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Background
Comparative genomic analyses enable the comparison of different organisms using 
whole-genome sequences. These analyses address a wide range of biological questions, 
driving the development of numerous command-line tools and online platforms [1]. 
Among these tools, many focus on identifying genetic variations, such as single nucle-
otide polymorphisms (SNPs) and insertions/deletions (e.g., VarScan, GATK, VarDict) 
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[2–4], using genetic variability to estimate similarity and evolutionary relationships 
between genomic regions (e.g., HSDecipher, eggNOG) [5, 6]. Tools like ACT and Arte-
mis [7–9] visualize BLAST-based genome comparisons effectively for a few genomes, 
while Mauve [10] provides detailed insights into conserved genomic regions, aiding evo-
lutionary studies. BRIG [11], available both as a command-line tool and online platform, 
offers circular visualization of prokaryotic genomes, providing an immediate overview 
of differences across species.

Using such tools, scientists can compare genomes to identify organism-specific fea-
tures and highlight relevant differences. For example, Li et al. identified the genetic basis 
of virulence in Beauveria bassiana, an entomopathogenic fungus with strains of varying 
pathogenicity [12]. Similarly, Ann et  al. revealed the strain-specific anti-inflammatory 
effects of Limosilactobacillus fermentum SMFM2017-NK2 [13]. These studies relied on 
multiple genomic comparison tools, underscoring the challenges of selecting and com-
bining appropriate tools, particularly at the initial stages of analysis.

To address this challenge, we developed  CompàreGenome, a command-line tool 
designed for comparing whole genomes directly. Its primary objective is to estimate 
genomic diversity among organisms through gene-to-gene comparisons, including iden-
tifying and annotating conserved and divergent genes, analysing their biological impact, 
and quantifying genetic distances. By distinguishing organisms at the species level and 
beyond, CompàreGenome supports intra- and interspecific comparative studies and aids 
in identifying strains of the same species or subgroups within populations. It is also suit-
able for evolutionary studies, providing preliminary results that can be further explored 
using more specialized tools. Designed for Unix-like systems, CompàreGenome lever-
ages existing tools for both installation and analysis.

Implementation
Pipeline structure and output description

CompàreGenome requires a reference genome and at least two query genomes as input. 
The reference genome, provided in GENBANK format, serves as the basis for identifying 
homologous gene sequences in the query genomes. Selection of the reference genome 
is critical: for intraspecific comparisons, it should belong to the same species, while for 
interspecific analyses, the most taxonomically related species is recommended. Repeat-
ing the analysis with different reference genomes and merging the results is also a good 
practice. Query genomes, in FASTA format, should be assembled to at least at contig 
level, with overly short contigs or scaffolds removed.

Typically, contigs or scaffolds shorter than 500  bp are excluded, but other metrics 
like N50 may guide this decision [14, 15]. The  CompàreGenome  pipeline uses exter-
nal tools for sequence alignment, genetic distance quantification, and graphical result 
visualization (Table  1). External tool dependencies are managed via Conda environ-
ments, ensuring reproducibility by isolating tool versions and dependencies, ensuring 
a consistent and isolated execution environment, preventing dependency conflicts and 
facilitating reproducibility. Starting from reference gene sequences and query genome 
assemblies, CompàreGenome identifies homologous genes and performs pairwise 
comparisons using BLASTN [16]. Each alignment generates a similarity score (scale: 
0–100), estimating genetic similarity among gene sequences. These scores group genes 
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into four similarity classes (95–100%, 85–95%, 70–85%, and < 70%) to distinguish highly 
conserved, moderately conserved, and highly variable genes. A Gene Ontology (GO)-
based enrichment analysis [17, 18] is performed, providing functional annotation and 
revealing the biological implications of genetic variability. Similarity scores also quantify 
genetic distances between query genomes, enabling users to characterize relationships 
among the organisms.

The pipeline follows these steps (Fig. 1):

1.	 Reference gene sequence retrieval. Using the  Biopython  [19] package, the pipeline 
extracts nucleotide sequences, sequence lengths, product names, and associated GO 
terms (if available) for each gene in the reference genome. Genes without annota-
tions are labelled as "Unclassified."

2.	 Homologous gene identification. The extracted reference sequences are used to iden-
tify homologous sequences within query genomes through  BLAST + blastn  [16]. 
Alignments are scored using the Reference Similarity Score (RSS), calculated from 
Identity (percentage of matching base pairs) and Coverage (percentage of overlap 
with the reference sequence).

3.	 Reference genome comparisons. RSS values are used to group reference sequences 
into four  Reference Similarity Classes (RSCs): 95–100%; 85–95%; 70–85%; < 70%. 
Data distribution and RSC values are evaluated with statistical summaries (e.g., 
medians), leveraging SeqinR [20] and gplots [21] for analysis.

4.	 Pairwise comparisons between query genomes. Homologous sequences undergo 
alignment across all query genomes. Alignment quality is summarized as a Pairwise 
Similarity Score (PSS), calculated as the average and standard deviation of alignment 
scores (Identity and Coverage). These PSS values quantify genetic distances through 
methods like PCA and Euclidean distance. This step employs R packages: factoextra 
[22], ggtree [23], phangorn [24], and cowplot [25].

5.	 GO-based enrichment analysis. Based on PSS values, gene sequences are grouped 
into four Pairwise Similarity Classes (PSC), named as Most Conserved Sequences, 
Highly Conserved sequences, Moderately Conserved Sequences and Most Vari-

Table 1  External tools utilized by CompàreGenome

Tool Version Application

Anaconda 4.14.0 [35] Tool’s installation

Biopython 1.82 [19] Processing input fasta and gbk files

BLAST +  2.15.0 [16] Gene sequence alignment

R packages

factoextra 1.0.7 [22] PCA analysis

ggtree 3.10.0 [23] Visualization of Euclidean distance analysis

agricolae 1.3_7 [36] General file editing

SeqinR 4.2_36 [20] Fasta files editing

gplots 3.1.3 [21] Data visualization

phangorn 2.11.1 [24] Visualization of Euclidean distance analysis

ggrepel 0.9.4 [37] Visualization of PCA analysis data

cowplot 1.1.2 [25] Visualization of PCA analysis data

GO.db 3.12.1 [26] GO enrichment analysis



Page 4 of 12Moro et al. BMC Bioinformatics           (2025) 26:14 

Fig. 1  Pipeline structure overview. The pipeline compares one reference genome and 2 to N query genomes, 
starting with reference vs. query and query vs. query comparisons. Following this step, Gene Ontology (GO) 
enrichment analysis is performed on the defined similarity classes. The results are presented as tables and 
visualisations, offering a comprehensive comparison
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able Sequences, including sequences with PSS equal to 95–100%, 85–95%, 70–85% 
and < 70%, respectively. GO enrichment analysis is performed for each PSC, explor-
ing functional annotations for Molecular Function, Biological Process, and Cellular 
Component categories using GO.db [26].

Results
Case study: comparison of different strains of Beauveria bassiana

CompàreGenome was tested on several species, both prokaryotes and eukaryotes, and 
the results confirmed its sensitivity and accuracy in performing genetic comparisons. In 
this study, we present a validation test on the entomopathogenic fungus Beauveria bassi-
ana. CompàreGenome was used to estimate genetic differences among several known 
strains of this species, as well as a related species, Beauveria brongniartii (Table 2).

Using publicly available whole-genome sequences and newly sequenced genomes, 
CompàreGenome effectively distinguished between the different strains of  B. bassi-
ana and B. brongniartii (Fig. 2). Moreover, it successfully identified the genes responsi-
ble for these differences.

All of B. bassiana showed slight but measurable differences from the reference genome 
(Fig. 2a). Approximately 80% of the gene sequences were highly conserved within the B. 
bassiana genome, with similarity scores ranging from 95 to 100%. The remaining gene 
sequences exhibited varying degrees of similarity, predominantly falling into the 85–95% 
and < 70% groups, with only a small proportion included in the 70–85% group.

Principal Component Analysis (PCA) and Euclidean distance analysis revealed that 
the genomes of the  B. bassiana strains were highly correlated, as expected for closely 
related organisms (Fig. 2c-d). Furthermore, consistently with the source material, Com-
pàreGenome identified Bb_ATCC74040s1, Bb_ATCC74040s2, and Bb_ARSEF3097 
[27] as belonging to the same strain, demonstrating the tool’s sensitivity and accuracy 
(Supplementary Tables S5 and S6). This is notable since all three genome sequences 
were derived from the same strain (B. bassiana  ATCC74040) but were sequenced at 
different times using different methods (see Methods for Bb_ATCC74040s1 and Bb_
ATCC74040s2, and reference [27] for Bb_ARSEF3097).

Despite the differences in sequencing methods and times, CompàreGenome 
successfully identified the samples Bb_ATCC74040s1, Bb_ATCC74040s2, and 

Table 2  List and references of the genome assemblies analysed in the case study

Label Species Accession number

Bbrongniartii B. brongniartii PRJNA879330

Bb_ARSEF2860 B. bassiana PRJNA38719

Bb_ARSEF8028 B. bassiana PRJNA260878

Bb_D1_5 B. bassiana PRJNA178080

Bb_JEF_007 B. bassiana PRJNA352877

Bb_ARSEF3097 B. bassiana PRJNA624104

Bb_ATCC74040s1 B. bassiana PRJNA1203612

Bb_ATCC74040s2 B. bassiana PRJNA1203920

Reference genome B. bassiana PRJNA38719
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Bb_ARSEF3097 as identical strains, grouping them consistently across all analyses. 
These samples were assigned to the same position in the PCA plot (overlapping dots 
in Fig.  2c), gave a perfect correlation score of 1 (Fig.  2b), were placed on the same 
branch in the Euclidean distance tree (Fig.  2d), and reported a sequence similarity 
greater than 98% in 10,317 of the 10,364 B. bassiana genes (Supplementary Table S6).

Although all the strains analysed belong to the same species, the correlation levels 
between ARSEF2860, ARSEF8028, D1_5, and JEF_007 were lower compared to the 
Bb_ATCC74040 samples, with correlation scores ranging from 0.84 to 1. The highest 
correlation was observed among the three ATCC74040 samples (Bb_ATCC74040s1, 
Bb_ATCC74040s2, and Bb_ARSEF3097), while the lowest correlation was associ-
ated with the Bb_JEF_007 strain (Fig.  2b). In contrast, the species  B. brongniar-
tii  was consistently identified as significantly different from  B. bassiana  strains 
across all analyses. Only around 25% of the gene sequences were highly conserved 
between  B. bassiana  and  B. brongniartii, while over 50% exhibited similarity scores 
in the 85–95% range (Fig. 2a). PCA, Euclidean distance, and Pearson correlation anal-
yses all indicated that  B. brongniartii  formed a distinct group, separate from the  B. 
bassiana strains.

Fig. 2  Comparative analysis on Beauveria spp. Distribution of homologous gene sequences within 4 levels 
of similarity score, resulting by comparison of the 8 query genomes with the reference genome (a); Pearson’s 
correlation matrix based on the mean gene similarity scores (b); Principal component analysis based on gene 
pairwise similarity scores (c); tree representing Euclidean distance calculated on gene pairwise similarity 
scores (d)
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Additionally, CompàreGenome identified over- and under-represented GO terms, 
providing information on the biological relevance of genes within each similarity class 
(Table  3). Among the 75 enriched GO categories, the majority (34 terms) were asso-
ciated with the "Most Variable" class, followed by "Highly Conserved" (21 terms) and 
"Moderately Conserved" (20 terms), while no enriched terms were found for the "Most 
Conserved" class. Notably, the enriched categories "toxin activity" and "mycotoxin bio-
synthetic process" deserve special attention, as they may help explain variations in insec-
ticidal activity reported within B. bassiana strains [38, 39].

Discussion
Comparative genomics is a fundamental area of biological research, enabling the identi-
fication of relevant genes and uncovering evolutionary relationships among species [28]. 
Various tools facilitate direct whole-genome comparisons, offering detailed insights into 
the species under investigation.

CompàreGenome is a command-line tool tailored for comparative genomic analysis, 
especially beneficial during the initial stages. It requires only basic proficiency in bash 
scripting and bioinformatics. Results are presented as intuitive tables and plots, allow-
ing for straightforward interpretation. Unlike other tools, CompàreGenome translates 
sequence alignment data into genomic distances and biologically meaningful insights 
through Gene Ontology (GO) annotation. Genes are categorized into four similarity 
classes based on similarity scores (95–100%, 85–95%, 70–85%, and < 70%), helping users 
identify genes of interest tailored to the study’s focus. For instance, the 95–100% class is 
crucial for intra-species analyses in prokaryotes, while the 70–85% and < 70% classes are 
more relevant for inter-species comparisons [29, 30]. In contrast, orthologous sequences 
in the human genome generally exhibit minimum similarity levels of 70–80% [31].

CompàreGenome outputs include analysis metrics and robust statistical summaries of 
alignment scores, aiding in the identification of genes with potential biological relevance. 
It is versatile, applicable to prokaryotic and eukaryotic genomes, to identify genetic simi-
larities, differences, and associated biological effects.

The tool, however, is primarily gene-focused. In prokaryotes, where genic regions 
dominate the genome, CompàreGenome delivers comprehensive comparisons. For 
eukaryotes, where genic regions can constitute less than 50% of the genome, regulatory 
elements and non-coding regions might not be included in the analysis.

CompàreGenome is efficient and scalable. On a dual core i5 processor with 8 GB of 
RAM, installation takes approximately 30  min, while analysing three fungal genomes 
(~ 35  Mb) requires 1  h and 18  min. On an 8-core i7 processor with 40  GB of RAM, 
installation takes 14 min, and analysis time drops to 46 min (Supplementary Table S3). 
Genome size significantly impacts runtime. For instance, analysing three  Arabi-
dopsis thaliana  genomes (~ 135  Mb) takes 126  min, while analysing three  Bacillus 
cereus genomes (~ 6.3 Mb) takes only 9 min. Processing nine genomes increases runtime 
slightly, to 141 min for A. thaliana and 10 min for B. cereus (Supplementary Table S4).

Although the tool provides substantial information, further improvements are needed 
to optimize performance and address genome features excluded in the current version, 
such as regulatory and non-coding regions (Supplementary Table S1).
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Table 3  GO enrichment analysis results

Similarity Class Pairwise 
Similarity Score

Enriched GO 
category 
(Top 10 most 
significant)

Observed 
gene 
count

Expected 
gene 
count

Log2 
fold 
change

Fisher’s P value

Most Conserved 
Sequences 
(n = 0)

95—100% – – – – –

Highly 
Conserved 
sequences 
(n = 21)

85% to < 95% Protein-arginine 
deiminase 
activity

7 1.04 2.753 4.64E-04

Mycotoxin 
biosynthetic 
process

10 2.45 2.027 6.71E-04

Toxin activity 8 1.98 2.013 2.43E-03

Serine-type 
peptidase 
activity

14 5.38 1.380 2.52E-03

NADP binding 9 3.11 1.531 8.26E-03

Cholestenol 
delta-isomerase 
activity

3 0.28 3.405 1.04E-02

Sterol metabolic 
process

3 0.28 3.405 1.04E-02

N,N-dimethylani‑
line monooxyge‑
nase activity

6 1.60 1.903 1.13E-02

Proteolysis 28 16.61 0.753 1.15E-02

Nitrogen com‑
pound metabolic 
process

7 2.17 1.689 1.20E-02

Moderately 
Conserved 
Sequences 
(n = 20)

70% to < 85% Protein phos‑
phorylation

17 4.97 1.773 1.83E-05

Protein kinase 
activity

16 5.03 1.668 7.34E-05

Heme binding 12 3.32 1.856 2.03E-04

Monooxygenase 
activity

10 2.47 2.016 3.10E-04

Oxidoreductase 
activity, acting 
on paired

Donors, with 
incorporation or 
reduction of

10 2.59 1.948 4.39E-04

Molecular 
oxygen

Extracellular 
space

4 0.42 3.245 1.55E-03

Double-stranded 
RNA binding

3 0.18 4.052 1.80E-03

Metallopepti‑
dase activity

6 1.24 2.279 2.24E-03

Iron ion binding 10 3.47 1.528 3.35E-03

Structural 
constituent of 
cytoskeleton

3 0.24 3.637 3.39E-03
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Conclusion
CompàreGenome is a versatile command-line pipeline implemented in bash, R, and 
Python, designed for comparative genomic analysis of both prokaryotes and eukar-
yotes. Originally developed for bacterial strain comparisons, it is suitable for vari-
ous microbial species and can handle larger genomes with sufficient computational 
resources or by analysing chromosomes separately.

The pipeline requires basic bash scripting knowledge and effectively translates gene 
sequence alignment data into actionable biological insights, making it a valuable tool 
for researchers in life sciences.

Methods
B. bassiana isolation and DNA extraction

The samples Bb_ATCC74040s1 and Bb_ATCC74040s2 were isolated from the com-
mercial product Naturalis (CBC [Europe] Srl) and cultured on potato dextrose agar 
at 28 °C. Genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qia-
gen) following the manufacturer’s instructions and further purified with ethanol 
precipitation.

Genome sequencing and assembly
The Bb_ATCC74040s1 and Bb_ATCC74040s2 genomes were sequenced in April 2022 
and April 2023, respectively, using Illumina NovaSeq 6000 (2 × 150  bp paired-end 
mode) at Eurofins Genomics. Raw reads were evaluated with FastQC v0.12.0 [32], 
trimmed using Trim Galore v0.6.5, and assembled de novo with SPAdes v3.15.5 at the 
scaffold level. Assembly quality was assessed with QUAST v5.0.2 [34].

Analysis with CompàreGenome
The analysis included eight genome assemblies in FASTA format: six publicly available 
assemblies (B. bassiana ARSEF8028, D1_5, JEF_007, ARSEF3097, ARSEF2860, and B. 
brongniartii), and two newly sequenced  B. bassiana assemblies (Bb_ATCC74040s1 

Table 3  (continued)

Similarity Class Pairwise 
Similarity Score

Enriched GO 
category 
(Top 10 most 
significant)

Observed 
gene 
count

Expected 
gene 
count

Log2 
fold 
change

Fisher’s P value

Most Vari‑
able Sequences 
(n = 34)

 < 70% Protein dimeriza‑
tion activity

20 1.76 3.510 1.07E-13

Serine-type 
endopeptidase 
activity

17 3.13 2.444 9.14E-08

Proteolysis 22 7.53 1.546 1.57E-05

Nucleoside 
metabolic 
process

9 1.28 2.809 2.00E-05

All the gene sequences were first grouped into 4 similarity classes according to the sequence similarity within the query 
genomes. Enrichment was calculated by comparison of the expected vs. observed gene count for each GO term (P < 0.05, 
Fisher’s test). Shown the top 10 most enriched categories (full list available in the supplementary file)
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and Bb_ATCC74040s2). ARSEF8028, provided in GenBank format, served as the ref-
erence genome.

Default pipeline settings were used. Similarity scores were calculated using the 
formula:

Similarity scores informed genetic distance calculations via PCA, Euclidean dis-
tance, and correlation matrix analyses. GO enrichment analysis was performed for 
genes within each similarity class.

Availability and requirements
Project name: CompàreGenome.

Project home page: https://​bioec​opest.​com/​compa​regen​ome
Operating system(s): MacOS, Linux.
Programming language: Bash, R, Python.
Other requirements: Anaconda 4.14.0 or higher.
Licence: LGPL-2.1
Any restrictions to use by non-academics: None.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​025-​06036-0.

Additional file 1.
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