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Background
Spatial transcriptomics technologies have been rapidly developed over the last several 
years [1–3]. Compared with single-cell RNA sequencing (scRNA-seq), spatial transcrip-
tomics adds an additional spatial information layer. This makes it possible to investigate 
cell–cell communications and interactions, such as those between tumor cells and their 
microenvironment. Spatial transcriptomics platforms can be grouped into two broad 
categories: sequencing-based and imaging-based [4, 5]. Sequencing-based methods have 
the advantage of profiling whole transcriptome, but their resolution is usually at the spot 
or bin level, meaning each spot or bin may contain multiple cells. Popular sequencing-
based spatial transcriptomics technologies include: 10x Visium [6], Slide-seq [7], GeoMx 
[8] and STOmics [9]. In contrast, imaging-based methods can achieve single-cell resolu-
tion but typically can only profile several hundred genes. The boundaries of individual 
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cells are decided by cell segmentation algorithms [10–12]. Popular imaging-based spatial 
transcriptomics technologies include: 10x Xenium [6], MERSCOPE [13], CosMx [14], 
MERFISH [15] and STARmap [16]. Nowadays, imaging-based platforms have become 
increasingly popular as they enable the exploration of spatial gene expression profiles at 
the cellular level, despite their small gene panel size.

One key step before the downstream analysis is to annotate the cells of imaging-based 
spatial transcriptomics data correctly. However, the imaging-based spatial data harbors 
only several hundred genes, which sometimes makes it very hard and time-consuming 
to annotate cell types manually based on marker genes. Many reference-based cell type 
annotation methods have been developed for scRNA-seq data and shown very good 
performance [17], including SingleR [18], Azimuth [19], scmap [20], scPred [21], and 
scMatch [22]. Some reference-based cell type annotation methods have also been devel-
oped for sequencing-based spatial data, such as RCTD [23], Spatial-ID [24] and Cell2lo-
cation [25].

Most of these software tools were developed in either the R or Python program-
ming environments. In this study, we mainly focus on software tools implemented in 
R. One reason is the high level of similarity in functionality and underlying methodolo-
gies between these R and Python tools. For example, both SingleR and scMatch predict 
cell types based on the Pearson or Spearman correlation between the reference and the 
query datasets. Another reason is the wide user-base and ease of use of the Bioconduc-
tor and Seurat software tools due to their centralized version control and the high level 
of interoperability within their ecosystem [26, 27]. Hence, we utilized SingleR, Azimuth, 
scmap, scPred and RCTD for cell type annotation of imaging-based spatial transcriptom-
ics data and benchmarked their performance. In addition, we compared the five meth-
ods with the manual annotation method based on marker genes.

Here, we used a public 10x Xenium data of Human HER2 + breast cancer for our 
benchmarking study. This is because Xenium is one of the most popular spatial tech-
nology platforms overall, due to 10x Genomics’ established presence in the market and 
extensive user base. Additionally, this Xenium dataset includes profiles of two replicate 
samples along with a paired 10x Flex single-nucleus RNA sequencing (snRNA-seq) pro-
file from one of the samples. Using a paired snRNA-seq profile as a reference is crucial 
for studying reference-based cell type annotation methods, as it minimizes the varia-
bility and inconsistencies between the reference and query datasets. In this study, we 
applied the marker gene-based manual annotation method and five reference-based cell 
type annotation methods (SingleR, Azimuth, scmap, scPred and RCTD) on the Xenium 
data to compare the performance of different reference-based methods and their simi-
larity with the manual annotation method.

Methods
Data collection

Public Xenium and single-cell data of human HER2 + breast cancer from 10x Genom-
ics [6] were downloaded from 10 × website: https://​www.​10xge​nomics.​com/​produ​cts/​
xenium-​in-​situ/​previ​ew-​datas​et-​human-​breast. Xenium data of sample 1 (replicate 1) 
and sample 2 were used for this study. Paired 10x Flex single-nucleus RNA sequenc-
ing (snRNA-seq) data of sample 1 was downloaded and used as a reference for the 

https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
https://www.10xgenomics.com/products/xenium-in-situ/preview-dataset-human-breast
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reference-based methods. The provided cell type annotation files for both Xenium and 
snRNA-seq data were also obtained from the same website.

Analysis of the snRNA‑seq data

The Seurat (v4.3.0) [19] standard pipeline was performed on the snRNA-seq data of 
sample 1. For quality control, cells without 10x provided cell type annotation were 
removed. The filtered data was then normalized by the NormalizeData function. The 
top 1000 highly variable genes were selected by FindVariableFeatures, and normalized 
data of these genes were then scaled by ScaleData function. Principal component analy-
sis (PCA) was performed to reduce dimensions by RunPCA function. Uniform manifold 
approximation and projection (UMAP) was performed by RunUMAP function on the 
first 30 principal components to further reduce the data into two dimensions. Potential 
doublets were predicted by scDblFinder [28]. Cell clusters were identified by FindNeigh-
bors and FindClusters functions. FindSubCluster was used to identify sub clusters. To 
identify tumor cells, inferCNV analysis was performed to explore the copy number vari-
ations (CNVs) of chromosome segments, and it was done by comparing the expression 
of genes across positions of the snRNA-seq data with a normal reference scRNA-seq 
dataset. A public scRNA-seq sample of human normal breast tissue (N0233) [29] was 
used as the normal reference. The relative copy number expression value of each gene 
in each cell was obtained, and a value close to 0, 1, 2 indicates copy number loss, nor-
mal, copy number gain, respectively. Tumor cells were annotated based on copy number 
expression values from inferCNV analysis, and clusters with high CNVs were annotated 
as tumor. To evaluate whether a cell has higher CNVs than normal cells, we defined the 
inferCNV instability score for a cell to be the average squared deviation of normalized 
copy numbers from normality, S =

1

n

∑
n

i=1
(Vi − 1)2 , where S is the instability score, V is 

copy number expression value, n is the number of genes and i indexes genes. The insta-
bility score can then be used to compare CNVs between different clusters. Ductal carci-
noma in situ (DCIS) was annotated based on 10x cell type annotation and marker genes. 
Clusters were annotated based on known marker genes.

Analysis of the Xenium data

The Seurat standard pipeline was also performed on the Xenium data. There were some 
minor differences compared to snRNA-seq data analysis. For quality control, cells anno-
tated as “Unlabeled” by 10x were removed, and other annotated cells from 10x were kept 
for analysis. The data was then normalized. Because Xenium data has only several hun-
dred genes, the feature selection step was skipped, and all genes were used for data scal-
ing. The dimension reduction (PCA and UMAP) and clustering steps are the same with 
snRNA-seq data analysis.

Cell type annotation of Xenium data

For the manual annotation method, known marker genes based on our knowledge 
were used for annotating the cell type of each cluster. For the reference-based annota-
tion methods, the snRNA-seq data of sample 1 was used as the reference, and poten-
tial doublets were removed to improve the accuracy of the reference data. Our manually 
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annotated cell types for snRNA-seq data were set as the reference labels for predicting 
the cell types of Xenium data.

To prepare the reference for Azimuth method, RunUMAP was performed by setting 
“return.model = TRUE”, and SCTransform function in Seurat package was performed to 
re-normalize the snRNA-seq data, and AzimuthReference function in Azimuth (v0.4.6) 
package was used to generate the reference. To prepare the reference for RCTD method, 
Reference function in spacexr (v2.2.1) package [23] was used. SingleCellExperiment 
object format reference was prepared for SingleR and scmap, and Seurat object format 
reference was prepared for scPred.

Cell types were then predicted by each method using the prepared reference. For Sin-
gleR method, SingleR function in SingleR (v2.2.0) package was used for predicting cell 
types. For the Azimuth method, RunAzimuth function in Azimuth package was used for 
cell type annotation. For the RCTD method, SpatialRNA and create.RCTD functions 
in spacexr package were used to create the RCTD object, and run.RCTD function was 
used for cell type annotation. Many parameters in run.RCTD function were adjusted to 
keep all cells in the Xenium data: UMI_min, counts_MIN, gene_cutoff, fc_cutoff, fc_cut-
off_reg were set to 0; UMI_min_sigma was set to 1; and CELL_MIN_INSTANCE was set 
to 10. For scPred method, trainModel function in scPred (v1.9.2) package was used to 
train a model for the reference, and scPredict function was used for cell type annotation. 
For scmapCell method, indexCell function in scmap (v1.22.3) package was used to cre-
ate scmap-cell index, scmapCell function was used to project the index, and scmapCell-
2Cluster function was used to assign cell types. Default parameters were used in all the 
functions for all methods if not specifically mentioned above.

Evaluation of performance of reference‑based methods

To compare the performance of different reference-based methods, the composition 
of predicted cell types for each method was compared to that for the manual annota-
tion method. We did not use the original cell annotation provided by 10x due to dis-
crepancies between their annotation and the breast cancer literature. For example, the 
KRT15+ myoepithelial population, as originally annotated by 10x Genomics, should be 
labelled as luminal progenitor (LP) since they express ELF5 and MMP7 [30]. Addition-
ally, certain subsets of some cell types are difficult to validate in the Xenium data, which 
makes the comparison more complicated. In our manual cell annotation, the three major 
normal epithelial cell populations were renamed as basal, LP and mature luminal (ML). 
The similarity of a reference-based method with the manual method was used to meas-
ure the performance of that method. To assess the accuracy of the predicted cell types, 
pseudobulk samples were constructed for each cell type in the spatial and reference 
snRNA-seq data. Spearman correlation between the two pseudobulk gene expression 
profiles of the same cell type was used to judge the accuracy of that cell type.

Running time of reference‑based methods

The most time-consuming steps of each method were recorded for making comparisons. 
The SingleR, RunAzimuth, run.RCTD, scmapCell functions are the most time-consum-
ing steps for the SingleR, Azimuth, RCTD and scmap methods, respectively, whereas 
trainModel and scPredict are the most time-consuming steps for the scPred method. The 
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running time for using all the cells in the reference snRNA-seq data was recorded for 
each method.

In addition, to explore the relationship of cell number of the reference data with run-
ning time, the reference snRNA-seq dataset of sample 1 was randomly sampled into 
smaller datasets containing 4000, 8000, 12,000, 16,000 and 20,000 cells, respectively. For 
the cell sampling process, 50 cells were first sampled into each cell type group to make 
sure there are sufficient cells in the new reference dataset, and the remaining cells were 
then randomly sampled and added into the new reference dataset. The running time was 
obtained for using each subsetted snRNA-seq dataset as reference for SingleR, Azimuth 
and RCTD.

Results
An overview of the reference‑based methods

To identify the good cell type annotation methods for imaging-based spatial tran-
scriptomics data, five referenced-based methods (SingleR, Azimuth, RCTD, scPred and 
scmap) developed for scRNA-seq data or sequencing-based spatial transcriptomics data 
were chosen for comparison (Table 1). SingleR is a popular and easy-to-use R package 
for cell type annotation of scRNA-seq data, and it is a method based on Spearman cor-
relation. Azimuth is a popular R package developed by the Seurat team for transferring 
the labels of cells in a reference scRNA-seq data to a query dataset, and the Seurat ref-
erenced-based mapping pipeline is used for cell type annotation. RCTD is a referenced-
based cell type annotation method implemented in spacexr package based on the robust 
cell type decomposition algorithm, and it was developed for sequencing-based spa-
tial transcriptomics data, such as Visium. scPred is a machine learning based method 
to predict the cell types in a query dataset from a training scRNA-seq dataset, and the 
default model is support vector machine (SVM), which can be changed to other popular 
machine learning models. scmapCell is a method in scmap package and based on cosine 
distance kNN for cell type annotation of scRNA-seq data. Azimuth and scPred take a 
Seurat object as input, and SingleR and scmapCell take a SingleCellExperiment object 
as input. RCTD takes a RCTD object as input, and it can be easily constructed based on 
a Seurat object. Seurat and SingleCellExperiment objects are the two most widely used 
data structures in single-cell data analysis.

An overview of the benchmarking workflow

The workflow of benchmarking different reference-based cell type annotation methods 
on Xenium data has been shown (Fig. 1). The first step is to prepare a well annotated and 

Table. 1  An overview of the reference-based methods used for this study

Method Language Package Version InputObject ComputationalApproach

SingleR R SingleR 2.2.0 SingleCellExperiment Spearman correlation

Azimuth R Azimuth 0.4.6 Seurat Seurat reference-based mapping

RCTD R spacexr 2.2.1 RCTD Robust cell type decomposition

scPred R scPred 1.9.2 Seurat Support vector machine

scmapCell R scmap 1.22.3 SingleCellExperiment Cosine distance based kNN
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accurate reference single-cell dataset. To make a good reference, we annotated tumor 
cells based on inferCNV analysis, annotated other cell types based on known marker 
genes and removed potential doublets. The next step is to predict cell types of a Xenium 
dataset using the reference for each reference-based method and using marker genes for 
the manual annotation method. We compared the running time of the time-consuming 
steps of different methods, the similarity between each reference-based method and the 
manual method (accuracy) and the spatial pattern of key cell types (e.g., Tumor). Finally, 
we performed the benchmarking workflow on another Xenium dataset to validate the 
results.

Cell type annotation of the reference scRNA‑seq data

A good reference scRNA-seq dataset is important for the reference-based cell type 
annotation methods. The snRNA-seq technology can capture cell populations that are 
too fragile to be easily captured by scRNA-seq, such as adipocytes [31]. Therefore, it is 
preferable to use a snRNA-seq reference for imaging-based spatial transcriptomics data. 
The Flex snRNA-seq data of sample 1 from 10x Genomics was obtained and reanalyzed. 
Sample 1 is a human HER2 + breast cancer sample that harbors both tumor and DCIS 
cells according to the pathology report. Human breast tissue contains three major epi-
thelial populations (basal, LP and ML) as well as the stromal and microenvironment cell 
populations. For quality control, 27,472 cells with 10x provided annotation were kept for 
analysis. Seurat pipeline was performed on the filtered snRNA-seq data, and 19 clusters 
were identified (Fig. 2A). Tumor cells were identified from inferCNV analysis (Fig. 2B, 
C). Both tumor (cluster 3 and 4) and DCIS (cluster 5 and 6) show high CNVs than 
other clusters. DCIS was distinguished from tumor by high expression of CEACMA6, 
a marker for DCIS. The cell clusters were manually annotated based on marker genes, 
and clusters assigned to the same cell type were merged (Fig. 2D). A dot plot of marker 
genes for each cell type was shown (Fig. 2E). scDblFinder was performed to identify the 

Fig. 1  An overview of the benchmarking workflow. The benchmarking workflow includes (1) preparing a 
good single-cell RNA reference, (2) comparing reference-based methods using one Xenium dataset and (3) 
validating the results using another Xenium dataset
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potential doublets, predicting 4280 cells as doublets. Doublets show expression pattern 
of two cell types and will affect accuracy of cell type prediction. Hence, the predicted 
doublets in the reference data were removed before cell type annotation for imaging-
based spatial transcriptomics data. After removing the doublets, 23,192 cells in the 
snRNA-seq were kept for downstream analysis.

Cell type annotation of Xenium data

Xenium data of sample 1 was obtained from 10x Genomics website and used as a rep-
resentative of imaging-based spatial transcriptomics data. For quality control, only the 
cells with 10 × provided annotation were kept, and cells annotated as “Unlabeled” were 
further removed. This resulted in 159,226 cells retained for analysis. The Seurat pipeline 

Fig. 2  Cell type annotation of snRNA-seq data of sample 1. A. UMAP plot colored by clusters. B. Heatmap of 
CNVs from inferCNV. Clusters 3 to 6 show higher CNVs than other clusters. C. Boxplot of inferCNV instability 
scores. Clusters 3 and 4 (tumor) show a litter bit higher CNVs than 5 and 6 (DCIS). D. UMAP plot colored by 
cell types. E. Dot plot of marker genes used for cell type annotation
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was then performed on the filtered Xenium data. Clustering was conducted for the man-
ual annotation method, while it was not required for the reference-based methods. Clus-
ters were then manually annotated based on known marker genes. The pipeline of each 
reference-based method was performed to predict the cell type of each cell.

The annotated cell type by the manual method and five reference-based methods were 
shown in UMAP plots (Fig.  3) and spatial plots (Fig.  4). UMAP plots show the sepa-
rated cell populations, and spatial plots show the spatial locations of different cell types. 
Because there are only 313 genes in the Xenium data of sample 1, it is hard to get good 
markers for all the cell types in the reference snRNA-seq from the gene panel. Hence, the 
number of manually annotated cell types is fewer than the cell types predicted by refer-
ence-based methods. On the other hand, the dendritic cells in the Xenium data could 
be annotated by the manual annotation method but could not be labelled by the refer-
ence-based methods due to difficulties distinguishing them in the reference snRNA-seq 
data. Hence, the manual annotation has the advantage of identifying cell types that are 
not observed in the reference snRNA-seq data. The basal population annotated by the 
manual method were further split into basal and LP populations by the reference-based 

Fig. 3  UMAP plots showing annotated cell types by different methods for Xenium data of sample 1
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methods (Fig. 3). The basal and LP cells were assigned to one cluster because of the simi-
larity of the two cell types and low number of genes in the Xenium data, which makes 
them hard to be separated by clustering. The reference-based methods, on the other 
hand, perform annotation at the cell level and have the advantage of assigning each cell 
to the most possible cell type regardless of clustering.

The tumor and DCIS cells can be well visualized and separated in the spatial plots 
(Fig. 4). DCIS cells are inside the duct while tumor cells are spread outside of the duct, 
and they can be distinguished by the different patterns. Tumor cells could be well anno-
tated by the manual method, SingleR and RCTD, while many of them were incorrectly 
annotated as other cell types by Azimuth, scPred and scmapCell. This suggests that the 
manual method, SingleR and RCTD have better performance in distinguishing tumor 
cell type from other cell types.

Performance of different cell type annotation methods

The performance of the manual annotation method is good because the cell types 
were annotated carefully using known marker genes. Both the UMAP pot and spatial 
plot for the manual annotation method also show positive results. Although some cell 
types lacking marker genes could not be manually annotated, the cell type annota-
tion of the majority cells are correct. The goal of reference-based cell type annota-
tion is to minimize manual effort while ensuring that the annotation results closely 
match those obtained through manual cell type annotation. Hence, the manual anno-
tation was used as the potential ground truth for comparing reference-based meth-
ods. The similarity of cell type composition of different reference-based methods with 
the manual annotation method was shown in the barplot (Fig.  5A). The proportion 

Fig. 4  Spatial plots showing annotated cell types by different methods for Xenium data of sample 1
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of tumor cells from SingleR and RCTD is quite similar to the manual method. Fewer 
tumor cells were annotated by scPred and scmapCell, and Azimuth gave fewest tumor 
cells. The proportion of DCIS cells is reasonable for all methods. T cells and mac-
rophages are the two major immune cell populations in breast cancer microenvi-
ronment, and biologically reasonable proportions of T cells and macrophages were 
obtained from the manual method, SingleR and RCTD, while few T cells were anno-
tated by Azimuth, scPred and scmapCell. Most cells were annotated as “unassigned” 
by scmapCell, and a small proportion of cells were annotated “unassigned” by scPred. 
When looking at the overall similarity with the manual method, SingleR and RCTD 
are the best methods, showing 73.49% and 69.92% cell type annotation consistency 
with the manual method (Fig. 5B). The similarity for Azimuth, scPred and scmapCell 
is below 60%. Hence, SingleR demonstrates the best performance, with RCTD also 
showing strong results. Azimuth is not so good, and scPred performs similarly with 
some cells remaining unassigned. scmapCell shows the worst performance and is not 
recommended.

To further explore the accuracy of annotated cell types by different methods, we 
constructed pseudobulk samples [32, 33] and compared the similarity of annotated 
cell types in the spatial data with that in the snRNA-seq data. scPred and scmap-
Cell were not included for comparison because they are not of good performance. 
Spearman correlation coefficients between the spatial pseudobulk and snRNA-seq 
pseudobulk samples were calculated to assess the similarity for each cell type. The 
Spearman correlation coefficients are very high (> 0.7) for all the common cell types 

Fig. 5  Performance of different cell type annotation methods for sample 1. A. Cell type composition for 
each method. B. Similarity of each reference-based method with manual annotation method. C. Spearman 
correlation coefficient of predicted cell type in spatial data with the same cell type in reference snRNA-seq 
data
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of four methods between spatial and single-cell data (Fig. 5C). This suggests that the 
manually annotated cell types and predicted cell types by the reference-based meth-
ods are of high accuracy.

Running time of different methods

The manual annotation method usually takes 5–30  min but can take longer, and it 
requires good knowledge of markers for cell types in the biological data. The running 
time of the time-consuming steps of each reference-based method was recorded for 
using all the 23,192 cells in the reference snRNA-seq. Azimuth is the fastest method 
taking about 14.6  min, followed by SingleR taking about 29.6  min. scPred, RCTD and 
scmapCell are relatively slow, taking about 1.5 h, 2 h, and 3 h, respectively (Fig. 6A).

The snRNA-seq dataset we used for this study has many more cells than a typical 
10x scRNA-seq sample, which usually contains 5000–10000 cells. Hence, it is valuable 
to know the running time for references with difference cell numbers. We generated 5 
smaller reference snRNA-seq datasets by randomly sampling 4000, 8000, 12,000, 16,000 
and 20,000 cells, respectively. The running time was obtained for SingleR, Azimuth and 
RCTD using each of the 5 snRNA-seq data subsets as the reference. The running time of 
SingleR is positively correlated with the number of cells in the reference, while Azimuth 
and RCTD are less affected by the number of cells in the reference (Fig. 6B). SingleR and 
Azimuth have almost equal running time of about 17 min when cell number of the refer-
ence is 12,000, with SingleR being faster for smaller references. RCTD is relatively slow, 
taking more than 2 h for all the reference subsets. Overall, SingleR is the fastest method 
when using a typical 10x scRNA-seq sample as reference.

Validation of the performance of different cell type annotation methods

To validate and strengthen the conclusions made from analysis of Xenium data of sam-
ple 1, we further analyzed Xenium data of sample 2 using the same pipeline and the same 
snRNA-seq data as the reference. For quality control, only cells with 10x-provided anno-
tations that were not labeled as “Not Plotted” were used for analysis. The Seurat pipeline 
was performed on 140,352 cells that were kept after quality control. The manual annota-
tion and each reference-based method were then performed to obtain the cell types.

Fig. 6  Running time of reference-based methods for sample 1. A. Running time for all reference-based 
methods using all cells in the reference. B. Running time for three reference-based methods using subsetted 
references
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The spatial plots (Fig.  7) again show that SingleR and RCTD produce results similar 
to the manual method. In contrast, Azimuth and scPred are less similar to the manual 
method, while scmapCell shows significant discrepancies and performs poorly. The con-
clusions made from the spatial plots of sample 2 are consistent with that from sample 1. 
The barplot of cell type composition (Fig. 8A) shows that scmapCell has a high number 
of unassigned cells, while scPred also has some cells unassigned, which is undesirable. 
Additionally, scPred and Azimuth identify significantly fewer T cells than the manual 
method, SingleR and RCTD, which is consistent with the results from sample 1. Over-
all, SingleR and RCTD shows the highest (65%) and 2nd highest similarity (55%) to the 
manual method, making them the best two reference-based methods, while the other 
methods show lower similarity to the manual method (Fig.  8B). The running time for 
Azimuth, SingleR, RCTD, scPred and scmapCell is about 13 min, 25 min, 2 h, 3 h and 
2.5  h, respectively (Fig.  8C). Altogether, the results from the analysis of sample 2 are 
similar to those from sample 1, reinforcing the conclusions made from the analysis of 
sample 1.

Discussion
Imaging-based spatial transcriptomics has the power to investigate cell–cell interac-
tions. Annotating the cell types accurately is important before the cell–cell interac-
tion analysis and other downstream analyses. In this study, we applied one manual 
annotation method and five reference-based annotation methods on the Xenium 
data of human HER2 + breast cancer to find the best methods for cell type annota-
tion of imaging-based spatial transcriptomics data. The manual annotation method 
is effective, but it requires good knowledge of biology and marker genes of different 

Fig. 7  Spatial plots showing annotated cell types by different methods for Xenium data of sample 2
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cell types. It also takes a substantial amount of manual effort and sometimes can be 
very time-consuming. The reference-based methods can save the manual work but 
require a well annotated reference scRNA-seq dataset. SingleR is the best reference-
based cell type annotation method considering its easy-to-use workflow, good perfor-
mance and fast computational speed. Hence, it is highly recommended when the cell 
number in the reference scRNA-seq data is not too big (e.g., 2000–8000). RCTD is a 
good method from the point of view of accuracy, though it is very slow and requires 
adjustment of many parameters. Azimuth performs poorly with this dataset but may 
be suitable for other datasets. scPred and scmapCell have poor performance and not 
recommended.

One limitation of this study is that only two samples from one of the imaging-based 
technologies (Xenium) were analyzed. We did not include other popular imaging-based 
spatial technology platforms, such as MERSCOPE and CosMx, due to the lack of public 
data resources containing both spatial and single-cell profiles generated from the same 
tissue samples. Different platforms may have different features, such as the size of the 
gene panel, sensitivity and specificity of molecule detection, that could affect the per-
formance of cell type annotation tools. However, for platforms with similar character-
istics, the performance of the cell type annotation methods included in this study is not 
expected to change significantly. In terms of tissue type, there appears to be no reason 
why any of the cell type annotation methods would be cell type specific. Another limita-
tion is that none of the methods included in this study utilize spatial and image informa-
tion for cell type annotation. Incorporating this extra spatial or image information could 
potentially enhance the performance of cell type annotation for spatial data.

Fig. 8  Performance and running time of reference-based methods for sample 2. A. Cell type composition 
for each method. B. Similarity of each reference-based method with manual annotation method. C. Running 
time for the reference-based methods using all cells in the reference
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Conclusions
In summary, we compared different cell type annotation methods on Xenium data 
and found that SingleR is a fast, effective, and reliable reference-based method, show-
ing high similarity with the manual annotation method. It is recommended over other 
reference-based methods for cell type annotation in Xenium data.
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