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Abstract 

RNA sequencing (RNA-seq) is the conventional genome-scale approach used to cap-
ture the expression levels of all detectable genes in a biological sample. This is now 
regularly used for population-based studies designed to identify genetic determi-
nants of various diseases. Naturally, the accuracy of these tests should be verified 
and improved if possible. In this study, we aimed to detect and correct for expression 
level-dependent errors which are not corrected by conventional normalization tech-
niques. We examined several RNA-seq datasets from the Cancer Genome Atlas (TCGA), 
Stand Up 2 Cancer (SU2C), and GTEx databases with various types of preprocessing. 
By applying local averaging, we found expression-level dependent biases that differ 
from sample to sample in all datasets studied. Using simulations, we show that these 
biases corrupt gene-gene correlation estimations and t tests between subpopula-
tions. To mitigate these biases, we introduce two different nonlinear transforms based 
on statistical considerations that correct these observed biases. We demonstrate 
that these transforms effectively remove the observed per-sample biases, reduce 
sample-to-sample variance, and improve the characteristics of gene-gene correlation 
distributions. Using a novel simulation methodology that creates controlled differ-
ences between subpopulations, we show that these transforms reduce variability 
and increase sensitivity of two population tests. The improvements in sensitivity 
and specificity were of the order of 3-5% in most instances after the data was corrected 
for bias. Altogether, these results improve our capacity to understand gene-gene rela-
tionships, and may lead to novel ways to utilize the information derived from clinical 
tests.

Keywords: RSEM (RNA Sequence by Expectation Maximization), TPM (Transcripts Per 
Million), FPKM (Fragments Per Kilobase of exon per Million), Local Leveling, PCA, ROC 
Curves, Populations.

Introduction
Gathering gene expression data from clinical samples is no longer a technical hurdle, 
and RNA-seq data is now frequently conducted on biological samples from the clinical 
and laboratory settings. When considering the holistic profile of gene expression pat-
terns, one can inform of perturbed activity in the cell or tumor models. This informa-
tion is clinically relevant since dysregulated gene activity is what altogether drives the 
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pathogenesis of the patient’s tumors [12]. The recognition of collective changes in tumor 
samples guides pre-clinical research by identifying novel signaling mechanisms and 
oncogenic processes. Further, this knowledge is purposed towards the development of 
biomarkers and precision therapies that may extend the survival of cancer patients. Jus-
tifiably there is exceptional value in gathering RNA-seq data from clinical specimens; 
however, quality issues remain due to sequencing platforms themselves or the down-
stream informatics approaches and data aggregation used to interpret such data. An 
extensive survey of the sequencing platforms is given in [7].

In current practice, gene expression levels are estimated based on RNA sequence 
(RNA-Seq) data obtained from populations of patients. RNA-seq data is generated by 
isolating RNA from a cell or tissue, converting it to complementary DNA (cDNA), pre-
paring a sequencing library, and using a sequencing platform to convert to transcript 
counts [5]. The gene transcript raw counts for each sample are typically first corrected 
for fragmentation effects by dividing the raw counts for each transcript by the effective 
transcript length [5]. This takes into account the fact that a read can occur at multiple 
locations along the transcript, so the number of reads per gene will be proportional to 
the gene transcript length. These corrected counts are then rescaled by multiplying by 
an overall factor. The two most widely used rescalings are transcripts per million (TPM) 
and fragments per kilobase of exon per million (FPKM) [25]. In particular, TPM mul-
tiplies the corrected counts so that the resulting rescaled counts sum to 1 million. It is 
commonly recognized that TPM is more suitable than FPKM for cross-sample compari-
sons [25]. Several other rescalings have also been proposed [15]. Note that the only dif-
ference between these different rescalings is an overall multiplicative factor, which varies 
from sample to sample.

The gold standard in gene expression analysis is arguably the paper of Wang et  al. 
[21] (with more than 16, 000 citations) where the authors highlight the strength of RNA 
sequence data over traditional micro-arrays, particularly in its ability to detect novel 
transcripts and measure gene expression levels more accurately. They already begin a 
discussion about biases inherent in such data that is introduced by library preparation 
steps and sequencing depth. Schurch et  al. [18] investigate how different sequencing 
protocols (e.g. poly-A selection vs. rRNA depletion) can impact gene quantification, and 
they emphasize the need for standardized protocols. In particular, their conclusions are 
consistent with the fact that such standardized corrections/metrics do not exist. Rob-
inson et al. [16] introduce DESeq method, which addresses biases related to depth and 
gene length using negative binomial distribution and provide a framework for differen-
tial expression analysis while accounting for over-dispersion in count data. Zhao et  al 
[24] explore GC content bias, sequencing depth bias and the other biases, and present 
methods to mitigate these biases, including normalization and statistical approaches. 
Weiss et al [22] use DESeq and recommend sequencing strategies to minimize bias and 
improve the utility for various of RNA-Seq experiments. Nueda et al. [11], Roberts et al. 
[14], Soneson et al. [19] focus on the challenges of analyzing RNA-Seq data related to 
batch effects and sequencing platform differences and use various statistical approaches 
to account for these biases and improve the accuracy of differential gene expression 
analysis. Yip et al. [23] review the importance of correcting for biases and propose prac-
tical guidelines for addressing them during data processing. This brief summary and the 
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literature cited with their extensive references purport the need for standardized meth-
ods to identify and deal with biases that are routinely seen in the sequencing data.

In developing standard normalization methods to deal with biases, the works of (see 
[3, 10, 16, 17]) can be cited. Specifically the (2021) paper of Feng and Li [3] is particu-
larly noteworthy. This paper incorporates the work of Robinson, McCarthy and Smyth 
[16] and a significant amount of literature of the previous decade. Feng and Li base their 
normalization on a set of “housekeeping genes” while at the same time questioning the 
existence of these housekeeping genes and their selection. They carry out pairwise nor-
malization with respect to multiple references, selected from representative samples. 
Then the pairwise intermediates are integrated based on a linear model that adjusts the 
reference effects. Motivated by the notion of housekeeping genes and their statistical 
counterparts, they adopt regression methods and compare their results with existing 
tools on some standard datasets. Their conclusion suggests that their analysis (MUREN) 
adjusts the mode of differentiation toward zero, while preserving the skewness due to 
biological asymmetric differentiation. Their Fig. 1 summarizes workflow. While there is 
some overlap between their work and ours, their mathematical analysis of the bias and 
their use of linear regression and housekeeping genes is quite different from our estima-
tion of the bias. Furthermore, we use higher order Taylor expansions to quantify the bias 
and to construct an inverse function (a transform) to undo the effect of the bias on the 
gene expression levels.

Other types of transforms are used for this purpose [8]. The log transform is one 
widely-used option that has the advantage of being easy to interpret, because differences 
between log-transformed values are roughly proportional to percentage differences in 
the original data. There are also variance stabilizing transforms (VST) [9] which modify 
the log transform so that different genes have more nearly equal variance, which facili-
tates comparisons across genes. Each of the many pre-processing steps and normaliza-
tion approaches has merits and are broadly applied to datasets from consortium efforts 
as well as clinical reports that include RNA-seq data.

For research purposes, the pre-processed data is used to study the tumor biology 
based on patterns of gene expression. The approaches include conducting differential 
expression analyses, gene-gene correlations, hierarchical clustering of genes based on 
expression patterns, enrichment of gene sets, or even machine learning approaches. 
Researchers adapt these approaches towards identifying the genes that act as drivers or 
vulnerabilities of the tumors. The recurrently dysregulated genes also have potential as 
diagnostic tools to evaluate clinical outcomes including overall survival, and develop-
ment of metastatic disease or therapy response. Naturally, the methods in which pre-
processing is conducted can act as a source of bias when analyzing patterns of gene 
expression, which reduces the accuracy of our understanding of gene behavior (see [13], 
for example, and the references therein).

This study was initially motivated by preliminary investigations of differential 
expression levels of genes between two populations of patients within the same data-
set. In multiple patient cohorts that exhibited distinct types of cancer, we identified 
large shifts in the overall distribution of t statistics when comparing random popula-
tions within the cohort. This indicated that there were per-patient biases that shifted 
the expression levels of all or most genes. We subsequently discovered that these 
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shifts were systematically related to genes’ mean expression level [20]. If left uncor-
rected, we hypothesized that these per-patient biases corrupt any biological under-
standing of patient samples based on conventional forms of downstream analysis.

The presence of such anomalous deviations raises several impactful questions:

• Is it possible to identify the cause of the anomalies–specifically, are they due to bio-
logical factors, or are there errors in measurement?

• Is it possible to correct the effect in order to improve the accuracy of statistical tests?
• What effect do the deviations have on statistical tests of RSEM data that are used in 

medical research?

The goal of this paper is to provide answers to these three questions.
This paper is structured as follows. In Section "The Data" we describe the data used, 

the transforms used for preprocessing, and some statistical characteristics of the 
preprocessed data. In Section  "Bias detection and characterization" we identify the 
bias through block averaging of sorted data. The main contribution of this paper is in 
Section  "Bias correction", which describes two alternative approaches to correcting 
the bias. Section "Description of statistical tests" will describe the different statisti-
cal tests and validations that are performed to demonstrate the effects of corrections 
to these anomalies. The results are shown in Section "Results" where many statistical 
studies are performed on the data before and after the transforms proposed in this 
article. This is followed by a thorough discussion in Section "Discussion and Future 
Work" followed by a summary in the conclusion section.

The Data
Datasets used

The data used in this study comes from several publicly-available RNA-seq datasets 
consisting of samples taken from different populations (one sample per patient). For 
brevity, in the following we will refer to these samples as “patients”. The datasets are 
summarized in Table 1. Both raw counts and TPM scaled data were used as indicated 
in the table.

All of the tests described in the following were conducted on all datasets. Since 
results were similar in all cases, the figures are shown for only one case, namely 
TCGA bladder firehose TPM.

Table 1 Summary of datasets used in study

Dataset designation  Size (patients × genes) Scalings

TCGA bladder firehose 408 × 20216 (107 female, 301 male) raw counts,TPM

TCGA prostate firehose 498 × 20198 (all male) raw counts,TPM

SU2C prostate 208 × 19158 (all male) FPKM, TPM

GSE 47774 1710 × 39376 raw counts

GTEx prostate V8 245 × 56200 (all male) TPM

Acute Myeloid Leukemia (TCGA, 
PanCan)

173 × 20531 raw counts
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Data preprocessing

Datasets with various types of preprocessing were included in the study. The processing 
used in each dataset is indicated in Table 1. In a previous similar study [20] we removed 
outliers of more than 5 standard deviations, but in the current study we did not (there 
were no noticeable differences between the results).

Regardless of preprocessing, all data was log transformed according to:

where the constant c is included in (1) so that unexpressed genes ( x = 0 ) will not trans-
form to negative infinity.

Besides the variance-stabilizing property mentioned in the introduction, the log trans-
formation has other advantages. It compresses the range of expression levels from sev-
eral orders of magnitude to a single order of magnitude, making it easier to compare 
across genes with widely different expression levels. Most importantly, it transforms 
multiplicative bias into an additive shift, as follows.

Suppose that {Xj} give the true expression levels for genes with index 1 ≤ j ≤ J  . Sup-
pose also that measurement error introduces a multiplicative bias b  = 1 , so that the 
measured values for the genes are {bXj , 1 ≤ j ≤ J } . Applying the log transform yields the 
values {log2(bXj + c), 1 ≤ j ≤ J } . If c is small compared to the expression levels {bXj} , we 
may approximate:

Equation (2) shows that a multiplicative bias in measurement appears as an overall shift 
across expression levels, if c is small compared to the biased expression level. Many stud-
ies take c = 1 , but without any explicit justification. We chose c = 0.25 for the following 
reasons. If measurements are integer values, the smallest nonzero value is 1. If the true 
expression levels are rounded to the nearest integer, then values between 0 and 0.5 will 
be rounded to 0. Supposing that small values are approximately uniformly distributed, 
it follows that the mean of values rounded to 0 is 0.25. Thus c = 0.25 is a natural choice.

To minimize the multiplicative distortion introduced by c  = 0 , we limited our analy-
sis to genes with mean expression level above 8. For a gene with Xj = 8 , the distortion 
introduced by c according to (2) is less than 1/32, or about 3 percent.

In many investigations, the per-gene expression levels is converted to standard scores 
(Z scores), so that the per-gene expression levels all have mean 0 and standard deviation 
1. We did not standardize, because the bias’ effect on a given gene depends on its mean 
expression level, but not on its standard deviation. Dividing each gene’s expression level 
by its own standard deviation scrambles the bias so that it can no longer be estimated 
or corrected. Note however that the statistical tests described in Section  "Description 

(1)x → log2(x + c),

(2)

log2(bXj + c) = log2(b)+ log2

(
Xj

(
1+

c

bXj

))

= log2(b)+ log2(Xj)+ log2

(
1+

c

bXj

)

= log2(b)+ log2(Xj)+

(
c

bXj
+ . . .

)

≈ log2(b)+ log2(Xj)+
c

bXj
.
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of statistical tests" do apply standardization to compute t statistics, but only after bias 
correction.

In the following we will use the term “expression level” to denote log transformed 
expression levels. We will use the symbols g and G to denote measured and actual values 
of log transformed expression levels, respectively.

Statistical characteristics of preprocessed data

Many statistical tests depend on the assumption of normality and variance that is inde-
pendent of expression level. In this section, we verify that log transformed data satisfies 
these conditions.

Normality of expression level sums

In order to characterize the normality of expression level data, we applied the d’Agostino 
test for normality to the transformed data for each gene across patients. Figure 1 shows 
the sorted d’Agostino p-values for all genes for the original data. A straight line from 
(0,0) to (1,1) is consistent with perfect normality; however, we find that for the original 
(untransformed) expression level data, most p-values are 0, indicating poor agreement 
with normality. The log transform greatly improves normality, so that about 20 percent 
of the genes have p values greater than 0.05. The normality is further improved if only 
genes with expression level above 3 are considered (about 44% of the reference dataset).

In tests for gene expression level differences between subpopulations, the test statistic 
depends on per-gene averages across patients in the two subpopulations. In such cases, 
normality is very closely approximated, even for small patient samples (the improved 
normality is a natural consequence of the Central Limit Theorem). Figure 1 also shows 
d’Agostino p-values obtained from the distribution of 16-patient averages from the 

Fig. 1 Sorted p-values for d’Agostino test applied to per-gene data across patients for untransformed data, 
log transformed data, and log transformed sums of randomly-chosen samples of size 16. p values restricted 
to genes with mean expression log transformed expression level above 3 (single genes and random sums of 
16 samples) are also shown. Curves that are closer to the line of slope 1 indicate better normality
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preprocessed TGCA bladder cancer dataset. Most of the curve is close to the y = x line, 
indicating consistency with normality. Still, about 10% of genes have p-values indistin-
guishable from 0 on the scale of the figure. But the figure also shows that if genes with 
mean transformed expression level below 3 are excluded, the p-value distribution is very 
close to what would be expected from normally-distributed data. These results justifies 
the assumption of normality in tests that compare mean expression levels for higher-
expressed genes between two subpopulations, as long as the subpopulation sizes are 
greater than 16.

Uniformity of variance of per‑gene expression data

We also examine the dependence of per-gene standard deviations on mean expression 
level for log transformed data. Figure 2 shows the standard deviations of log transformed 
gene expression levels for the TCGA bladder cancer dataset. In the plot, genes are 
ordered by increasing mean expression level. The black line gives the moving centered 
block average (block size=800) of gene standard deviations, as a function of gene mean 
expression level. The color bands in the plot indicate the ranges for the five data quin-
tiles: for example, about 20% of transformed expression levels are above 6.

The plot shows that the mean standard deviations of log transformed data are nearly 
independent of expression level, even without the application of a VST. Furthermore, 
VSTs in general tend to affect genes with low expression levels. It follows that in stud-
ies that focus on mid- to highly-expressed genes, VSTs may provide no advantage, and 
indeed may introduce unnecessary complications into the analysis, since they do not 
have the multiplicative shift property that the log transform has.

Methods
Bias detection and characterization

In this section we describe various statistical tests that detect per-patient expression 
level biases in the studied datasets, and show that they are related to gene expression 
level.

Fig. 2 (a) Distribution of log transformed expression level for all genes for reference dataset. (b) Distribution 
of mean log transformed expression level for genes with mean log transformed expression level above 3. (c) 
Standard deviations of log transformed gene expression level versus mean of log transformed expression 
level, for genes with mean expression level above 3. The color bands indicate quintiles of log expression 
levels from 0–20%, 20–40%, 40–60%, 60–80%, and 80–100%. The black line is the moving average of standard 
deviations, where each point on the line is the average for 1000 consecutive genes
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This task is complicated by the fact that shifts produce a relatively small effect compared 
to random expression level variation on a per-gene basis. However, the relative effect of the 
shifts is amplified by taking per-patient block averages of sorted expression level data.

The procedure for detecting expression-level shifts is described in detail as follows. Note 
that “expression level” refers to the expression level of data that has been cleaned and log 
transformed as described in Section "Data preprocessing". 

(a) Compute the per-gene mean expression levels across all patients, and then sort the 
genes in order of increasing mean value.

(b) Divide the sorted expression levels into K consecutive blocks of equal size, and 
sum the expression levels in each block separately for each patient. This step is 
made mathematically precise as follows. Let N, M denote the number of genes 
and patients respectively, and gnm denotes the measured expression level for gene 
n (1 ≤ n ≤ N ) and patient m ( 1 ≤ m ≤ M ). Let B denote the block size, and let 
bkm , ( k = 1 . . .K , m = 1 . . .M ) denote the average expression level for all genes in 
block k and patient m. Then we have: 

(c) In order to compare across patients, we then center the values {bkm} by subtracting 
out block means across samples to obtain centered block averages {¯bkm} as follows: 

Figure 3 (top left) shows centered block averages as defined by (4) for randomly selected 
patients from the TPM bladder cancer data, with block sizes of B = 1000 . The trends show 
that individual patients have smoothly varying deviations from mean gene expression level 
depending on expression level.

In order to confirm that the deviations shown in Figure  3 are dependent on expres-
sion level, we repeat the process (1–3) described above, but without sorting the genes by 
increasing expression level. Figure 3 (top right) shows that block averages of unsorted genes 
do not show varying deviations. Instead, there are constant overall shifts from patient to 
patient. This confirms the systematic effect of gene expression level on per-patient expres-
sion level deviations from the mean.

A more systematic mathematical analysis of the results is as follows. With gnm as above, 
define the average of patient measurements for gene n:

and the gene deviation as

If we choose a subset of N ′ genes g ′j1 , . . . g
′

jN ′

 , we have:

(3)bkm =

1

B

kB∑

j=(k−1)B+1

gjm, where k ≤ ⌊N/B⌋.

(4)¯bkm = bkm −

1

M

M∑

m=1

bnm.

(5)ḡn :=

1

M

M∑

m=1

gnm,

(6)δnm := gnm − ḡn.
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For fixed n, the values of {δnm′ , 1 ≤ m′
≤ M} average to 0. Since the indices {jn′ } are 

randomly chosen, it follows that the right-hand side of (7) will be randomly distrib-
uted around 0 for different choices of {jn′ , 1 ≤ n′ ≤ N ′

} , unless {δjn′m, 1 ≤ n′ ≤ N ′
} is 

a biased sample from {δjn′m′ , 1 ≤ n′ ≤ N ′, 1 ≤ m′
≤ M} . The patient-to patient shifts 

of the curves in the top right panel of Figure 3 shows that there is indeed a consistent 

(7)
∑N ′

n′=1 gjn′m∑N ′

n′=1 ḡjn′
= 1+

∑N ′

n′=1 δjn′m∑N ′

n′=1 ḡjn′

Fig. 3 Block deviations for selected patients computed according to (4), for log transformed TPM data. Each 
curve gives the block deviations for a randomly selected patient. Figures in the left column are computed 
using gene data that is sorted according to increasing expression level, while the pictures in the right column 
use the same data but with genes in random order. The top row shows block deviations for log transformed 
TPM data, using the transform (1). The transforms “TPMshift” ,“LLT”, and “nonlin” (rows 2–5) are explained in 
Sections "Mean expression level-dependent bias model.Mean expression level-dependent bias model" 
and "Nonlinear scale distortion and correction.Nonlinear scale distortion and correction"
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patient-to-patient bias, regardless of the random choice of {jn′ } . We found similar biases 
in all datasets studied, regardless of preprocessing.

The question arises as to whether the shifts observed in per-patient block averages are 
of biological origin, or if they are due to measurement bias. Two aspects strongly indi-
cate that the cause is measurement bias. First, the shifts observed in randomly-selected 
blocks are consistent, independent of the function of selected genes. Second, the expres-
sion-level dependent shifts vary continuously from block to block across the entire range 
of expression levels, indicating a global pattern in the genes that once again does not 
depend on gene function. In view of this conclusive evidence, in the subsequent discus-
sion we will refer to the effect as a bias rather than a shift.

We can easily correct for faulty normalization by changing the multiplicative factor so 
that the unsorted block averages for different patients coincide. The plots in the second 
row of Figure 3 show the results. The unsorted block averages for different patients now 
nearly coincide, and average to zero (Figure 3, second row, right column). However, the 
sorted block averages still show systematic trends (Figure 3, second row, left column). 
Multiplicative normalizations (such as TPM, DEseq2, and TMM) can only produce uni-
form vertical shifts in the curves in Figure 3. It is evident that there is some variation 
between patients which cannot be compensated by an overall normalizing factor.

Bias correction

In Section "Bias detection and characterization" we demonstrated the existence of per-
patient, systematic bias. This bias can potentially introduce errors into the results of sta-
tistical tests, and may obscure effects due to varying levels of real activity among patients 
or groups of patients. It behooves us therefore to find a way to reduce these biases. The 
most straightforward way to do this is to estimate and then subtract the bias. The cor-
rection problem is then reduced to an estimation problem.

Reference [20] proposes a method termed “local leveling” which uses per-patient 
block averages directly to make corrections to the data. Subsequently it was realized that 
an approach based on regression can accomplish virtually the same correction but by 
simpler means. In this section we present two alternative regression-based approaches 
to correcting the patient- and expression level- dependent bias that was demonstrated in 
Section "Bias detection and characterization". The first method (which nearly duplicates 
local leveling) directly corrects the effect as observed; while the second posits a model 
for the bias, and derives a corrective transformation based on the model. Thus the first 
method treats the symptoms of the problem, while the second method attempts to iden-
tify the underlying cause in order to provide effective treatment.

Mean expression level‑dependent bias model

According to the graphs in Figure 3 the bias in expression level depends on the genes’ 
mean expression level. A mean expression level-dependent bias gives rise to the follow-
ing relationship between observed and actual expression levels:

where

(8)gnm = Gnm + βm(ḡn)+ ǫnm,
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• gnm,Gnm are measured and true values respectively of the expression level of gene n 
for patient m;

• βm(·) represents the mean expression level-dependent bias for patient m;
• ḡn is the average of patient measurements for gene n, i.e. ḡn =

1
M

∑M
m=1 gnm;

• ǫnm is the residual measurement error in addition to the bias.

In order to derive an estimate of βm for patient m, we subtract ḡn from both sides of (8) 
to obtain:

The term (Gnm − ḡn) in (9) represents deviations of patient m’s expression level for gene 
n from the measured mean.

The graphs in Figure 3 show that the biases βm varies smoothly depending on average 
expression level. Accordingly, we assume a polynomial model for βm , so that

where we have also added and subtracted Ḡn . In order to estimate the coefficients 
bmℓ, ℓ = 0 . . . L , we take block averages. We introduce the notation:

for any quantity qnm that depends on both n and m. If the genes are sorted in order of 
increasing ḡn and K is sufficiently small, then the function βm will be almost the same for 
genes n, . . . , n+ K  , and to a very close approximation we have

Applying block averaging to (10), we then have:

At this point we invoke the observations described in Section "Bias detection and char-
acterization", which indicate that random measurement errors (apart from bias) as well 
as patient-dependent expression level differences average to 0 when block averaged over 
large numbers of genes with unrelated functions. The last three terms in (13) then repre-
sent averages of independent or weakly dependent mean-zero random variables, which ( 
following the Cental Limit Theorem) approach normally-distributed, mean zero random 
variables, as shown in the d’Agostino test plot in Figure 1. This justifies the use of poly-
nomial regression to estimate the coefficients bmℓ.

In summary, we estimate the coefficients of βm by first sorting ḡ , then dividing gnm 
and ḡn into ⌊N/K⌋ blocks of size K, and then applying regression to find estimates 
b̂m0, . . . , b̂mL for the coefficients of βm . We use weighted regression with weights based 
on block averages of Var(gnm)m=1,...M , since the variation of gene expression levels 
between patients is the primary source of error. Once these coefficients are evaluated, 
we obtain an estimate Ĝ(LL)

nm  for the true expression level Gnm by rearranging (8) :

(9)gnm − ḡn = βm(ḡn)+ (Gnm − ḡn)+ ǫnm.

(10)gnm − ḡn =

(
bm0 + bm1ḡn + . . .+ bmLḡ

L
n

)
+ (Gnm − Ḡn)+ (Ḡn − ḡn)+ ǫnm,

(11)�qnm�K =

1

K

n+K∑

k=n

qkm,

(12)�βm(ḡn)�K = βm(�ḡn�K ).

(13)
�gnm − ḡn�K = bm0 + bm1�ḡn�K + . . .+ bmL

(
�ḡn�K

)L
+ �Gnm − Ḡn�K + �Ḡn − ḡn�K + �ǫnm�K .
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Figure 3 (third row) shows that local leveling greatly reduces the deviations for sorted 
and unsorted gene block averages. It also removes the trends from the sorted gene 
blocks that were present in the shifted TPM data (row two, column 1)

In the following discussion, we will refer to the above transform as the local leveling 
transform (LLT). Although it is somewhat different from the local leveling proposed 
in [20], it leads to substantially the same result. Both the original and the current 
LLT make per-patient corrections by averaging over each patient’s genes’ deviations 
from the mean value, where the average is performed over genes with nearly the same 
mean expression level. The original LLT does this averaging explicitly, while the cur-
rent LLT uses smoothing via regression.

For completeness, we summarize the statistical assumptions underlying (14) as 
follows: 

(A) Measurement bias for a particular gene and patient can be characterized as a poly-
nomial function of the gene’s mean expression level across all patients:

(B) Apart from measurement bias, measurement errors of gene expression levels expe-
rience random cancellation when block averaged over large numbers of genes with 
consecutive expression levels, resulting in a mean-zero random variable that is 
approximately normal.

(C) Similarly, differences in a particular patient’s actual expression levels from the 
actual means over all patients also experience random cancellation when block 
averaged over large numbers of genes with consecutive expression levels, resulting 
in a mean-zero random variable that is approximately normal.

Nonlinear scale distortion and correction

The LLT model in the previous section presumes that bias is a function of mean 
expression level. This model was motivated by empirical observations described in 
Section "Bias detection and characterization". However, it is more reasonable to sup-
pose that patient-dependent bias in an expression level measurement depends on the 
expression level in the patient, and not the average over all patients. Based on this 
consideration, we hypothesize that there is a patient-dependent, nonlinear change of 
scale that distorts gene expression level measurements. With gnm and Gnm defined as 
above, we may then express the nonlinear relationship between the measurement and 
true expression level as follows:

where αm(g) reflects the expression level-dependent scale distortion for patient m, and 
ǫnm represents the measurement error for gene n and patient m. Assuming that αm has 
polynomial form of order L (in analogy to (10)), we have:

(14)Ĝ(LL)
nm = gnm − (b̂m0 + b̂m1ḡn + . . .+ b̂mL

¯gLn ).

(15)Gnm = αm(gnm)+ ǫnm,



Page 13 of 29Thron and Jafari  BMC Bioinformatics           (2025) 26:32  

Taking block averages as in (13) and re-expressing Gnm in terms of differences as in Sec-
tion  "Mean expression level-dependent bias model.Mean expression level-dependent 
bias model", we have

Combining the three error terms �Gnm − Ḡn�K , �Ḡn − ḡn�K  and 〈ǫnm〉K  on the right gives 
a nonlinear model:

where as in Section  "Mean expression level-dependent bias model.Mean expression 
level-dependent bias model" we approximate 〈ǫ(tot)nm 〉K  as mean-zero normal random 
variables. The coefficients {amℓ} can then be estimated by applying regression to (18). 
Because the error 〈ǫ(tot)nm 〉K  is combined from multiple sources and has no clear relation 
to gene expression level, we use unweighted regression. Then we can estimate expression 
levels using

which we will refer to hereafter as the nonlinear transform (abbreviated NL).
The assumptions underlying (19) parallel assumptions (A)-(C) in Section  "Mean 

expression level-dependent bias model.Mean expression level-dependent bias model", 
except (A) is replaced by: 

 (A’) Measurement bias for a particular gene and patient can be characterized as a pol-
ynomial function of the gene’s actual expression level for that particular patient.

Figure 3 shows that NL has a similar effect on gene block averages as LL. Both remove 
trends and reduce block deviations equally.

Figure 4 (left) shows the estimated scale change transformations α̂m(g) for our refer-
ence dataset for five randomly-selected patients, as a function of expression level z. The 
model has polynomial order L = 3 and uses K = 50 . Also shown is the 45◦ line, which 
would correspond to no nonlinear distortion (α(g) = g) . In order to highlight the scale 
deviations for different patients, Figure 4 (right) shows α̂m(g)− g for the same patients 
plotted in Figure 4 (left). The variety of scale deviations highlights the need for separate 
correction functions for each patient.

Figure 5 displays the block averaged variance for four different transforms of the gene 
data: original (basic log transformed); shifted; LLT; and NLT. The averaged variance 

(16)αm(gmn) =

L∑

ℓ=0

amℓg
ℓ
mn

(17)

�Gnm�K =

L∑

ℓ=0

amℓ�g
ℓ
nm�K + �ǫnm�K

=⇒ �Gnm − Ḡn�K + �Ḡn − ḡn�K + �ḡn�K =

L∑

ℓ=0

amℓ�g
ℓ
nm�K + �ǫnm�K

(18)�ḡn�K =

L∑

ℓ=0

amℓ�g
ℓ
nm�K + �ǫ(tot)nm �K ,

(19)Ĝ(NL)
nm =

L∑

ℓ=0

âmℓg
ℓ
nm,
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are reduced by NLT for nearly the entire range of the gene expression levels, albeit not 
much more than LLT. This indicates that NLT is most effective in reducing the between-
patient variation.

Description of statistical tests

We have mentioned that the expression level corrections described in Section "Bias cor-
rection" have the potential of improving the sensitivity and accuracy of statistical tests 
involving gene expression levels. In this section we describe several statistical tests that 
are applied to the data to evaluate the effect of the data transformations described in 
Section  "Bias correction". Some of these tests examine statistical properties of trans-
formed data; others involve artificially raising the expression levels of selected genes for 
selected patients (a procedure that we call “spiking”) and using standard statistical tests 
to attempt to identify the spiked genes. These comparisons are carried out both before 
and after the corrections described here.

Fig. 4 Nonlinear scale distortion for a few patients as a function of their gene expression levels. On the left, 
the measured expression levels are shown as a function of the actual (corrected) levels. On the right, the 
corrections are shown as a function of the expression levels

Fig. 5 Block averaged gene inter-patient expression level variance for the different processing methods as a 
function of mean log transformed expression levels
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Correlation tests

Expression level data is also commonly used to compute correlations between genes, to 
determine possible functional dependencies. In order to determine the effect of different 
transformations on pairwise Spearman correlations, all gene pairs were correlated for all 
four variant transformations, and the distribution of correlations was plotted.

Two population tests, single and multiple gene

Genetic expression level data may be used to determine systematic differences between 
mean expression levels of genes in two populations. For example, an exploratory study 
might be conducted to determine which genes have significantly higher levels in a sub-
population with particular characteristic. Based on Figure  1, we may infer that mean 
expression levels for sufficiently large subpopulations are nearly normally distributed. 
Hence the use of a z-test or t-test is apparently justified.

In order to evaluate the effect of the transformations described in Sections "Bias detec-
tion and characterization" and "Bias correction", we create pairs of subpopulations with 
controlled differences as follows. First, we take our actual reference dataset of size M 
(patients) and randomly separate a subpopulation of size P, P < M . Since the selection 
is completely random, any statistical difference detected between these two subpopula-
tions is due to random chance.

In order to introduce a significant difference between the two subpopulations, we add 
a constant value to the expression levels of genes the P patients in the selected subpopu-
lation. Since we are dealing with log transformed data, adding a constant log2(C) to the 
data value is essentially equivalent to multiplying the original data by C. We refer to this 
procedure as “spiking”, and the value of C is called the “spike level”. (Note that unlike the 
“spiking” employed in [1], our procedure does not involve modified biological samples, 
but rather modifications of the data only.) We then compute t statistics (assuming equal 
variances for the two populations) for individual genes between the spiked subpopula-
tion and the remaining population. Note that because of the large number of degrees of 
freedom, the t statistic is essentially equal to the Z statistic with pooled variance. These 
t statistics are obtained using the four transforms discussed in Section (log transformed 
TPM data, shifted log transformed TPM, local leveled, and nonlinear transformed) . 
The t values thus obtained may be compared to the t-distribution obtained between the 
same two subpopulations, but without spiking. By so doing, we may determine detec-
tion rates of spiked genes. Typically we will be interested in very small p values, because 
otherwise the test will return too many false positives because of the large number of 
genes involved. For example, if the test involves 10, 000 genes, then a p value of 0.005 
will return roughly 50 false positives.

Note that after spiking, patients in the subpopulation are no longer normalized. How-
ever, this does not affect our analysis. Although we are spiking every gene, we compute 
t statistics gene by gene to model situations where single genes are spiked. We are not 
performing global comparisons between the spiked and unspiked patients.

The above procedure can be used to conduct two-population tests to detect differ-
ences in individual genes’ expression levels. It is also possible to test for statistical sig-
nificance of differences between multiple genes. In order to conduct such tests on sets 
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of multiple genes, we need to obtain the distribution of sums of gene t statistics. We 
may consider genes as a probability space, where each gene has probability weight 1/N. 
Then gene t-values define a random variable on this probability space, whose distribu-
tion is given by the histogram of gene expression levels. The distribution of sums of K 
randomly-chosen t-values, is just the K-fold convolution of this distribution with itself. 
We may apply K-fold convolution to the two subpopulations separately to obtain the 
corresponding t statistic sum distributions. We may then perform the same analyses on 
these t statistics that we did on the single-gene t statistics.

Single‑patient tests, single and multiple gene

Another possible application of expression level data is the detection of elevated gene 
levels in specific patients. This may be considered as a special case of the two-population 
test. Such tests might be used for example to determine whether a certain patient has 
elevated levels of a cancer-associated gene that has previously been identified. As before, 
the t- or z-test may be applied as long as the reference population is sufficiently large. 
In this case, the p values of interest are likely to be somewhat larger than in exploratory 
tests.

It is also possible to test for multiple genes in the single-patient scenario, just as 
described above for exploratory tests. The more genes are tested for, the more sensitive 
the test will be to gene elevations of similar magnitude.

Results
In this section we present all the results that are shown graphically, explaining how they 
were attained and pointing out the important features in these figures. Further impli-
cations will be given in the discussion section. In all of the following tests we used a 
third-order model for LLT and NLT ( L = 3 in (10) and (16)) with block averaging over 
50 consecutive genes ( K = 50 in (11)). Empirically, we found that increasing the value of 
L beyond 3 gave negligible reductions in the mean squared error of the regression. We 
also found that the results were relatively insensitive to the choice of K.

Correlation tests

Figure 6 (top) shows the distribution of gene-gene Spearman correlations for the four 
transforms described in Section "Methods". These distributions are compared with the 
correlation distribution obtained from uncorrelated data generated by independently 
shuffling each gene’s TPM data (thus eliminating any biology-related correlations). In 
comparison with uncorrelated data, all four transforms have correlation distributions 
with a much greater spread, indicating the presence of numerous biology-related cor-
relations. TPM has the largest spread, followed by TPM shifted which has a slightly 
larger spread than LLT and NLT. TPM also shows a noticeable positive shift, while the 
other three transforms are nearly symmetric around zero. This shift is an expected con-
sequence of the expression level-dependent block shifts observed in Figures  3, which 
introduce artificial correlations. On the other hand, the correlation distributions for all 
three transforms are centered at zero, indicating that the net bias introduced by block 
shifts has been removed.
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Figure 6 (bottom) shows the distributions of differences between correlations calcu-
lated using NLT and the other three transforms. NLT was taken as a baseline, because 
on theoretical grounds we expect it to give the most accurate correlations. The figure 
shows that correlations computed using LLT agree closely with NLT, and TPM shows 
a broad spread of shifts centered at 0.1. The effect of TPM-shift on correlations is 
much more evident in this plot than in Figure 6 (top): the average magnitude of the 
difference between TPM-shifted and NLT is roughly 0.05. The broad distribution of 
differences between TPM-shift and NLT can be attributed to the fact that TPM-shift 
does not completely remove the expression level-dependent bias, which positively or 
negatively affects gene pair correlation values depending on whether the pair have 
similar or dissimilar mean expression levels respectively. Since both LLT and NLT 
remove the expression-level trends completely, there is no broadening in either trans-
form’s distribution of correlations.

Fig. 6 (Top) Distributions of Spearman correlations for gene-gene pairs subject to four data transforms: 
log transformed TPM (abbreviated as TPM), log transformed TPM with shift(abbreviated as TPM-shifted), 
local leveled (LL), and nonlinear rescaled (NL). The different data transforms are explained in Sections "Bias 
detection and characterization" and "Bias correction". For comparative purposes, the correlation distribution 
for data which shuffles the per-gene expression levels among patients is also shown. (Bottom) Distributions 
of differences between pair-by-pair correlations computed using the different transforms: TPM minus NL, 
TPM-shifted minus NL, and LL minus NL
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The corrective effect of LLT and NLT compared to TPM-shifted is even more evi-
dent if we look at correlations of genes with mean expression levels in a narrower range. 
Genes with similar expression levels will experience similar per-patient biases, so the 
overall effect of bias on correlations is amplified. Furthermore, the negative biases that 
were observed in TPM-shifted data are eliminated in this case, leading to a net positive 
bias with TPM-shifted data. Figure 7 parallels Figure 6 (bottom) by showing the distribu-
tion of correlation differences, but with only the genes that have mean transformed TPM 
expression levels between 4 and 5 (corresponding to a range of 16 to 32 in the original 
TPM dataset). The positive skew of TPM-shifted is evident, showing that TPM-shifted 
does not completely remove effects due to scale nonlinearity.

Two population test results

Figures 8-14 illustrate results of the two-population tests with spiking described in Sec-
tion "Single-patient tests, single and multiple gene.Single-patient tests, single and multi-
ple gene". All of these figures include results pre-correction (TPM) and post-correction 
(TPM-shift, LLT, NLT) described in Section "Methods".

Figures 8 and 9 show mean complementary cumulative distribution functions (ccdfs) 
for the t statistics obtained using the “spiking” procedure. Recall that the ccdf for a given 
t level is the proportion of t values which exceed the given t level. Among other things, 
ccdfs are used to identify high outliers.

For population sizes 50 and 10 and spike levels between 20–80 percent, the ccdf was 
calculated for 5000 randomly-chosen subpopulations. The curves shown are the means 
of the 5000 ccdf values for each value of t. The error bars correspond to the 10th and 
90th percentiles of the 5000 ccdf values obtained from the 5000 simulations. The error 
bars for the mean values are too small to be visible on the figure.

For purposes of comparison, the same procedure was applied to compute the ccdf 
for Gaussian data, which is shown in the figure as a dotted black line. The Gaussian 

Fig. 7 Distributions of differences between pair-by-pair correlation differences as in Figure 6(bottom), but 
restricted to genes with mean log transformed expression levels between 4 and 5 (corresponding to TPM 
values of between 16 and 32). Note the positive skew and overall positive bias in the TPM-shifted correlation 
estimates
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data was generated as J independent Gaussian random variables (where J is the num-
ber of genes), such that the j’th variable has the same mean and standard deviation as 
the j’th gene in the dataset.

We see from the figures for unspiked data that all four transforms have mean ccdfs 
that are very close to the Gaussian ccdf. Error bars for TPM are consistently larger 
than for the other three transforms, which in turn are much bigger than the Gaussian 
ccdf error bars. When spiking is introduced, this situation changes. The mean ccdf ’s 
for TPM-shifted, LLT, and NLT are consistently higher than for TPM and Gaussian, 
with NLT the highest, followed by LLT and TPM-shifted. The difference in error bars 
between TPM and the other three transforms is more pronounced than for unshifted 

Fig. 8 Complementary CDFs (ccdfs) for 5000 simulated subpopulations of size 50 at different gene 
enhancement levels (a.k.a. “spike levels”). For each curve, the y-axis values give probability of gene t-statistics 
exceeding the corresponding values on the x-axis. Error bars show 10th and 90th percentiles for ccdf values 
obtained from the 5000 tests: error bars for the averaged curves are too small to see on the figure. The ccdfs 
for Gaussian data are also shown (see text for full explanation)

Fig. 9 Complementary CDFs for 5000 simulated subpopulations of size 10 at different gene enhancement 
levels. Axes and error bars are as in Figure 8
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ccdf ’s. Comparison between Figures  8 and  9 shows that larger subpopulation sizes 
yield larger ccdf values, but otherwise produce no qualitative differences.

The high variability in ccdf values justifies the common conclusion that t tests are 
unsuitable for TPM data, even though the mean unenhanced ccdfs are quite close to 
the Gaussian ccdf. Nonetheless there is some possibility of drawing useful conclusions 
from t tests. For example, if one applies a t test with t = 3 to 8,000 genes in a 2-popula-
tion NLT dataset where the smaller population is 50, we can expect between 0 and 40 
false detections (assuming that most of the genes are not enhanced), while genes with 
enhancement level of at least 40 percent have a 80 percent or higher chance of being 
correctly identified. If TPM data is used, the number of false detections will be similar, 
but the minimum percentage of correct positive identifications is somewhat less, at 70 
percent.

Figues 10-14 show various receiver operating characteristic (ROC) curves associated 
with t tests for two subpopulations. ROC curves are commonly used to evaluate binary 
classifiers that depend on comparing a statistic to a threshold that is set by the user. ROC 
curves display sensitivity (also called true positive rate, or TPR) versus 1−specificity 
(a.k.a. false positive rate, or FPR) for the full range of possible thresholds. Since two-
population t-tests are based on a threshold, ROC curves give an appropriate measure of 
test performance.

There are several ways of estimating an ROC curve for a given 2-population test. For 
example, one could use the standard t test ROC curve derived from Gaussian data. This 
method has the obvious flaw that t statistic distributions shown in shown in Figures 8 
and 9 do not agree particularly well with the Gaussian model.

A data-based alternative to a Gaussian model is to use resampling. Resampling refers 
to the procedure of generating empirical probability distributions based on repeated 

Fig. 10 Averaged ROC curves for 5000 simulations with randomly-chosen subpopulations of size 50 at 
different gene enhancement levels (a.k.a. “spike levels”). The y-axis is the true positive rate (specificity) for a 
2-population t, test with false positive rate (1-selectivity) given on the x axis. Error bars show 10th and 90th 
percentiles. The ROC curve for Gaussian data is also shown (see text for further explanation)
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random subpopulation draws from the actual data. There are multiple ways to gener-
ate ROC curves via resampling. One way is to set closely-spaced values of the t statis-
tic t1, . . . tL as thresholds, then use repeated random draws to estimate the mean TPR 
and FPR for each threshold. Another way is to estimate an ROC curve for each random 
draw; treat each ROC curve as giving TPR as a function of FPR, and average the curves 
to give the averaged TPR as a function of FPR. The first method is appropriate when the 
t threshold is specified before the test—in this case, both the TPR and FPR have uncer-
tainties. The second method for computing ROC curves is appropriate when the FPR 
is known, and the TPR is to be estimated based on this known value—in this case, only 
the TPR has an uncertainty. In most practical applications, the t statistics are computed, 
and a fixed number of top-ranked genes is selected as possible true positives. The fixed 
number provides an estimate for the total detection rate, which approximates the FPR 
(assuming that most positive detections are false, which is the usual case). Accordingly 
the empirical ROC curves shown in this paper are calculated using the second method.

Figures  10 and 11 show ROC curves for t statistics obtained using the procedure 
described in Section "Single-patient tests, single and multiple gene.Single-patient tests, 
single and multiple gene" on all four transforms, for subpopulations of 50 and 10 patients 
respectively, with spike levels ranging from 0% to 80%. The error bars in the figures give 
the 10’th and 90’th percentiles for the 5000 draws, as with previous graphs. As before, 
the error bars on the mean ROC curves themselves are too small to appear in the fig-
ure. The differences between transforms are slight, but statistically significant. Of the 
four transforms, LL and NL tend to have the highest TPR and the smallest uncertainties, 
while TPM has the lowest TPR and largest uncertainties (except for subpopulation size 
50 and spike level 80%, where these relations are reversed). Comparison between the 
two figures shows that increasing the subpopulation size greatly increases TPR, espe-
cially for lower FPR’s.

Fig. 11 Averaged ROC curves for 5000 simulated 2-population tests of size 10 at different gene 
enhancement levels as shown. Axes and error bars are as in Figure 10
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The consistent gap between the ROC curves from actual data and from Gaussian data 
is noteworthy. A priori there are two possible reasons for this gap: it could be due to 
the non-normality of the individual gene distributions; or it could be due to correlations 
between the genes in the actual data. To determine whether the non-normality is a sig-
nificant factor, we performed the same simulations, but this time first scrambled the per-
gene data among patients. This procedure destroys nonrandom correlations between 
different genes, but leaves the per-gene distributions unchanged. When this was done, 
the ccdf and ROC curves obtained were virtually identical to the Gaussian curves shown 
in Figures  8-11, and with similar error bars. We conclude that the deviations from 
Gaussian are entirely due to gene-gene correlations in the actual data.

Figure 12 further breaks down the detectability of outliers as a function of expression 
level. The figure contains 9 panels arranged as a 3× 3 grid, where rows and columns 
correspond to different enhancement levels and t threshold levels, respectively. Each 
panel gives t test results from 5000 2-population divisions, where the enhanced popu-
lation has size 50. Genes were ordered by expression level, then divided into blocks of 
800, and the average detection rate for each block of genes is computed. Each plot shows 
detection rate versus the mean expression level for all gene blocks, for the four different 

Fig. 12 Detection rate by mean expression level for gene-enhanced subpopulations of size 50. Rows 
correspond to different enhancement levels (unenhanced, 20% enhanced, 40% enhanced) while columns 
correspond to different t levels (3.0, 3.3, 3.6). Genes are sorted by mean expression level, and detection rates 
for blocks of 800 consecutive genes are averaged over 5000 simulations
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transforms. Consistently, we find that genes with lower expression levels also have lower 
detection rates. This is not surprising given the well-known fact that low-expressed 
genes have greater variability (see Figure 2 in [20]), and are thus harder to detect.

So far we have only looked at two-population test results for differences in single 
genes. In Section "Two population tests, single and multiple gene.Two population tests, 
single and multiple gene", we discussed the possibility of two-population tests for differ-
ences in multiple genes, and described a procedure for evaluating distributions of sums 

Fig. 13 Averaged ROC curves for 5000 simulated 2-population t tests with gene-enhanced subpopulation 
size = 50, at enhancement level 20%. The three panels show ROC curves for expression level differences in 2, 
4, 8 genes. Axes and error bars are as in Figures 10 and 11

Fig. 14 ROC curves for 5000 simulated 2-population t tests 2-population t tests with gene-enhanced 
subpopulation size = 10, at enhancement level 20%. The three panels show ROC curves for expression level 
differences in 2,4,8 genes. (compare Figure 13, which shows similar results for gene-enhanced subpopulation 
of size 50)
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of t statistics by taking convolutions. Figures 13 and 14 show ROC curves for 2-popula-
tion multigene tests for subpopulations of size 50 and 10, respectively. Compared to Fig-
ures 10-11 the differences between transforms are enhanced, especially for the smaller 
subpopulation. Comparison across the three panels shows that doubling the number of 
genes tested roughly doubles the TPR for fixed FPR.

Single‑patient test results

Figure 15 shows the averaged ROC curve and 10–90 percentile error bars when the t test 
was performed for 5000 randomly chosen patients for enhancement factors of 50, 100, 
and 200 percent. Compared to the larger subpopulation tests, the test is considerably 
less sensitive (hence the choice of larger enhancement factors in the plots). There is no 
discernable difference between detection rates for the different transforms.

As with the previous two-population t tests, a gap exists between observed and Gauss-
ian ROC curves. In order to determine the cause of the gap, we scrambled every gene 
independently among patients and reran the simulation. Figure 16 shows that the ROC 
curves using scrambled data consistently fell slightly below the Gaussian ROC curves, 
signifying poorer detection rates. This result distinguishes the single-patient case from 
the larger subpopulation cases, for which scrambling produced ROC curves identical 
with Gaussian. We may however draw the same conclusion as before, namely that gene-
gene correlations raise the detection rates.

As with the previous 2-population t tests, we also performed multigene tests for the 
single-patient case. Figure  17 shows the ROC curve for 5000 simulated single-patient 
tests for 2, 4, 8 genes at 50 percent enhancement. Not unexpectedly, the TPR for a given 
FPR doubles as the number of genes in the sample sizes doubles. There is negligible 
difference between TPRs for the different transforms, in contrast to Figures 13 and 14 

Fig. 15 Averaged ROC curves for 5000 simulated single-patient single-gene t tests, for gene enhancement 
levels of 50, 100, and 200 percent. Axes and error bars are as in Figures 10-11
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where NL and LL were clearly superior to unshifted and shifted for multigene tests with 
multipatient subpopulations.

Discussion and Future Work
Quantitative genomics is a rapidly evolving field that promises to have signifi-
cant effect in both relating gene expression levels to biological outcomes and to 
help develop and test drugs that can have important therapeutic effects in treating 

Fig. 16 Repeat of the test shown in Figure 15, but with each gene’s data scrambled separately across 
patients

Fig. 17 ROC curves for 5000 simulated single-patient tests for gene expression level differences, for 2,4,8 
genes at 50% enhancement (compare Figures 13 and 14, which shows similar results for subpopulations of 
size 50 and 10 respectively)
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patients. However, the complexity of data collection and large uncertainties in quan-
tifying gene expression levels in each patient as well as in populations of patients, 
natural variabilities between different patients, and many other factors can lead to 
incorrect intrepretation of the acquired data. Further using the expression levels to 
establish correlations, function and other vector measures can lead to significantly 
distorted conclusions. Here we have developed resampling methods that can give us 
a great deal of valuable information, and improve the veracity and interpretation of 
statistical tests.

In this paper, we have demonstrated the existence of nonlinear distortion in RNA-
seq data, which depend on expression levels and vary from patient to patient. We have 
developed two different transformations (LL and NL) to correct these distortions. We 
show how these transformations affect important practical statistical estimations. The 
transformations were applied to raw counts, TPM, and FPKM data from several data 
sets–similarity of the results allowed us to present our results here for TPM data only.

The analysis can be divided into three parts: (i) characterize properties of the dis-
tortions and the nonlinear corrections as illustrated in Figures  3-5; (ii) investigate 
how the distortions affect gene-gene correlations before and after the transforms are 
applied as illustrated in Figures 6-7; (iii) investigate the effect of the distortion on two 
population test with and without the application of transforms, illustrated by Fig-
ures 8-17. Below we summarize the important points from these three parts.

Figure 3 shows evidence of existence of nonlinear scale distortion and the corrective 
effect of TPM-shifted, LL and NL transforms. The slopes and the shifts of the curves 
in the top row indicate that distortions vary by expression level and among patients, 
respectively. The second row shows that TPM-shift can only correct the shift but not 
the slopes. In fact, any data normalization based on overall multiplicative factors (such 
as Trimmed Mean of M values (TMM), Relative Log Expression (RLE),Transcript Per 
Million (TPM), or Fragments Per Kilobase of Mapped reads (FPKM) [2]) can only shift 
the curves but not remove the expression level dependent trends. Neither can variance-
reducing transforms such as VST [4] or Voom [6] , since they apply the same transform 
to all patients so cannot correct for patient-to-patient differences. However, rows 3–4 
show that both LL and NL transforms correct these trends.

Figure 5 shows both LL and (especially) NL transforms decrease the block averaged 
variance of sorted genes, confirming that LL and NL effectively reduce spurious dif-
ferences between patients, thereby reducing the inter-patient variance. The effective-
ness of LL and NL indicates that some recalibration may be required for RNA-seq 
measurements.

Having established the existence of distortions, we then turn to the consequences of 
the distortions on the statistical quantities of practical importance. Figures 6-7 com-
pare gene-gene correlations before and after LL and NL transformation, revealing a 
considerable bias in the uncorrected correlation distributions. The positive shift in 
the distribution computed from uncorrected data indicates that correlations com-
puted with the uncorrected data tend to be overestimates. This suggests that studies 
that have used correlations based on uncorrected data may need to be re-examined. 
The symmetry and reduced spread of the LL and NL transformed data is further evi-
dence of distortion corrections.
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Two population tests can be used to identify genetic differences between two subpop-
ulations with different physiological or disease characteristics. There are many such sub-
population tests that can be devised; we demonstrate the effect the transforms on ccdf, 
and ROC curves. We developed a spiking methodology to introduce controlled differ-
ences between two subpopulations. t tests applied to spiked and non-spiked populations 
can be used to determine test accuracy. Our spiking method can be applied to any data-
set without requiring specially prepared samples, as used in [1]. The complementary cdf 
curves in Figures 8-9 show a nearly 10% average improvement in t test sensitivity due to 
LL and NL at 20% spike level at t = 3 . However the large error bars show that these tests 
yield highly variable results and are unreliable.

To relate the transforms described to their clinical and diagnostic consequences, we 
apply the transforms to the gene data and compute average ROC curves for two popu-
lation t tests where one population is spiked. The ROC data for subpopulations of size 
10 and 50 show about a 3–4% improvement in TPR at smaller spike levels (20–40%) 
compared to the TPM data, but at larger spike levels (80%) the differences become less 
noticeable. Since the TPR rates at these higher spike levels are already quite high, the 
corrections would be more valuable at the early onset of changes in the expression lev-
els. Also, the TPR error bars for corrected data are smaller than for the original data. As 
a result, statistics computed with LL or NL transformed data will be more consistent 
across studies.

Detectability of outliers is not uniform across expression levels, and it is more difficult 
to detect low-expressed genes (cf. Figure 12). As a result, outliers among low-expressed 
genes may be under-represented. in comparative studies. It may be possible to compen-
sate for this by applying a variance-reducing transform (Voom or VST) subsequent to 
LL, and NL. Indeed, the two types of transforms should be viewed as complementary, 
and serve different purposes. NL and LL address inter-patient differences, while Voom 
and VST compensate for distributional differences between genes.

The effects described above that were observed with single-gene, multipatient two 
population t tests are also seen to varying degrees in multi-gene and single-patient t 
tests. In general, the improvements in TPR for NL and LL over the baseline TPM are 
amplified in multigene and multipatient tests over the single-gene and single patient 
tests.

Several areas for future work may be identified. Other RNA-seq datasets may be inves-
tigated for the presence of patient-dependent nonlinear scale distortion. The cause of the 
distortion may be identified, so that corrections may perhaps be effected at the instru-
mentation level. The NL and LL transforms may be integrated into an overall pipeline 
that includes also VST and Voom to provide data on which more sensitive statistical 
tests may be performed. The resulting pipeline can be utilized to analyze correlations 
and two-population tests of clinical interest, such as sex, age, race, or disease stage 
related differences in gene expression.

From a more general perspective, the “spiking” and resampling methods that we have 
developed may be applied to other tests in statistical bioinformatics to evaluate their 
accuracy and variability.
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