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Background
In the current omics era, the focus of metabolic function analysis has shifted from indi-
vidual organisms to entire microbial communities, as well as the intricate metabolic 
interactions among community members. The vast quantity of sequence data generated 
from metagenomic and metatranscriptomic samples requires specialized tools for the 
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Background: MetaDAG is a web‑based tool developed to address challenges posed 
by big data from omics technologies, particularly in metabolic network reconstruc‑
tion and analysis. The tool is capable of constructing metabolic networks for specific 
organisms, sets of organisms, reactions, enzymes, or KEGG Orthology (KO) identifiers. 
By retrieving data from the KEGG database, MetaDAG helps users visualize and analyze 
complex metabolic interactions efficiently.

Results: MetaDAG computes two models: a reaction graph and a metabolic directed 
acyclic graph (m‑DAG). The reaction graph represents reactions as nodes and metabo‑
lite flow between them as edges. The m‑DAG simplifies the reaction graph by col‑
lapsing strongly connected components, significantly reducing the number of nodes 
while maintaining connectivity. MetaDAG can generate metabolic networks from vari‑
ous inputs, including KEGG organisms or custom data (e.g., reactions, enzymes, KOs). 
The tool displays these models on an interactive web page and provides download‑
able files, including network visualizations. MetaDAG was tested using two datasets. 
In an eukaryotic analysis, it successfully classified organisms from the KEGG database 
at the kingdom and phylum levels. In a microbiome study, MetaDAG accurately distin‑
guished between Western and Korean diets and categorized individuals by weight loss 
outcomes based on dietary interventions.

Conclusion: MetaDAG offers an effective and versatile solution for metabolic network 
reconstruction from diverse data sources, enabling large‑scale biological comparisons. 
Its ability to generate synthetic metabolisms and its broad application, from taxonomy 
classification to diet analysis, make it a valuable tool for biological research. MetaDAG 
is available online, with user support provided via a comprehensive guide. MetaDAG: 
https:// bioin fo. uib. es/ metad ag/ User guide: https:// biocom‑ uib. github. io/ MetaD ag/
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taxonomic and functional annotation of genomes, genes, and proteins, as well as their 
subsequent integration and analysis. In this context, the reconstruction and analysis 
of metabolic networks are crucial for understanding the metabolic profiles and their 
interactions within microbial communities. These networks can be extensive, often 
encompassing hundreds or even thousands of interrelated reactions. As a result, the 
development of bioinformatic tools for their visualization and comprehensive analysis 
has become a necessity.

Several methodologies for metabolic reconstruction have been developed, including 
machine learning-based approaches that predict and reconstruct metabolic pathways 
(see [1] and [2] for an extensive review of these methods). Nevertheless, the constantly 
increasing amount of metabolic information stored and characterized in several pub-
lic repositories according to their functions, such as KEGG  [3–5], BioCyc  [6], Meta-
Cyc  [7], among others, strengthens the need for automated metabolic reconstruction 
methods based on curated metabolic data information. In this line of research, various 
approaches to metabolic network reconstruction, analysis, and comparison can be found 
in the literature [8, 9](see [10–12] for surveys on different approaches and tools). Each 
approach selects a representation of metabolic networks that models information of 
interest, proposes a similarity or a distance measurement, and possibly supplies a tool. 
Models of metabolic networks range from a high-level abstraction of metabolic informa-
tion, such as abstract metabolic networks, to a lower level of abstraction, such as reac-
tion networks, metabolic hypergraphs, or stoichiometric matrices.

In [13] a novel methodology for the analysis of metabolic networks was presented. 
This methodology incorporates the concept of strongly connected components in a 
reaction graph, called metabolic building blocks. Additionally, a new model of meta-
bolic networks, known as a metabolic DAG, was defined to combine the reaction graph 
information with the network’s topology. This methodology has been used in different 
contexts, and proven to be successful in comparing, analysing, and visualising metabolic 
networks, as shown in previous studies [14, 15]. As a result, we present here MetaDAG, 
a web-based tool that implements the metabolic DAG methodology. MetaDAG is a con-
tinuation of the protocol introduced in [13], and its innovation lies in the tool that makes 
the methodology accessible and easier to use for any researcher.

MetaDAG automates the metabolic network reconstruction using several different 
identifiers of data stored in the KEGG database, which we choose as our source of meta-
bolic information due to its curated nature and standardized presentation.

MetaDAG enables metabolic network reconstructions using a variety of inputs, 
such as a single organism, groups of organisms, specific reactions, enzymes, or KEGG 
Orthology (KO) identifiers. This flexibility supports reconstruction across a range of 
sample types-from individual microbial samples to consortia and complex metagenomic 
samples-making it a powerful tool for diverse analytical needs. Additionally, MetaDAG 
can generate “synthetic metabolisms” independent of taxonomic classification. By iden-
tifying interactions within the metabolic data, it creates artificial metabolic networks, 
addressing research gaps that often focus exclusively on established model organisms.

Metabolic networks are generated by retrieving the reactions associated with user-
specified queries from the KEGG database. Initially, it computes a metabolic network 
as a reaction graph. From the reaction graph, a directed acyclic graph called a metabolic 
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DAG (m-DAG for short) is computed by collapsing all strongly connected compo-
nents of the reaction graph into single nodes, called metabolic building blocks (MBB 
for short). In the m-DAG, two MBBs are connected through an edge if there is at least 
one pair of reactions (one in each MBB) connected by an edge in the reaction graph. 
As a result, the m-DAG representation reduces considerably the number of nodes while 
keeping the network’s connectivity. Hence, at first glance, this m-DAG representation 
offers an easy-to-interpret topological analysis of the reconstructed metabolic network. 
Both models of metabolic networks, the reaction graphs and the m-DAGs, are displayed 
in an interactive web to aid users in visualising and analysing the networks, as well as 
to retrieve the node’s information linked to KEGG. Therefore, with MetaDAG, reaction 
graphs, and m-DAGs can be generated effortlessly and automatically.

Furthermore, when examining different groups of organisms, experiments, or sam-
ples, MetaDAG also calculates the core and pan metabolism associated with each group. 
It then provides the results of a comparative analysis of their respective m-DAGs. This 
comparative analysis offers valuable insights into the shared and unique metabolic 
features across different groups, experiments, or samples, as shown in the results of a 
Eukaryotes test and a gut microbiome analysis, conducted for this work to assess the 
tool’s performance and functionality. Given the vast amount of information MetaDAG 
generates for each query, a comprehensive user guide in R is provided to assist users in 
understanding, handling, and analysing all the results. (See https:// biocom- uib. github. 
io/ MetaD ag/).

Implementation
MetaDAG is an innovative web-based tool designed to offer users a robust and effective 
method for analysing and visualising complex DAGs that model metabolic networks. 
The client-side, or front-end, of MetaDAG has been crafted using Angular and Type-
Script, ensuring a robust and responsive user interface.

The Angular framework enables consistent integration of components, bringing a 
dynamic and interactive user experience. TypeScript, a superset of JavaScript, further 
enhances the front-end development process, promoting better code organization, early 
error detection, and improved maintainability.

The server-side, the back-end of MetaDAG, has been engineered using Java 19, a ver-
satile and highly reliable programming language, and deployed as a self-contained JAR 
file to ensure stability over time, in combination with the popular Spring framework. The 
Spring framework simplifies the development process by providing a comprehensive set 
of tools and libraries for building scalable and performant applications. With Spring, the 
back-end of MetaDAG benefits from features such as dependency injection and aspect-
oriented programming, making it a solid foundation for data-intensive operations.

The back-end has been designed in two layers. The front layer is responsible for 
serving data requests from the front-end (e.g.: serving the files requested or preparing 
the data the user wants to download). Furthermore, when a user makes a new query, 
the front layer prepares the data needed to fulfill the request and passes them to the 
calculation layer, wherein an independent process of the calculations is performed. 
This way, the front layer can serve customer requests quickly. The calculations are 
made independently, and they can last a significant amount of time, so a contact email 

https://biocom-uib.github.io/MetaDag/
https://biocom-uib.github.io/MetaDag/
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for the user has to be provided. When the calculations are finished, an email giving 
access to the results is sent.

For guidance purposes, during the development, several tests were conducted, and 
we measured the response times for these tests. The results are shown in Table 1. The 
calculations were performed on a server equipped with two AMD 7282 processors 
and 512 GB of DDR4/3200 MHz memory.

In the simplest case, a specific pathway of an organism, the result can be generated 
in just a few seconds with an average response time of 1.07 s per test. However, when 
dealing with larger datasets, the required time increases significantly. This is true for 
the global metabolic network of a list of organisms, where it is possible to use the 
entire set of available eukaryotes and prokaryotes (8,935 species), leading to response 
times that can exceed 40  h. Moreover, if m-DAG similarities need to be calculated, 
the response time increases further. Storage space required for the resulting data also 
varies depending on the type of experiment and the data involved. For instance, in 
the case of a specific pathway of an organism, only a few megabytes are needed. How-
ever, for the previously mentioned global metabolic network of a list of organisms, 
which involves the complete set of available organisms, the resulting data can require 
slightly more than 70 GB.

MetaDAG makes use of the fundamental biological information available on the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database. It is important to 
denote, since the metabolic reconstructions by MetaDAG are constructed in a pres-
ence/absence scenario only, and KEGG is a widely recognized and highly curated 
database that contains an extensive collection of biological pathways and networks. 
It provides standardized nomenclature and annotations for genes, proteins, enzymes, 
orthologs, and pathways. We consider the KEGG database since it is an extensive, 
reliable, and widely used resource explicitly designed to present data in a standard-
ized way.

MetaDAG’s design

We first recall the methodology of metabolic networks and the construction of meta-
bolic DAGs. Next, we present its implementation in the proposed tool MetaDAG to 
generate, analyse, and compare metabolic networks.

Table 1 Execution times with MetaDAG

This table shows, for every query available in MetaDAG, the mean and standard deviation of the execution times of different 
performed tests

Query Mean (s) Std. Dev. (s) Number 
of Tests

1 1.07 1.00 179

2 24.61 16.19 97

3 1239.31 80.00 80

4 12237.17 132.00 132

5 75.28 96.00 96

6 9905.37 10169.47 51



Page 5 of 21Palmer‑Rodríguez et al. BMC Bioinformatics           (2025) 26:31  

Reaction graphs & Metabolic DAG models

A reaction graph model of metabolism is a directed graph GR = (R,E) where R is the set 
of chemical reactions present in the metabolism and E is the corresponding set of edges. 
In this model, there is an edge from Ri to Rj if, and only if, there is at least one metabolite 
produced by Ri that Rj consumes. In the case of a reversible reaction, two different nodes 
are considered, one for the forward reaction and the other for the backward reaction. 
The set of chemical reactions is not necessarily from one single species; it may include 
reactions coming from multiple species or synthetic organisms.

A path from node u to node v in a directed graph G is a sequence of nodes {u0,u1, ...uk} 
such that u0 = u , uk = v , and (ui,ui+1) is an edge in G for i = 0, ..., k − 1 . Two nodes u, v 
are said to be biconnected if there is a path in each direction between them. It turns out 
that biconnectivity is an equivalence relation; therefore, it creates a partition (or clus-
ter) of the set of nodes of G. Every cluster, called a strongly connected component, is a 
subgraph such that every pair of nodes in it are biconnected, and it is maximal under 
inclusion with this property [16, 17]. In addition, the quotient graph by the biconnectiv-
ity relation, called the condensation of G, is defined such that each strongly connected 
component is contracted to a single node. There is an arc from a strongly connected 
component si to a strongly connected component sj if, and only if, there is an arc in G 
from a node u ∈ si to a node v ∈ sj.

A directed acyclic graph, DAG for short, is a directed graph with no cycles. The con-
densation of a directed graph is always a DAG. Thus, for every reaction graph GR , we 
can consider its collection of strongly connected components and compute its conden-
sation, which will become a DAG. We call metabolic DAG (m-DAG for short) the con-
densation of a reaction graph GR , and we call a metabolic building block (MBB for short) 
each strongly connected component in the reaction graph GR . Those MBBs with only 
one reaction are called essential MBBs. Notice that essential MBBs are the nodes in the 
m-DAG such that if one were to be deleted, it would increase the number of connected 
components in the m-DAG.

Given a set of reaction graphs, its pan-metabolism is the reaction graph obtained when 
considering the reactions that belong to one or more reaction graphs in the set. The 
core-metabolism is the reaction graph obtained when considering the reactions belong-
ing to all the set’s reaction graphs. Intuitively, the pan-metabolism represents the joint 
metabolism, while the core-metabolism represents the shared metabolism. These terms 
were inspired by the pangenome concept [21].

Figure 1 shows the MetaDAG interface used to visualize the reaction graph generated 
by the first query, specifically the reaction graph of the glycolysis pathway in Homo sapi-
ens. Notice that we show the reaction graph of a single pathway, which is a very reduced 
set of reactions compared to the complete metabolism of Homo sapiens (35 reactions 
versus 1860). The MetaDAG interface used to visualize the metabolic DAG associated 
with this reaction graph is shown in Fig. 2. We refer the reader to Fig. 4 in [13] to visual-
ize the connection between the reaction graph in Fig. 1 and its corresponding m-DAG in 
Fig. 2. This m-DAG contains 7 MBBs: 4 MBBs with more than one reaction (depicted in 
yellow) and 3 MBBs (depicted in green), each consisting of only one reaction. Note that 
removing the green MBB at the top of the m-DAG does not increase the number of con-
nected components, which remains one. However, if we remove the other green MBBs, 
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the m-DAG splits into two connected components. Therefore, only these two MBBs are 
considered essential MBBs. To easily explore the reactions that belong to an MBB, users 
can select it, and a small window on the right presents information for all the reactions 
within the MBB. This includes the KEEG ID of the reaction, the graphical representation 
of the molecular structures of each substrate and product, and a hyperlink pointing to 
the reaction information on the KEGG webpage.

MetaDAG’s calculation and outcome scope

In this section, we explain all the experiments implemented in the tool MetaDAG. Que-
ries 1 to 3 are devoted to computing the metabolic graphs of a single pathway, a single 
organism, or a single pathway in all organisms from the KEGG catalog. Queries 4 to 

Fig. 1 Reaction graph of the glycolysis pathway in Homo sapiens, computed and displayed with the tool 
MetaDAG

Fig. 2 Metabolic Directed Acyclic Graph (m‑DAG) corresponding to the reaction graph of the glycolysis 
pathway in Homo sapiens computed and displayed with the tool MetaDAG
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6, compute the metabolic graphs of a list of organisms, KOs, compounds, enzymes, or 
reactions, as well as the construction of synthetic organisms.

Although all metabolic information is retrieved from the KEGG database, we are not 
restricted to model organisms in general, only in queries 1 to 4 specifically designed to 
obtain the metabolic networks of the selected organisms and pathways from the KEGG 
catalog. The other queries, on the contrary, are designed to obtain the metabolic net-
works of a metagenome sample or transcriptomics, metabolomics, and proteomics data 
which can be considered as synthetic or new organisms. Therefore, it allows obtaining 
the metabolic networks for non-model organisms, and even communities.

MetaDAG provides the reaction graphs and the corresponding metabolic DAG mod-
els under the following queries: 

1. A specific pathway of an organism: to generate a reaction graph and m-DAG, users 
are required to choose one pathway and an organism from the list of metabolic path-
ways and organisms available in the KEGG database. Then, all reactions present in 
the selected pathway for the chosen organism are taken into account to construct the 
reaction graph and m-DAG.

2. Global metabolic network of one organism: this query generates the reaction graph 
and m-DAG for the entire metabolism of a single organism. In this query, the focus is 
on selecting a singular organism, and the metabolic models are constructed by incor-
porating all reactions present across all pathways of the chosen organism.

3. Specific pathway of all organisms: in this query, a single pathway from the catalog 
is chosen. The metabolic models are then constructed by considering all reactions 
present in that pathway for at least one organism. Essentially, this query provides the 
reaction graph and m-DAG for a reference pathway sourced from KEGG.

4. Global metabolic network of a list of organisms: the user has to provide a list of 
organisms using their KEGG identifier, available at https:// www. kegg. jp/ brite/ br086 
10. Then, the reaction graph and m-DAG of each organism are constructed in the 
same manner as in the second experiment. Additionally, the pan-metabolism and 
core-metabolism of all organisms in the provided list are generated. Users also have 
the flexibility to select specific groups of organisms from the list, and for each group, 
their pan and core metabolisms are constructed as well. Furthermore, users can 
request similarities among all m-DAGs as explained in the next section.

5. Synthetic metabolism of a list of compounds, reactions, enzymes, or KOs: this query 
generates the reaction graph and m-DAG for a given set of compounds, reactions, 
enzymes, or KO identifiers. When a set of enzymes is provided through the EC num-
ber or a set of KO identifiers, or when a list of reactions is specified, even if they are 
not necessarily from the same organism, metaDAG constructs the reaction graph by 
retrieving all relevant information from KEGG. Namely, from the list of enzymes, 
we compile the list of reactions each enzyme catalyses. Using this information, we 
generate a reaction-compound network as the foundation to generate the metabolic 
reaction graph. Similarly, when a list of compounds is provided, the models are con-
structed by considering all reactions where a compound from the list is present in 
either its product or substrate. Additionally, users can request the similarities among 
all m-DAGs.

https://www.kegg.jp/brite/br08610
https://www.kegg.jp/brite/br08610
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6. Comparison of several experiments: this query allows joining the previous queries. 
Namely, the user may compare a set of organisms and a set of reactions, enzymes, 
KOs, or compounds, and obtain the analysis of the whole experiment. That is the pan 
and core metabolisms. In addition, the metabolisms of a synthetic organism can also 
be constructed. Finally, users can request the similarities among all m-DAGs.

Pairwise similarity of m‑DAGs

For every pair of m-DAGs, the tool provides two similarity measures based on the similar-
ity of their MBBs: the Munkres-similarity and the MSA-similarity.

The Munkres-similarity is the similarity defined in [13] which we briefly recall here. 
Given two nodes, MBB1 and MBB2 , their similarity is based on the reactions’ similarity 
score as it was defined in  [18]. Then, the similarity score, Smbb(MBB1,MBB2) , is com-
puted by:

• defining a complete bipartite graph in which the reactions in MBB1 and MBB2 are 
nodes and the weight of each edge (Ri,Rj) ∈ MBB1 ×MBB2 is the similarity of Ri 
and Rj;

• applying the maximum weighted bipartite matching algorithm to the resulting graph 
to obtain the best match between MBB1 and MBB2;

• summing the scores of the best match and dividing it by max {|MBB1|, |MBB2|}.

Finally, the similarity measure between two m-DAGs, Sim(mD1,mD2) is computed by:

• defining a complete bipartite graph in which the MBBs in mD1 and mD2 are nodes 
and the weight of each edge (MBBi,MBBj) ∈ mD1 ×mD2 is Smbb(MBB1,MBB2);

• applying the maximum weighted bipartite matching algorithm to the resulting graph 
to obtain the best match between mD1 and mD2;

• summing the scores of the best match and dividing it by max {|mD1|, |mD2|}.

The MSA-similarity, which stands for Maximum Similarity Assignment, is defined as 
follows: Let MBB1 and MBB2 be two MBBs, its similarity score is

where MSAmbb(MBB1,MBB2) is defined by

and, analogously, we define MSAmbb(MBB2,MBB1) . Again, the pairwise reactions’ simi-
larity score is the similarity defined in  [18]. Then, the similarity measure between two 
m-DAGs, mD1 and mD2 is

MSAmbb(MBB1,MBB2)+MSAmbb(MBB2,MBB1)

2

∑

Ri∈MBB1

max
Rj∈MBB2

Sim(Ri,Rj)

|MBB1|

MSA(mD1,mD2)+MSA(mD2,mD1)

2
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where MSA(mD1,mD2) is defined by

and, analogously, we define MSA(mD2,mD1).
We discuss and compare these two similarities in the results section.

MetaDAG’s output

For every query, MetaDAG provides the corresponding metabolic models, that is, the 
reaction graphs and the m-DAGs. In addition, MetaDAG provides the pan and the core 
reaction graphs and m-DAGs of different experiments or organisms, as well as the pair-
wise similarities of all m-DAGs. Upon completion of a query, users receive an email con-
taining a job ID, which they can use to access the results on the MetaDAG front page. 
In the upper-right panel, users have the option to download the results, share them, or 
display them, through user-friendly icons. By clicking the display icon, a new window 
opens, allowing users to select any computed metabolic graph for a specific organism or 
experiment. This includes the m-DAG, reaction graph, and the largest connected com-
ponent of each m-DAG. Once a metabolic graph is chosen, it is displayed on an inter-
active webpage to facilitate user exploration and analyses. For detailed instructions on 
interpreting the results of the MetaDAG tool, please refer to the pipeline available at 
https:// biocom- uib. github. io/ MetaD ag/.

Metabolic graphs displayed on the webpage

The metabolic graphs displayed on the tool’s webpage from the user’s query are the 
following:

• Reaction Graph. To help users visualise the reaction graph and contextualise the 
reactions in it, metaDAG shows not only the reactions, i.e., the nodes in the reaction 
graph, but also the metabolites associated with each reaction in the KEGG database. 
Reactions are depicted as green circular nodes, and, for every reversible reaction, a 
new node depicted by a purple oval is added. The directed edges from a metabolite to 
a reaction, or vice versa, show if the metabolite is a substrate or a product of the cor-
responding reaction. Every reaction and compound can be selected, and then, a new 
window emerges with its information as well as a link pointing to the corresponding 
information on the KEGG’s webpage.

• m-DAG. The nodes of the m-DAGs, i.e., the metabolic building blocks (MBBs), are 
displayed with different types of nodes. Essential MBBs are depicted as green octa-
gons, while green circles are the MBBs with only one reaction. Yellow circles are 
those MBBs with more than one reaction, and their size refers to the number of reac-
tions inside the MBB. To easily see the reactions that belong to an MBB, the user 
can select it and a small window appears with the information of all reactions in the 
MBB. Namely, the ID of the reaction in KEGG, its graphical representation of the 
molecular structures of each substrate and product, and a link pointing to the reac-
tion information in the KEGG webpage. On the top-right of this window, in the third 

∑

MBBi∈mD1

max
MBBj∈mD2

MSAmbb(MBBi,MBBj)

|mD1|

https://biocom-uib.github.io/MetaDag/
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icon, the user may contextualize the reactions, since these selected reactions appear 
highlighted over the reference pathway in the KEGG format.

• Biggest Connected Component. When an m-DAG is huge, as in the case of the 
m-DAG of the entire metabolism of one organism, there are often many isolated 
nodes. However, as discussed in the results section, these m-DAGs have a considera-
bly large connected component. Therefore, we found it valuable to separately extract 
the biggest connected component of an m-DAG, which is displayed in the same 
format as the full m-DAG. In the supplementary material, File S1 presents the core 
m-DAG for the kingdom of Animalia, whereas File S2 displays its largest connected 
component.

Downloadable metaDAG data results

All results for a given query can be classified into two categories: On one side, files 
containing information about the relationships between the m-DAGs, the MBBs, and 
the various organisms or samples provided. On the other side, several files describing 
each m-DAG, so that the information can be visually represented. MetaDAG provides 
a specific viewer to display the m-DAGs, and also the Reaction Graphs, giving users the 
possibility to carefully analyze those graphs. Additionally, there is an option to down-
load the files containing the data. In this case, users can select which items they wish to 
download.

In the most extensive case, the available information is organized into the following 
categories:

• General data: Files with the information describing the whole set of m-DAGs, they 
consist of; for each m-DAG which MBBs it contains, for each MBB which are the 
reactions involved, and, to simplify the data handling, a third file having a combi-
nation of both views, that is: for each m-DAG which reactions it has and in which 
MBB.

• Representation data: A detailed representation of each generated metabolic network 
(m-DAG and reaction graph), including the different format representations of the 
graphs, such as, graphml, svg, csv, etc.

We refer to File S3 in the supplementary material for a full description of every item that 
can be downloaded.

Results
The MetaDAG’s methodology has been already applied in two different scenarios. First, 
MetaDAG was successfully applied to obtain the metabolic DAGs of 2,328 symbiotic 
genomes included in the public database Symbiotic Genomes Database - SymGenDB [14] 
available at http:// symbi ogeno mesdb. uv. es/. All metabolic DAGs as well as the corre-
sponding pan and core metabolisms at the genus level were calculated and stored in the 
Meta-DAGs section of the database.

Second, to explore the tools’ usability regarding the metabolic network’s topol-
ogy, in  [15] the reaction graph and the m-DAG of a minimal metabolic network were 

http://symbiogenomesdb.uv.es/


Page 11 of 21Palmer‑Rodríguez et al. BMC Bioinformatics           (2025) 26:31  

constructed from the theoretical minimal gene set machinery revised in [19]. The reac-
tion graph of this minimal metabolic network consisted of 80 compounds and 98 reac-
tions, while its m-DAG had 36 MBBs. Additionally, 12 essential reactions were identified 
in the m-DAG that were critical for maintaining the connectivity of the network. Simi-
larly, the m-DAG of JCVI-syn3.0, and of Candidatus Nasuia deltocephalinicola were 
constructed. JCVI-syn3.0 is an artificially designed and manufactured viable cell whose 
genome arose by minimizing the one from Mycoplasma mycoides JCVI-syn1.0 [20], and 
Candidatus Nasuia deltocephalinicola is the bacteria with the smallest natural genome 
known to date. The comparison of the m-DAGs derived from a theoretical, an artificial, 
and a naturally reduced genome, denoted their different lifestyles, with a consistent core 
metabolism.

Eukaryotes test

To further evaluate our tool’s usability, as well as the m-DAG methodology, we ran a test 
considering all Eukaryotes from the KEGG database. We introduced them as a list of 
organisms using query number 4 on the metaDAG front-page. Currently, Eukaryotes are 
distributed in 535 Animals, 154 Fungi, 139 Plants, and 56 Protists (see File S4 in the sup-
plementary material). We obtained the reaction graphs and the m-DAGs of every organ-
ism, as well as the pan and core reaction graphs and m-DAGs for every Kingdom group. 
In addition, the Munkres-similarity and the MSA-similarity for every pair of m-DAGs 
were calculated. It took 244 minutes to obtain the results from the tool running on an 
AMD/7282 biprocessor provided with 512 GiB RAM.

Interestingly, we found that the core reaction graph of all Eukaryotes is empty, which 
means the absence of any common reaction across all Eukaryotic organisms. However, 
the core reaction graphs within the kingdom taxonomy level were not empty. Table  2 
shows the number of common reactions within every kingdom. We can observe that 
Animals have 133 reactions and 117 MBBs in common, Plants have 303 reactions and 
249 MBBs in common, while Fungi and Protists both have 25 reactions and 22 and 21 
MBBs, respectively in common.

Regarding the topology of the m-DAGs, we observe that all computed m-DAGs 
strongly share a topology profile. Namely, they have many isolated nodes, most of them 
consisting of MBBs with only one reaction, and also, they all have a considerably big 
connected component. Fig. 3 illustrates the varying sizes of the connected components 
of each m-DAG, grouped by kingdom. We observe a concentration of connected com-
ponents ranging from 1 to 20 nodes. Additionally, there is a noticeable gap between the 
smaller components and those around 250 nodes, indicating that m-DAGs tend to have 
a significantly large connected component, along with many isolated or very small ones. 
Indeed, Fig. 4 presents a violin plot showing the size of the largest connected compo-
nent of each m-DAG. Animals have the largest component, with 640 nodes, followed by 
plants with 597 nodes. Additionally, we observe significant variability in animals, where 
the largest component ranges from 200 to 640 nodes, while in plants, the range is more 
consistent, from 500 to 600 nodes, with only a few exceptions. We refer to the pipeline 
https:// biocom- uib. github. io/ MetaD ag/for a complete analysis of these graph’s topology.

Concerning the number of reactions in each node of every m-DAG, we also obtain 
the same pattern as before. Specifically, in all kingdoms, all m-DAGs have a huge 

https://biocom-uib.github.io/MetaDag/
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node (MBB). And the majority of the MBBs have only one or two reactions. For fur-
ther details, including all information regarding the metabolic pathways present in 
the largest MBB of every organism, we refer to File S5 in the Supplementary Material.

Fig. 3 Size of the connected components of every m‑DAG (y‑axis) grouped by kingdom (x‑axis)

Fig. 4 Size of the largest connected component of every m‑DAG (y‑axis) grouped by kingdom (x‑axis)
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As for the large-scale comparison of all constructed m-DAGs, both, the MSA-similar-
ity and Munkres-similarity measures were calculated with MetaDAG. In Fig. 5 we show 
the corresponding heatmaps to visualize the results. A heatmap allows for a visual ren-
dering of the similarity matrix produced by each similarity measure. Each cell (i, j) in the 
heatmap shows the similarity value between the i-th and j-th m-DAGs, colour-coded so 
that darker colours correspond to a high degree of similarity (from dark blue to yellow). 
In our case, the heatmaps are symmetric and cells in the main diagonal always show the 
darkest colour, resulting from comparing an organism with itself. We can observe in this 
figure that, both similarity measures correctly classify m-DAGs at the kingdom level, 
and we also clearly distinguish two separate groups within the Animals kingdom. Hence, 
for each similarity measure, we computed the hierarchical clustering of all Eukaryotes, 
using the Ward method with 4 clusters. The results are shown in Table 3.

Table 2 Reactions and MBBsthat are common by kingdoms

This table shows, for each kingdom, the number of common reactions present in the metabolism of all organisms within the 
kingdom, as well as the number of common MBBs

Kingdom Common reactions Common MBBs

Animals 133 117

Plants 303 249

Fungi 25 22

Protists 25 21

Fig. 5 Heatmaps of the similarity matrices of KEGG Eukaryotes: (a) MSA‑similarity at the kingdom level 
(top‑right); (b) Munkres‑similarity at the kingdom level (bottom‑right); (c) MSA‑similarity of animals at the 
Phylum level (top‑left); (d) Munkres‑similarity of animals at the Phylum level (bottom‑left)
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We observe that the Munkres and MSA-similarity separates almost all Animals 
(except 7 out of 535) into two homogeneous and distinct clusters. Plants are also sepa-
rated (except 14 from 139) in another homogeneous and distinct cluster, while Fungi 
and Protists end up within the same cluster together with the 7 animals and 14 plants. 
These 7 animals are nematodes or flatworms and exhibit a parasitic nature, leading to 
the development of various diseases. This parasitic condition could result in significant 
differences in their metabolic characteristics compared to other organisms. Concerning 
the 14 plants, they are all the green and red algae in the KEGG database. Hence, they 
are all clustered together. Some of them contain a high lipid content and are suitable for 
biodiesel production. As in the animal’s case, all of them exhibit unique characteristics 
that can influence their metabolism compared to other plants, and explain their cluster-
ing profile.

Similar results are also obtained with the Munkres-similarity. As shown in Table 3, in 
this case we obtain only 7 of the previous 9 animals clustered together with all Fungi, 
Protists, and green and red algae. See File S6 in the Supplementary material for a detailed 
description of these organism’s classification.

From this classification, a pertinent question arises: What factors cause these algae 
and animals to be distinguished from their respective kingdoms? To address this query, 
we revisited the core metabolism obtained with MetaDAG, but this time for each cluster 
rather than the kingdom’s core metabolism. Table 4 displays the number of reactions and 
MBBs that are common within each cluster.

We now observe that by dividing animals into two clusters - vertebrates and inver-
tebrates - the number of common reactions increases substantially. Notably, the verte-
brates cluster has 377 common MBBs, while the number of common reactions is 525. 
This indicates that vertebrates share MBBs with more than one reaction. In fact, the 
largest MBB in this core m-DAG encompasses 1039 reactions. In the plants’ cluster, 
i.e., cluster number 3, we again find that they have 631 MBBs in common from 1019 

Table 3 MSA and Munkres clusters

Clusters obtained at the kingdom level for all m‑DAGs of Eukaryotes with the MSA and Munkres‑similarity measures

Clusters Animals Fungi Plants Protists

1 331 0 0 0

2 197 0 0 0

3 0 0 125 0

4 7 154 14 56

Table 4 Common reactions and MBBs within the different clusters among the total number of 
them

Munkres and MSA similarity measures

Clusters  Common reactions # Reactions  Common MBBs # MBBs

Cluster 1 525 2037 377 1968

Cluster 2 243 1958 203 1938

Cluster 3 1019 2098 631 1616

Cluster 4 2 2332 2 2842
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common reactions. This implies that plants also share MBBs with more than one reac-
tion, where in this case, the largest MBB in this core m-DAG includes 309 reactions. 
In addition, in cluster number 4 we obtained that only 2 reactions and the correspond-
ing single MBBs are common, namely, R03659 and R04773. Both are catalized by the 
enzyme 6.1.1.10 which corresponds to the methionine t-RNA ligase. These two common 
reactions correspond to a tRNA ligase. One of them is related to the selenium metabo-
lism and the other to the methionine metabolism. Both compounds are fundamental to 
the metabolism of any living organism, indicating that the organisms grouped in this 
cluster have distinct metabolisms.

In addition, we re-evaluated this classification by increasing the number of clusters 
to 5 and 6. In this case, we obtained that animals are further divided. Meanwhile, the 
organisms in cluster number 4, which consists of protists, fungi, algae, and nematodes, 
continue to be grouped. We refer to the pipeline available at https:// biocom- uib. github. 
io/ MetaD ag/ for a complete analysis of the hierarchical clustering results.

To further investigate the ability to classify m-DAGs at a deeper taxonomy level, we 
considered the Animals’ classification at the Phylum level. The corresponding heatmaps 
are displayed in Fig. 5 on the right. We can observe that vertebrates are clearly separated 
from invertebrates. Also, within the invertebrates in the arthropods’ phylum, the class 
Insects are clearly differentiated from the others. Therefore, we can conclude that both 
m-DAGs similarities correctly classified the Eukaryotes at different taxonomy ranks. We 
refer to Files S7 to S12 in the Supplementary material for the heatmaps of the MSA and 
Munkres similarities at the Phylum level in the Plants, Fungi, and Protists kingdoms.

Lastly, we compared the agreement between the two proposed measures of m-DAG 
similarity. We calculated the Spearman and Pearson correlation coefficients between the 
values of MSA-similarity and Munkres-similarity obtained for each pair of m-DAGs. As 
a matter of fact, we obtained a value of 0.89 for the Spearman correlation coefficient 
and 0.91 for the Pearson correlation coefficient, indicating that both measures are nearly 
equivalent.

Figure  6 shows, in a box plot visualization, the similarity values of every pair of 
m-DAGs. As expected, the MSA-similarity measure obtained higher similarity values 
with a mean of 0.67 and a standard deviation of 0.18 while the Munkres-similarity meas-
ure obtained a mean of 0.55 with a standard deviation of 0.2. Hence, we conclude that 
both similarity measures almost equally classify the Eukaryotes within the different tax-
onomy groups.

Gut microbiome analysis

As a final example, we applied the tool MetaDAG to analyse a set of 24 gut micro-
biome samples. We considered 24 samples from the Study MGYS00000394 in the 
MGnify database [22]. This study consisted of 12 individuals going through two dif-
ferent diets, Korean (6 individuals) and Western (6 individuals). For every individual, 
fecal samples were taken before and after three months of diet, and the samples were 
categorized between individuals who lost a lot of weight (6 individuals) and those 
who lost little weight (6 individuals). For every sample, we downloaded the KOs func-
tional annotations, also available at Mgnify, resulting from the metagenome analysis 
they ran from raw Illumina sequence reads. Then, we used query number 6 of the 

https://biocom-uib.github.io/MetaDag/
https://biocom-uib.github.io/MetaDag/
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MetaDAG web tool to obtain and compare the metabolism associated with each sam-
ple. MetaDAG generated 24 reaction graphs and their corresponding m-DAGs. In 
addition, we considered different groups by diet (Western/Korean) and subgroups by 
the amount of weight lost (Low/High).

As a first result, we obtain that the core metabolism of the whole set has 3670 reac-
tions distributed in 678 MBBS and the same m-DAGs’ topology pattern obtained in 
the Eukaryotes test, which may support the existence of a core and stable gut micro-
biota. Table 5 shows the number of common reactions and MBBs when considering 
the entire dataset, the two diets (Western and Korean), and the amount of weight lost 
(High and Low). We can observe that there are tiny differences between the different 

Fig. 6 Boxplot of MSA‑similarity values (left) and Munkres‑similarity values (right) of the Eukaryotes test

Table 5 This table shows the number of reactions and MBBs that are common in the different 
groups and the number of reactions and Mbbs in the pan metabolism of each group

Dataset Common 
reactions

Common MBBs Total reactions Total MBBs

All 3670 678 4423 806

Western 3670 678 4260 773

Korean 4275 782 4423 806

Low All 3670 678 4296 791

High All 4133 764 4423 806

Low Western 3670 678 4114 762

Low Korean 4275 782 4296 791

High Western 4133 764 4260 773

High Korean 4297 792 4423 806
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groups and organisms since the corresponding core metabolisms consist of more than 
an 80% of the total reactions.

Next, to compare the different groups, we considered the Munkres-similarity pro-
vided by the tool. Hence, for every pair of m-DAGs we obtained its similarity and we 
considered the hierarchical clustering methodology to evaluate the results. Figure 7 
shows how the samples are clustered. We observe that except for one Western diet 
individual, the others are split into two homogeneous clusters, those with the Korean 
diet and those with the Western one. Within each cluster, those who lost a lot of 
weight are clustered together, as well as those who lost little weight. We also observe 
that there are no differences before and after diet. In fact, there are 8 clusters that cor-
respond to an individual before and after diet (4 Korean and 4 Western).

Finally, one of the main challenges of working with big data is our capability to cor-
rectly identify and interpret the little but important differences between samples. In 
fact, in research, it is crucial to figure out how to extract the most relevant infor-
mation. To this end, we made a Partial Least Squares Discriminant Analysis with its 
sparse variant (sPLS-DA), which enables the selection of the most predictive or dis-
criminative features (MBBs) in data to classify samples [23]. The sPLS-DA was calcu-
lated with the R package MixOmics [24].

Figure 8 displays the level of discrimination (coloured from dark blue to dark red) 
for each MBB and considered groups. For instance, we can observe that for the 
Korean dietary intervention, the 8 MBBs on the left clusterised this group, while 
the 6 MBBs on the right clusterised the Western diet. Also, we observe that there is 
one individual (WLB01 and WLA02) with many unique discriminative MBBs, which 
corresponds to the outlier we already obtained in the hierarchical clustering. Fur-
thermore, another individual (KHA24) can be considered an outlier for the Korean 
dietary intervention, since we can also find numerous discriminative MBBs between 
this sample and the rest. The dendrogram on the top clusterises the MBBs accord-
ing to their importance to classify the considered groups. In the dendrogram on the 
left, we can see how those groups (Western/Korean and Low/High) are classified, and 
they resemble the dendrogram obtained in Fig. 7. On the top left side of the figure, we 
show the metadata information.
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Finally, since we wanted to examine those MBBs that appear in the graphic as vertical 
small lines in dark red, we extracted the most significant MBBs for each group. Figure 9 
highlights their distinguishing metabolic capabilities.

Conclusion
This paper introduces a robust implementation of the metabolic networks method-
ology, enabling the construction of metabolic-Directed Acyclic Graphs (m-DAGs) 
to address diverse queries. These queries encompass analyzing specific pathways 
for individual organisms, exploring global metabolic networks of single organisms, 
studying pathways across all organisms in the KEGG database, investigating global 

Fig. 8 Heatmap of the partial least Squares discriminant analysis. For each sample corresponding to the 
labels on the right, the most predictive (dark red) or discriminative (dark blue) MBBs are shown at the bottom. 
The dendrogram on the top shows the MBBs clusters while the dendrogram on the left shows the m‑DAGs 
classification

Fig. 9 Loading plot from the sPLS‑DA applied to the dataset to discriminate MBBs. Colours indicate the MBBs 
in which the mean is maximum for each one
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metabolic networks for a list of organisms, examining synthetic metabolism involv-
ing various compounds, reactions, or enzymes, and facilitating comparisons between 
multiple experiments.

MetaDAG exhibits exceptional efficiency in rapidly computing reaction graphs and 
m-DAGs across a wide range of query types and data sources. Significantly, the integra-
tion with KEGG data empowers researchers to compare metabolisms associated with 
metagenomic and metatranscriptomic data, further enhancing the tool’s utility and 
versatility.

In addition, MetaDAG facilitates the construction of core and pan metabolisms from 
selected groups of experiments or organisms. This capability offers valuable insights into 
shared and distinct metabolic features, which contribute to understanding biological 
processes.

We are aware that pathway databases like KEGG and model organism knowledge have 
limitations, including incomplete pathway information, static representations that may 
not capture dynamic biological processes, and biases toward well-studied organisms, 
making them less reliable for non-model species. Model organisms offer insights, but 
generalizing their data to other species can be inaccurate, especially outside controlled 
lab conditions. Additionally, pathfinding with transcriptomics, metabolomics, and pro-
teomics data is complex due to variability, context-dependence, and data integration 
challenges. These data types also lack quantitative insights and may suffer from techni-
cal inconsistencies, making accurate pathway reconstructions difficult. However, despite 
these limitations, we are making the most of the available data to enhance our under-
standing and build the best possible reconstructions with current resources.

MetaDAG not only provides real-time interactive results on its user-friendly web-
page but also facilitates further analysis and exploration through downloadable files. In 
addition, we provide a comprehensive pipeline and guide to analyse the output results 
effectively. This resource equips researchers with the necessary tools and instructions to 
make the most of MetaDAG’s capabilities. We present here the results of a Eukaryotes 
test, and a gut microbiome test, as examples of well-known organisms and common uses 
we believe users can appreciate, and implement in their analysis. Furthermore, we also 
described MetaDAG’s performance and potential across a broad range of applications.

Availability and requirements
Project name: metaDAG Project home page: https:// bioin fo. uib. es/ metad ag/ Operat-
ing system(s): Platform independent Programming language: Java, Typescript Other 
requirements: Angular, Spring Boot, Apache Maven License: End User License Agree-
ment: https:// bioin fo. uib. es/ metad ag/ eula This tool is free for academic/non-commer-
cial use. Any restrictions to use by non-academics: This web application is provided for 
academic, research, and educational purposes. Users are responsible for ensuring com-
pliance with third-party data licenses, including KEGG, and must obtain the necessary 
permissions for any commercial use of such data. The application outputs may be used 
in research with proper attribution.
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