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Abstract 

Background:  Single-cell RNA sequencing (scRNA-seq) has transformed biological 
research by offering new insights into cellular heterogeneity, developmental processes, 
and disease mechanisms. As scRNA-seq technology advances, its role in modern biol-
ogy has become increasingly vital. This study explores the application of deep learning 
to single-cell data clustering, with a particular focus on managing sparse, high-dimen-
sional data.

Results:  We propose the SMD deep learning model, which integrates nonlinear 
dimensionality reduction techniques with a porous dilated attention gate compo-
nent. Built upon a convolutional autoencoder and informed by the negative binomial 
distribution, the SMD model efficiently captures essential cell clustering features 
and dynamically adjusts feature weights. Comprehensive evaluation on both public 
datasets and proprietary osteosarcoma data highlights the SMD model’s efficacy 
in achieving precise classifications for single-cell data clustering, showcasing its poten-
tial for advanced transcriptomic analysis.

Conclusion:  This study underscores the potential of deep learning-specifically 
the SMD model-in advancing single-cell RNA sequencing data analysis. By integrating 
innovative computational techniques, the SMD model provides a powerful framework 
for unraveling cellular complexities, enhancing our understanding of biological pro-
cesses, and elucidating disease mechanisms. The code is available from https://​github.​
com/​xiaox​uc/​scSMD.
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Introduction
Single-cell RNA sequencing (scRNA-seq) technology has become an essential high-
throughput genomics tool for uncovering cellular heterogeneity and complexity within 
tissues and systems [1, 2]. By enabling whole-genome or transcriptome analysis at the 
single-cell level, scRNA-seq offers unparalleled resolution in identifying the cellu-
lar diversity within organisms [3]. As single-cell sequencing technology advances, vast 
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amounts of single-cell genomics data have been generated. However, accurately identify-
ing and characterizing the diverse cellular states within these data presents a significant 
technological challenge [4]. Specifically, the high dimensionality, inherent noise [5], and 
sparsity of single-cell data introduce substantial obstacles for individual cell sample iden-
tification and clustering, particularly in distinguishing cell types. Moreover, the quality 
of cell clustering directly impacts the accuracy of downstream analyses [6, 7].

Cell clustering is a pivotal step in scRNA-seq data analysis, as many subsequent anal-
yses-such as constructing cell trajectories and identifying key differentially expressed 
genes-rely on the precise identification of cell subpopulations [8, 9]. Various clustering 
approaches have been applied to scRNA-seq data, including traditional methods like 
hierarchical clustering, spectral clustering, and k-means [10]. However, these methods 
face scalability limitations when applied to large-scale scRNA-seq datasets [11, 12].

In the realm of popular methods for single-cell analysis, Seurat [13] and SCANPY [14] 
are widely utilized tools. They employ community detection algorithms, such as the 
Louvain or Leiden algorithm, to classify large-scale datasets of individual cells. These 
tools also utilize dimensionality reduction techniques, including Principal Component 
Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE [15]), and Uni-
form Manifold Approximation and Projection (UMAP [16]). However, these algorithms 
are prone to local optima, particularly when dealing with large and complex networks, 
which may hinder them from finding optimal clustering results.

scDeepCluster [17] improves clustering effectiveness by integrating autoencoders and 
clustering algorithms to optimize feature learning and clustering processes. Despite its 
effectiveness, scDeepCluster can be computationally expensive for large-scale datasets 
and may face challenges in distinguishing between closely situated cell populations.

scGMAI [18] enhances feature extraction and dimensionality reduction, although it 
may lose some critical information when processing highly heterogeneous data, poten-
tially impacting its fine clustering accuracy. Several deep learning models are currently 
employed to improve clustering and extract latent information from single-cell data.

The Deep Convolutional Autoencoder (DCA) model is widely applied in single-cell 
data analysis for data denoising and feature extraction through an autoencoder architec-
ture [19]. While DCA effectively identifies critical signals in the data, its primary focus 
on denoising may limit its ability to capture complex intercellular interactions, which are 
essential for clustering and classification.

scGMAI [18] is also based on autoencoder networks and integrates Fast Independent 
Component Analysis (FastICA) to reduce the dimensionality of data reconstructed by 
the autoencoder. Another model, scDCCA [20], combines an autoencoder with a dou-
ble-contrastive learning module within a deep clustering framework to extract valuable 
features and enhance cell clustering. Additionally, scMRA [21] uses a knowledge graph 
to represent cell type features across different datasets, with graph convolutional net-
works serving as discriminators within this graph-based structure.

Each of these methods has unique strengths and limitations, and the choice of approach 
should be based on the specific characteristics of the dataset and the analytical objec-
tives. After thoroughly analyzing the limitations of existing methods, we propose a novel 
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approach that integrates the strengths of various techniques. Specifically, we incorporate 
the Multi-Dilated Attention Gate [22], originally developed for image segmentation, into 
a convolutional autoencoder framework informed by the negative binomial distribution. 
This integration enhances annotation accuracy and robustness, effectively addressing the 
challenges faced by current clustering methods when applied to large-scale scRNA-seq 
datasets.

Our approach mitigates the scalability constraints of traditional methods by utilizing the 
flexibility provided by multi-dilated convolutional layers, each with a unique dilation rate. 
This flexibility allows the model to adaptively adjust the receptive field size, enabling it to 
capture interactions between genes across different scales. By employing multiple dilation 
rates, our method effectively captures gene expression patterns at both local and broader 
contexts, thereby reducing computational overhead while maintaining high performance. 
Additionally, by integrating centroid loss and soft clustering, our model is less prone to get-
ting trapped in local optima, thereby providing more stable clustering results compared to 
conventional clustering techniques. These enhancements enable our approach to overcome 
issues related to scalability, local optima, and high computational costs often encountered 
with popular clustering techniques.

Furthermore, the robustness of our model to diverse types of noise during train-
ing enhances its generalization performance across different datasets, making the SMD 
model especially advantageous for analyzing large-scale and complex scRNA-seq data. To 
assess the performance of the SMD model, we benchmarked it against six other models. 
Our model consistently outperformed these alternatives across various metrics. Training 
and testing were conducted on multiple public datasets representing a wide range of tis-
sue types, disease states, and biological processes, ensuring the model’s ability to generalize 
within diverse and complex data environments. Experimental results demonstrate that the 
SMD model effectively addresses the generalization challenges in single-cell data annota-
tion, particularly in the accurate identification and clustering of cell types.

The primary contributions of our work can be summarized as follows:

•	 As a high-throughput genomics method, scRNA-seq has become an indispensable tool 
for elucidating cellular heterogeneity and complexity within tissues and systems. How-
ever, the high dimensionality and inherent sparsity of single-cell data present significant 
challenges for precise cell clustering in current research.

•	 To address this challenge, we propose SMD, a deep learning model that seamlessly inte-
grates nonlinear dimensionality reduction techniques with a porous dilated attention 
gate component, adapted from image segmentation, within a convolutional autoen-
coder framework informed by the negative binomial distribution.

•	 During training, the integrated SMD model automatically adjusts its weights to capture 
essential features for accurate cell clustering.

•	 In experimental validation, we evaluated the SMD model’s performance across four 
publicly available datasets and supplemented the analysis with proprietary osteosar-
coma data, further verifying the model’s superior clustering accuracy.
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Methods
Overview of ScSMD

This study introduces the scSMD model, a convolutional autoencoder-based frame-
work designed to analyze single-cell RNA sequencing (scRNA-seq) data. The encoder-
decoder architecture integrates a denoising convolutional autoencoder grounded in the 
negative binomial (NB) model, which is trained to extract a latent space representation 
and perform an initial clustering within this space. The encoder processes the input gene 
expression matrix into a latent space through convolutional layers and a fully connected 
layer, while the decoder reconstructs the data using a fully connected layer followed by 
deconvolutional layers.

The autoencoder architecture illustrated in Fig. 1A serves as the foundational frame-
work, employing convolutional and fully connected layers to map the input gene expres-
sion matrix into a latent space, followed by a reconstruction step. This structure supports 
initial clustering through the extraction of key latent features.

In contrast, Fig.  1C expands on this foundational framework by incorporating our 
innovative Multi-dilated Attention Gate module into the encoder. This advanced archi-
tecture processes the input data through multiple dilated convolutional layers with vary-
ing dilation rates, enabling the model to capture relationships across diverse scales. The 
attention mechanism refines feature selection, emphasizing key patterns in the gene 
expression data. By integrating these enhancements, the autoencoder in Fig.  1C dem-
onstrates superior clustering performance, particularly in datasets with complex and 
heterogeneous structures. This distinction between the two frameworks highlights 
the progressive development of the scSMD model, from the foundational autoencoder 
in Fig.  1A to the enhanced version in Fig.  1C, showcasing how the inclusion of the 

Fig. 1  Workflow of scSMD. A Encoder-Decoder Framework: A denoising convolutional autoencoder based 
on a Negative Binomial (NB) model is trained to obtain a latent space representation and perform preliminary 
clustering in the latent space. The encoder integrates a novel Multi-dilated Attention Gate to enhance feature 
selection and representation. B Cellnet Construction: Utilizes pairwise data similarity metrics to construct 
Cellnet, enabling the model to more effectively capture structural relationships within the data. C Algorithm 
Specifications and Implementation: Provides comprehensive details on the algorithm’s specifications, 
emphasizing the Multi-dilated Attention Gate component. This component improves interpretability and 
contributes to the enhanced performance of scSMD
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Multi-dilated Attention Gate module significantly improves the model’s feature repre-
sentation and clustering accuracy.

Additionally, the scSMD model integrates CellNet (Fig. 1B), a component that refines 
cell-cell similarity relationships within the latent space. CellNet is constructed using 
pairwise data similarity metrics and trained in two phases: first, by minimizing intra-
cluster variance and maximizing inter-cluster distances, and second, by applying a 
self-supervised learning approach to fine-tune cell-type classification. This dual-phase 
training ensures that CellNet effectively captures structural relationships in the data, 
enabling the model to improve clustering robustness.

By combining the autoencoder (Fig. 1A), the multi-dilated attention gate (Fig. 1C), and 
CellNet (Fig. 1B), the scSMD model demonstrates high accuracy and robustness in cell 
clustering. This integration provides a powerful and reliable tool for single-cell RNA-seq 
analysis.

Datasets and evaluation metrics

Datasets

In this study, we applied our novel analytical approach across multiple single-cell RNA 
sequencing (scRNA-seq) datasets to assess its generalizability and applicability. Spe-
cifically, we analyzed the PBMC 4K dataset, which records gene expression patterns in 
4,340 peripheral blood mononuclear cells. The Baron dataset, sourced from the NCBI 
GEO database, provided comprehensive transcriptomic data for pancreatic islet cells 
from four donors. Additionally, we utilized the Bhattacherjee dataset [23] and the Zeisel 
dataset [24], which offer cellular information from diverse regions of the mouse brain, 
enhancing our research with detailed analyses of neural cell types. Furthermore, osteo-
sarcoma data from Ruijin Hospital [25] was employed to further validate the SMD mod-
el’s effectiveness in cell clustering. Details of these datasets are presented in (Table 1).

Single-cell data is often sparse and contains a significant amount of low-quality infor-
mation. To address these challenges and ensure the quality and consistency of single-cell 
RNA sequencing (scRNA-seq) data, we implemented a series of meticulous preprocess-
ing steps. The raw datasets, available in formats such as CSV, TXT, and 10x MTX, were 
processed using the Scanpy library in Python. These datasets were initially converted 
into Scanpy’s AnnData objects, enabling uniform handling and processing in all subse-
quent steps.

In the initial phase of data preprocessing, rigorous filtering was applied to both cells 
and genes to improve data quality. Specifically, cells were retained if they expressed 
between 200 and 5000 genes, thereby removing low-quality cells with insufficient RNA 

Table 1  Summary of the real scRNA-seq datasets

Number Datasets Cell Type

1 PBMC 4340 8

2 Bhattacherjee 24822 8

3 Zeisel 3005 9

4 Baron 1936 14

5 Osteosarcoma 100987 11
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content and potential doublets exhibiting abnormally high gene counts. Additionally, 
cells with more than 10% mitochondrial gene content were excluded, as these are indica-
tive of compromised cell integrity or apoptotic cells. This mitochondrial gene filtering 
was performed by first calculating the percentage of mitochondrial genes in each cell, 
and cells with a mitochondrial gene content greater than 10% were removed.

For gene filtering, genes expressed in fewer than three cells were removed to reduce 
noise and enhance the accuracy of downstream analysis. This ensures that only genes 
with sufficient expression across multiple cells are retained, which contributes to the 
robustness of clustering and cell-type identification.

Subsequently, gene expression levels for each cell were normalized using Scanpy’s sc.
pp.normalize_total function, ensuring standardized total expression across all 
cells. A logarithmic transformation (sc.pp.log1p) was then applied to stabilize vari-
ance, facilitating statistical analysis and clustering. After normalization, highly variable 
genes were identified using Scanpy’s sc.pp.highly_variable_genes function. 
This step focused on retaining biologically informative genes, reducing data dimension-
ality while preserving signals essential for cell type identification and biological function 
analysis.

These preprocessing steps ensured that only high-quality cells and informative genes 
were included in subsequent analyses, effectively improving the reliability of clustering 
and other downstream results. The entire pipeline was implemented using the Scanpy 
library in Python, with the processed dataset saved in CSV format for model training. 
By enhancing data quality, minimizing noise, and emphasizing biologically relevant 
features, this pipeline provided a solid foundation for robust and reliable scRNA-seq 
analysis.

To evaluate the compatibility of the osteosarcoma dataset from Ruijin Hospital with 
the scSMD model, we performed an exploratory analysis using the R programming lan-
guage. This included several dimensionality reduction and visualization techniques to 
investigate the underlying data structure. The Principal Component Analysis (PCA) 
Loadings Plot illustrated the contribution of individual genes to the first two principal 
components ( PC1 and PC2 ), highlighting their influence on explained variance. The PCA 
Scores Plot provided an overview of sample relationships across principal components 
( PC1 to PC15 ), offering insights into sample clustering patterns. The Empirical Cumula-
tive Distribution Function (ECDF) Plot evaluated the deviation of principal components 
from theoretical distributions, with p-values indicating the significance of observed dif-
ferences. Finally, the Uniform Manifold Approximation and Projection (UMAP) visu-
alization revealed the data distribution across two UMAP dimensions (umap_1) and 
(umap_2) , offering insights into the intrinsic structure of cellular gene expression data.

These exploratory analyses were conducted solely to assess the quality and structure of 
the dataset, ensuring its suitability for subsequent analysis with the scSMD model. The 
Multi-dilated Attention Gate module, a key component of the scSMD model, was intro-
duced to enhance the model’s performance and plays a central role in improving fea-
ture extraction by capturing relationships across genes and cell types at multiple scales. 
Together, the preprocessing steps and exploratory analysis ensured that the data were 
appropriately structured and compatible with the scSMD model, while the Multi-dilated 
Attention Gate module enhanced the overall efficacy of the model in processing complex 
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gene expression data. Further details, including exploratory analyses such as PCA, ECDF, 
and UMAP visualizations, are provided in Supplementary Figure S1.

Evaluation metrics

By incorporating the multi-dilated attention gate component into a convolutional 
autoencoder grounded in the negative binomial distribution, our model demonstrated 
exceptional performance across a range of diverse datasets. In tests on public datasets, 
the model not only validated the feasibility of its approach but also highlighted its poten-
tial for practical applications in clinically relevant samples.

To rigorously assess the clustering algorithm, we introduced two evaluation metrics: 
Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI).

The Adjusted Rand Index (ARI), as defined in formula (1), is a widely used metric for 
evaluating the performance of clustering algorithms. It quantifies the similarity between 
clustering results and true categories, with values ranging from −1 to 1, where higher 
values indicate better clustering accuracy.

The Adjusted Rand Index (ARI), as defined in formula (1), is a widely used metric for 
evaluating the performance of clustering algorithms. It quantifies the similarity between 
clustering results and true categories, with values ranging from −1 to 1, where higher 
values indicate better clustering accuracy.

In the ARI formula, the following terms are used:
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Normalized Mutual Information(NMI), as shown in formula (2), is a metric for evalu-
ating the similarity between clustering results and true labels, utilizing the principles 
of mutual information and entropy. In this formula, nij denotes the number of samples 
shared by true label i and predicted label j, ni indicates the sample count for true label i, 
nj represents the sample count for predicted label j, and n is the total sample count.

Auto‑encoder embedding module

We developed an autoencoder network based on the negative binomial (NB) model [22] 
to estimate its parameters. The number of clusters, denoted as K  , was predetermined for 
the model, and it is the same as the final number of clusters used for analysis. The ration-
ale for selecting K  was based on both domain knowledge and an initial evaluation of the 
data. Specifically, we conducted a preliminary analysis of the dataset’s structure using 
dimensionality reduction techniques such as Principal Component Analysis (PCA) and 
Uniform Manifold Approximation and Projection (UMAP). These exploratory analyses 
provided insights into the intrinsic clustering tendencies of the data, guiding an initial 
estimation of K .

The autoencoder network includes an encoder and a decoder, each consisting of two 
distinct fully connected layers. The encoder uses three convolutional layers followed by a 
fully connected layer to project Xi into a K-dimensional space, resulting in a latent rep-
resentation denoted as Zi . To comprehensively capture the features of scRNA-seq data, 
we incorporated a multi-dilated attention gate component into the convolutional layers.

In the latent space Zi , soft clustering was applied by training the autoencoder with 
weighted reconstruction, NB parameters, and centroid loss. The decoder, comprising a 
fully connected layer and three deconvolutional layers, reconstructs Zi back to the origi-
nal Xi.

The autoencoder network includes an encoder and a decoder, each consisting of two 
distinct fully connected layers. The encoder uses three convolutional layers followed by a 
fully connected layer to project Xi into a K-dimensional space, resulting in a latent rep-
resentation denoted as Zi . To comprehensively capture the features of scRNA-seq data, 
we incorporated a multi-dilated attention gate component into the convolutional layers.

In the latent space Zi , soft clustering was applied by training the autoencoder with 
weighted reconstruction, NB parameters, and centroid loss. The decoder, comprising a 
fully connected layer and three deconvolutional layers, reconstructs Zi back to the origi-
nal Xi.

To enhance feature capture in scRNA-seq data, we introduced a loss function 
grounded in the NB model, with parameters representing the mean µ and dispersion φ , 
as shown in Formula (3).
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Within the autoencoder framework, we introduced a loss function based on the nega-
tive binomial (NB) distribution to more precisely capture the features of single-cell RNA 
sequencing data. This loss function enhances network performance by estimating the 
mean µ and dispersion φ of the NB model. These parameters, related to the input data D 
are computed via the network’s weight parameter matrices Wµ and Wφ , as illustrated in 
Formula (4)Formula (5):

We use the exponential function to ensure that the mean and dispersion are non-neg-
ative values. The loss function based on the negative binomial (NB) is a measure of the 
deviation between model predictions and actual observations, as shown in Formula (6), 
which illustrates the NB distribution [22]:

Here, x′ denotes the preprocessed and rounded expression values. Formula  (6) describes 
the probability density function of the NB distribution. Following the autoencoder’s pre-
training, the loss function is utilized to improve the model’s performance by learning 
more representative low-dimensional representations. This approach not only preserves 
the integrity of data features but also enhances the model’s adaptability to subsequent 
clustering tasks.

Following the clustering process, initial cluster centers are determined. The autoencoder 
then undergoes training K times, with each iteration corresponding to a specific cluster, 
thereby increasing the probability of cells associating with their correct clusters. To achieve 
accurate classification, we define three distinct loss functions: one for the reconstruction of 
the convolutional autoencoder, another for optimizing clustering centers, and a third for fit-
ting the parameters of the NB distribution, as shown in Formula (7):

In this approach, we conduct K iterations of autoencoder training, each aligned with a 
specific cluster, to increase the likelihood that cell points correspond to their true cel-
lular clusters. Additionally, three distinct loss functions are defined: the first for recon-
structing the convolutional autoencoder, the second for positioning clustering centers, 
and the third for fitting the parameters of the Negative Binomial (NB) distribution. 
These are represented as three weighted sum losses: Lr(k) , Lc(k) , and L(k)NB , as specified in 
formulas  (8), (9), (10), respectively. These losses address cell reconstruction, clustering 
center alignment, and NB fitting. Two hyperparameters, α and β , are introduced to bal-
ance these components within the loss functions.
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(5)φ = exp (WφD)
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Multi‑dilated attention gate

Multi‑dilated convolutional layers

For a given input sequence X = [x1, x2, . . . , xT ] , we apply a series of multi-dilated convo-
lutional layers, each configured with a unique dilation rate. The dilation rate determines 
the receptive field size of the convolutional kernel, allowing the model to capture inter-
actions across varying scales within the input sequence.

Initially, the cell gene expression matrix is processed through multiple one-dimen-
sional convolutional layers, each utilizing distinct dilation rates. This multi-dilated 
convolutional structure effectively captures gene interactions and relationships across 
different resolutions, enabling the model to identify patterns specific to various cell 
types. The process can be mathematically expressed by Formula (11):

where Hi represents the output of the i-th convolutional layer, and Conv1D denotes the 
one-dimensional convolution operation.

After passing through the multi-dilated convolutional layers, the outputs are concate-
nated and activated using the ReLU function. These processed features are subsequently 
fed into a selection module for further refinement. Figure  1C illustrates the detailed 
architecture of the Multi-dilated Attention Gate module. This module combines and 
refines the outputs of the multi-dilated convolutional layers, employing attention mech-
anisms to selectively emphasize critical gene expression patterns. The attention mecha-
nism ensures the model effectively prioritizes relevant features, enhancing its ability to 
distinguish cell types in heterogeneous populations.

Selection module (SM)

To finalize the feature processing, we introduce a selection module that automatically 
filters the concatenated features based on various dilation rates, selecting the most rele-
vant ones. The Selection Module (SM) utilizes a sigmoid activation function to map each 
output element to the (0, 1) range, as demonstrated in formulas (12) and (13):

Here, SM denotes the selection module, and ⊙ represents element-wise multiplication. 
The resulting outputHfinal , produced through the Selection Module (SM), retains infor-
mation deemed relevant by the model for the task at hand. Through the application of 
the Selection Module (SM), the model effectively filters out non-essential information, 
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(11)Hi = Conv1D(X , kernel_size, dilated_ratio[i])

(12)G = Sigmoid(MLP(Hatt))

(13)Hfinal = G ⊙Hatt
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preserving only the most significant features necessary for accurately differentiating 
cell types or states. This selective retention not only enhances model accuracy but also 
boosts computational efficiency. By using a sigmoid function, the Selection Module 
(SM) screens and prioritizes features critical to the current clustering task, marking a 
key step in model optimization.

By integrating these two key components with the autoencoder, the SMD model 
achieves cell clustering with improved accuracy and efficiency. In our experiments, we 
employed gene expression data from diverse cell types to train and test the model. The 
results demonstrate that the SMD model exhibits high accuracy and robustness in rec-
ognizing and classifying cell types. Particularly effective in handling heterogeneous cell 
populations, the model accurately distinguishes between different cell types, underscor-
ing its potential in cell clustering applications.

Self‑supervised learning with cellnet

The training of CellNet(Fig. 1B) is conducted in two phases. In the initial phase, CellNet 
is randomly initialized. After running the first module of the scSMD model, a fully con-
nected network (CellNet) is attached to enhance cell-cell similarity. The input to CellNet 
is the latent representation of each cell in the autoencoder’s latent space, and the out-
put layer consists of neurons corresponding to the number of cell clusters. The Softmax 
function is applied in the output layer to obtain probability values, indicating the likeli-
hood of each cell belonging to a particular cluster.

Over a set number of training iterations ( epoch = 20 ), the latent space assignments Pn 
are used to train CellNet with a designated loss function (Formula (14)). This loss func-
tion aims to minimize intra-cluster variance while maximizing inter-cluster distances, 
ensuring that cells with similar features are grouped together more tightly in the latent 
space, while dissimilar cells are pushed apart. The hyperparameter δ plays a crucial role 
in defining the threshold for similarity, enabling the model to distinguish between mean-
ingful biological relationships and noise. Specifically, δ is typically set to a value less than 
1, allowing the model to focus only on the most confident cell pair similarities during 
training, thereby avoiding inconclusive clustering information. During each iteration, 
cluster centers are updated, progressively refining the latent space representation to 
achieve a relatively stable clustering structure.

In the second phase, CellNet undergoes fine-tuning for a specified number of epochs, 
utilizing the loss function defined in Formula (15). This phase employs a self-supervised 
approach, where pseudo-labels are generated based on the similarity between cells. Cells 
with high similarity are assigned the same type, while cells with significant dissimilarity 
are assigned to different types. This structured supervision allows CellNet to enhance 
its cell similarity measurements by leveraging intrinsic features, ultimately leading to 
improved clustering accuracy. The integration of pseudo-labels during fine-tuning helps 
further refine cell-type identification by encouraging clear separation between different 
cell types, thus improving the robustness and accuracy of the final clustering results.

As an integral part of the scSMD model, CellNet enhances the model’s ability to learn 
and analyze cell representations with greater accuracy, contributing to improved per-
formance in single-cell data clustering tasks. This integration allows scSMD to leverage 
both the strengths of autoencoder-based feature extraction and the detailed similarity 
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measurements provided by CellNet, ultimately yielding more precise and reliable clus-
tering outcomes for complex single-cell datasets.

Results
Comparison experiment

In this study, we performed a comprehensive evaluation by comparing the performance 
of various models across different biological datasets, with a particular emphasis on their 
normalized mutual information (NMI) [26] scores in cell annotation tasks. Our SMD 
model consistently outperformed other models across all tested datasets. These results 
further confirm the robust clustering precision and high adaptability of the SMD model 
in practical applications.

scDeepCluster demonstrated high NMI scores across all datasets, achieving a particu-
larly notable score of 0.729 on the PBMC dataset, highlighting its effectiveness in cell 
population identification. scGMAI scored 0.722 on the Bhattacherjee dataset, showcas-
ing good adaptability to this specific data type; however, its performance was slightly 
lower on other datasets, scoring 0.496 on the Fibroblast dataset. scziDesk excelled on the 
Bhattacherjee dataset with an NMI score of 0.9258 but showed relatively lower scores 
on other datasets, achieving 0.615 and 0.6449 on the Zeisel and Baron datasets, respec-
tively. scCAN reached its highest score of 0.8309 on the PBMC dataset, underscoring 
its strong performance on this type of data, though its score on the Cancer dataset was 
lower at 0.502, indicating a slightly weaker performance. scDCCA also performed well 
on the PBMC dataset with an NMI score of 0.8165, but its performance fluctuated, as 
seen in its lower score of 0.5684 on the Fibroblast dataset. Similarly, DeepScena, like 
scziDesk, achieved a high score (0.928) on the Bhattacherjee dataset, yet displayed a sig-
nificant drop to 0.567 on the Zeisel dataset, indicating notable performance variability 
across different datasets.

To evaluate the models, we utilized not only publicly available datasets but also vali-
dated them using osteosarcoma data from Ruijin Hospital. The validation results further 
confirmed the superiority of the SMD model over other models, as shown in Fig. 2. In 
summary, our proposed SMD model achieved the highest NMI scores across all tested 
datasets, with a particularly outstanding score of 0.9401 on the Bhattacherjee dataset. 
On the osteosarcoma data from Ruijin Hospital, Fig. 2 shows that the SMD model con-
sistently outperformed other models, obtaining the highest ARI and NMI scores. This 
underscores its remarkable generalization capability and superior performance in cell 
annotation tasks.

Additionally, the SMD model achieved top Adjusted Rand Index (ARI) scores across 
multiple datasets, further highlighting its effectiveness in achieving precise cluster-
ing. To visually support these findings, we generated UMAP plots to better illustrate 

(14)L1 =
∑

xi ,xj∈X̃

(I[pTi pj ≥ δ]
(

1− qTi qj

)

+ I[pTi pj ≤ (1− δ)](qTi qj))

(15)
L2 =

∑

xi ,xj∈X̃

(I[qTi qj ≥ δ](1− qTi qj)+ I[qTi qj ≤ (1− δ)](qTi qj))
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the clustering performance of each model. Figure 3 shows UMAP visualizations of the 
clustering results for all models on the Osteosarcoma and Bhattacherjee datasets, while 
Fig. 4 compares the clustering of the scSMD model with the real cell classifications for 
the datasets. These plots offer a clearer perspective on the model’s performance and its 
ability to reflect the true biological structure of the data Fig. 5   

Ablation experiment

To further refine our cell clustering model, particularly in addressing gene-cell expres-
sion matrices, we introduced a Multi-Dilated Attention Gate (Multi-Dilated AG)-an 
innovative module designed to capture multi-scale data features using convolution 
operations with varied dilation rates. We experimented with multiple dilation rate 
combinations, including (1,3,5,7), (2,4,6,8), (4,6,8,10), (6,8,10,12), and (10,8,6,4), to 

Fig. 2  ARI and NMI scores across various datasets for different models. A Bar chart depicting NMI scores of 
different models across multiple datasets. B Bar chart depicting ARI scores of different models across multiple 
datasets. Panels C and D, which provide heatmap visualizations of NMI and ARI scores, have been moved to 
the Supplementary Figure S2 for reference

Fig. 3  Comparison of the scSMD model clustering with true cell types classifications

Fig. 4  UMAP visualization for all models on Osteosarcoma and Bhattacherjee datasets
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identify the most effective configuration. After extensive training and fine-tuning, we 
found that the dilation rate combination (4,6,8,10) achieved the best results. Our find-
ings were evaluated using two widely recognized clustering metrics: Adjusted Rand 
Index (ARI) and Normalized Mutual Information (NMI). The results of the ablation 
experiments, illustrated in Fig.  2, demonstrate that across both publicly available 
datasets and the osteosarcoma dataset, the SMD model consistently achieved supe-
rior performance with the (4,6,8,10) configuration. The comparative outcomes are 
also presented in detail in Table 2 and Table 3.

This ablation experiment not only confirms the necessity of our selected dilation 
rate configuration but also highlights the effectiveness of the Multi-Dilated Attention 
Gate in improving model performance on complex datasets, particularly for gene-cell 
data with diverse expression patterns. These findings further validate the application 
potential of our SMD model for precise cell clustering, demonstrating its robustness 
on novel or previously unseen data.

Fig. 5  ARI and NMI scores across varying expansion rates on different datasets. A and B respectively present 
the ARI and NMI evaluation metrics for the SMD model under different expansion rates in the ablation 
experiments

Table 2  Normalized Mutual Information (NMI) Scores for the SMD Model Across Various Datasets 
and Dilation Rate Configurations

Datasets (2,4,6,8) (1,3,5,7) (4,6,8,10) (6,8,10,12) (10,8,6,4)

Baron 0.803 0.767 0.798 0.814 0.771

pbmc 0.812 0.810 0.824 0.813 0.782

Bhattacherjee 0.815 0.810 0.940 0.926 0.927

Zeisel 0.742 0.680 0.755 0.744 0.720

Osteosarcoma 0.521 0.369 0.574 0.551 0.564

Table 3  Adjusted Rand Index (ARI) Scores for the SMD Model Across Various Datasets and Dilation 
Rate Configurations

Datasets (2,4,6,8) (1,3,5,7) (4,6,8,10) (6,8,10,12) (10,8,6,4)

Baron 0.661 0.490 0.724 0.557 0.506

pbmc 0.824 0.820 0.852 0.834 0.779

Bhattacherjee 0.741 0.743 0.980 0.960 0.971

Zeisel 0.781 0.686 0.803 0.772 0.747

Osteosarcoma 0.451 0.524 0.554 0.544 0.356
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Conclusion
The primary contributions of our work are centered around the development of a novel 
SMD model that effectively addresses the high dimensionality and inherent sparsity of 
single-cell RNA sequencing (scRNA-seq) data. The model incorporates Multi-Dilated 
Convolutional Layers, which allow it to adaptively adjust the receptive field size, enabling 
the capture of gene interactions at multiple scales. This adaptive approach enhances the 
model’s ability to handle the complex relationships between genes without significantly 
increasing computational costs, thereby making it suitable for large-scale data analysis.

To further address the challenges posed by the sparsity of single-cell data, our model 
employs a loss function based on the negative binomial distribution. This loss function 
is well-suited to handle the excessive zero counts typically found in scRNA-seq data-
sets, helping to mitigate noise and improve the robustness of the clustering process. 
Additionally, we integrated an attention mechanism through the Multi-Dilated Atten-
tion Gate, which selectively emphasizes key gene expression features while reducing the 
influence of irrelevant information. This mechanism significantly improves annotation 
accuracy and generalization performance, making the SMD model particularly effective 
for analyzing complex and large-scale scRNA-seq datasets.

We benchmarked the SMD model against six other models on multiple public data-
sets, representing a wide range of tissue types and biological processes. The results con-
sistently demonstrated the superior performance of our model across various metrics. 
The SMD model showed improved robustness in handling high-dimensional, noisy, and 
sparse data environments, ensuring better clustering quality and more accurate identifi-
cation of cell types.
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