Thus, the Least Recently Used 
(LRU) policy is applied, which always replaces the least-recently-used page in the mem-
ory cache [32] with the new data. This policy is applied to the server cache, to remove 
the least recently used data. That is, when the cache capacity exceeds a preset limit, 
and a pipeline tries to place new data that doesn’t exist in the cache and the framework 
starts removing the least recently used data in the cache to ensure the cache capacity 
stays below our preset limit. The second mechanism is for the fully custom intermediate 
data where fully custom intermediate data is defined as data constructed with the par-
ticipation of all the custom configurations. Since this kind of data has a low reuse rate, 
it is assigned a browser ID to each data item, where the browser ID corresponds to the 
browser the user is using. When a user accesses the BioLake framework, its browser will 
be assigned a unique ID and the framework will append this ID to all the fully custom 
intermediate data generated by this browser. Once the user closes this browser, all fully 
custom intermediate data assigned with the corresponding browser ID will be deleted 
immediately.

Case study
A case study to illustrate BioLake’s usability and flexibility is now presented. This study 
briefly introduces the basic functionalities of BioLake and demonstrates some sample 
results. To begin, all the data configurations are reset and the server cache is cleared and 
we apply SETD2 analysis on the TCGA_PRAD dataset.

Figures  7 and   8 present the heatmap analysis where users are able to decide the 
number of top-ranked genes and where these selected top-ranked genes will be stored 
for GSEA. To conduct this analysis, users are expected to input the number of genes 
involved, which determines the vertical extent. It is worth mentioning that BioLake does 
not pre-analyze the user-provided dataset until the actual execution is triggered by the 
user, which implies that the user’s input range is not limited. However, if the input range 
is beyond the scope of the applied dataset, BioLake will apply the maximum range to the 
output instead.

Figure 9 shows the overall procedure of volcano differential analysis for gene SETD2, 
where users can generate the volcano plots in the way they want, by adjusting adjust P 
value and fold-change values. Since BioLake employs a reactive continuous data inte-
gration as described in Sect. 4.1, this differential analysis becomes the prerequisite for 
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GSEA if BioLake has not previously interpreted the applied dataset. However, once this 
differential analysis is performed for the first time, the intermediate data will be cached, 
and publicly accessible instantly for further use.

Figure  10 presents sample results of BioLake’s clinical analysis, where gleason_score 
was used as the splitting metric. The left figure displays the results in numeric mode, 
with each distinct stage’s gene expression represented by a single boxplot. The right fig-
ure shows the expression results in custom mode, where a predefined group was cre-
ated to store specific gleason_score stages (in this example, we picked stage 6, 7, and 8). 
Recall that if not all stages are assigned to these predefined groups, BioLake creates an 
additional other group to include any unassigned stages. In this example, the other group 
contained all samples with gleason_score stages not equal to 6, 7, or 8. This design ena-
bles users to conduct A/B testing by assigning a set of the target stages to group0 while 
leaving the remaining stages into the other group. Figure 11 shows the sample result of 
BioLake’s survival analysis, where the level of gene expression was used to split the sam-
ples into four groups

Fig. 7 Heatmap analysis for top 50 genes in TCGA_PRAD, where target gene is set to SETD2

Fig. 8 Heatmap analysis for top 5 genes in TCGA_PRAD, where target gene is set to SETD2
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The users can apply the intermediate data to conduct the corresponding GSEA when at 
least one of the two differential analyses has been done. Figure 12 presents the GESA analy-
sis using correlation as the ranking metric, where the correlation value was generated by the 
previous heatmap analysis pipeline. There are three KEGG plots shown in Fig. 12, where 
the left side was generated using the top 700 genes, the middle was generated using the top 
7000 genes, and the last one was generated using all available genes.

Conclusion
BioLake provides a web-based framework for bioinformatic researchers, accessible at 
https:// biola ke. ucalg ary. ca. The hope is that BioLake will allow researchers to focus more 
on scientific research rather than tool usage. BioLake does not apply manual inspection 
for any incoming data provided by the user to enhance its flexibility. And users can decide 
about the public visibility of provided data. In the case where the permission of public 
visibility is granted, BioLake will credit the provider and open the data to public access. 
However, denying public visibility cannot guarantee the security of provided data, as the 
current version of BioLake does not apply strict security protection. In term of usability, 
BioLake returns the last layer data in each analysis, which can be directly used in modern 
machine learning algorithms, or critical feature selection for clinical perdition [33]. Lasting, 
while BioLake was designed to tackle prostate cancer data analysis, the capability goes way 
beyond this scope, and we expect to append more datasets gradually for other cancers if 
applicable in the future to fulfill more analysis requirements.

Future work
The future development of this platform will be directed toward two critical aspects. The 
first aspect focuses on enhancing the security and confidentiality of user-provided data. 
To achieve this, we will explore the implementation of advanced security technologies, 

Fig. 9 Volcano analysis with adjust P value = 0.05 and foldchange = 0.25

https://biolake.ucalgary.ca
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Fig. 10 Clinical analysis for expression level using gleason score as splitting metric

Fig. 11 KM analysis where groups are split by expression level



Page 15 of 17Li et al. BMC Bioinformatics           (2025) 26:37  

such as blockchain frameworks [34] and RNA-based encryption methodologies [35], to 
safeguard the integrity and privacy of custom data during analysis.

The second aspect involves improving the scalability and versatility of the platform. 
This will be accomplished by incorporating additional analytical engines and expanding 
the range of supported datasets. Such advancements will enable the platform to facili-
tate the analysis of various cancer types beyond prostate cancer, thereby broadening its 
applicability and impact in the field of bioinformatics research.
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