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Abstract 

There is a growing interest in utilizing 3D culture models for stem cell and cancer cell 
research due to their closer resemblance to in vivo environments. In this study, human 
mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as dif‑
ferentiative mediums on varying concentrations of chitosan substrate. Light micros‑
copy was employed to capture cell images from the first day to the 21st day of dif‑
ferentiation. Accurate image segmentation is crucial for analyzing the morphological 
features of the spheroids during the experimental period and for understanding MSC 
differentiation dynamics for therapeutic applications. Therefore, we developed an inno‑
vative, weakly supervised model, aided by convolutional neural networks, to perform 
label‑free spheroid segmentation. Since obtaining pixel‑level ground truth labels 
through manual annotation is labor‑intensive, our approach improves the overall qual‑
ity of the ground‑truth map by incorporating a multi‑stage process within a weakly 
supervised learning framework. Additionally, we developed a robust learning scheme 
for spheroid detection, providing a reliable foundation to study MSC differentiation 
dynamics. The proposed framework was systematically evaluated using low‑resolution 
microscopic data and challenging, noisy backgrounds. The experimental results 
demonstrate the effectiveness of our segmentation approach in accurately separating 
the spheroid from the background. Furthermore, it achieves performance comparable 
to fully supervised state‑of‑the‑art approaches. To quantitatively evaluate our algo‑
rithm, extensive experiments were conducted using available annotated data, con‑
firming the reliability and robustness of our method. Our computationally extracted 
features can confirm the experimental results regarding alterations in MSC viability, 
attachment, and differentiation dynamics among the substrates with three concen‑
trations of chitosan used. We observed the formation of more compact spheroids 
with higher solidity and convex area, resulting improved cell attachment and viability 
on the 2% chitosan substrate. Additionally, this substrate exhibited a higher propensity 
for differentiation into osteocytes, as evidenced by the formation of smaller and more 
ellipsoid spheroids.
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Highlights 

• "Chitosan biofilms mimic in vivo environments for stem cell culture, advancing 
therapeutic and fundamental applications.”

• "Innovative weakly supervised model enables label‑free spheroid segmentation 
in stem cell differentiation studies.”

• "Robust learning scheme achieves accurate spheroid separation, comparable 
to state‑of‑the‑art approaches.”

Keywords: Convolutional neural network (CNN), Deep learning, MSC differentiation 
dynamics, Segmentation, Spheroid, Stem cells, Weakly supervised learning

Introduction
Improving in vitro models to study cell biology is a significant advancement applicable 
across various fields, including biotechnology, cancer research, drug discovery, and the 
emerging fields of tissue engineering and regenerative medicine. Traditional two-dimen-
sional (2D) plastic as support for mammalian cell culture has several limitations. Recent 
studies have shown that cells cultured in a three-dimensional (3D) environment more 
closely represent natural cellular functions due to increased cell–cell interactions as well 
as extracellular matrix (ECM) interactions, effectively by mimicking the in vivo architec-
ture of natural organs and tissues [1].

The lack of cell–cell interaction due to the insufficient mutual contact space in 2D cul-
tures has led to the belief that the future supporting framework for cell culturing should 
more accurately mimic the in vivo environment [2]. Generally, 3D cell culture is defined 
as culturing cells on 3D scaffolds made from natural or synthetic materials, or as the 
organization of cells organized into cellular spheroids. With recent advancements in 3D 
cell culture have led to a consensus that plastic 2D culture plates are inadequate as a reli-
able structures for behavioral or physiological scientific research [3, 4]. The efficiency 
and toxicity of potential substances and drugs can be more accurately predicted using 
spheroid cell cultures. These spheroids have been extensively tested in various applica-
tions, including drug screening, tissue engineering, regenerative medicine, and other 
medical studies [5, 6].

Spheroids create a 3D in vivo microenvironment by facilitating advanced and complex 
interactions between cells their extracellular matrix (ECM). These interactions sponta-
neously deliver essential signals, including mechanical forces and biochemical signals, 
which influence cell shape, proliferation, differentiation, and gene expression [4, 7, 8]. 
The physical properties of scaffolds, such as stiffness and porosity, play a crucial role in 
3D stem cell differentiation while also providing the necessary space for cells to prolifer-
ate and differentiate [9, 10].

The dynamics of differentiation in multipotent stem cells, especially in mesenchymal 
stem cells, represent a complex, multi-scale process. The expression levels of genes asso-
ciated with cell adhesion and immune response change when the culture environment 
shifts from 2 to 3D [11]. Numerous studies have demonstrated that cells cultured in 3D 
exhibit enhanced differentiation, greater self-renewal potential, and increased secre-
tion of paracrine factor [6, 12–14]. Stem cell transplantation in the form of spheroids is 
considered one of the most promising strategies in regenerative medicine to achieve the 
functional recovery of damaged tissues or organs. It is safe to assert that 3D spheroid 
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cultures serve as practical and convenient platforms for elucidating cell–cell and cell-
scaffold interactions, as well as providing valuable models for cancer research [15, 16].

Chitosan (CS) is a natural, semi-crystalline, cationic polysaccharide known for its 
biocompatibility and structural similarity to glycosaminoglycans. 3D culture or sphe-
roid formation platforms can be divided into two groups: suspension (scaffold-free) and 
scaffold-based platforms [17]. Numerous studies have used chitosan as a scaffold for dif-
ferentiation and cell culture, aiming to mimic the environment of the tissue due to its 
favorable properties, including durability, cost-effectiveness, biodegradability, and anti-
bacterial properties. The availability of chitosan, combined with its exceptional qualities 
for cultivating stem cells, established it as a prominent biopolymer in the field of regen-
erative medicine [5, 8, 18–20]. The concentrations of a biopolymer is directly correlated 
with its surface roughness and stiffness. An increase in surface roughness, accompanied 
by a decrease in its stiffness, may enhance cell migration, suggesting that the substrate 
interface significantly influences cell proliferation and differentiation [21].

The chitosan membrane promotes and triggers the self-assembly of cultured cells 
into multicellular spheroids, providing a 3D environment for lineage-specific differen-
tiation. Chitosan-based substrates are distinctive in scaffold-based spheroid formation 
techniques due to their transient attachment of cells to the surface, their ability to form 
spheroids within the first day of culture, and their ability to be later floated easily [3, 
20, 22]. Differentiated cells, such as fibroblasts, vascular smooth muscle cells (VSMCs), 
chondrocytes, neurons, and mesenchymal stem cells, exhibit micron-sized focal adhe-
sions interconnected by actin fibers when cultured on rigid substrates. However, these 
adhesion structures gradually diminish when cells are grown on softer matrices, which 
can be achieved by modifying the gel’s crosslinking density [21, 23–26].

The standard method for spheroid analysis involves utilizing confocal laser scanning 
microscopy, which necessitates costly laboratory setups and is often a time-consuming 
process. Conventional fluorescent microscopy imaging techniques are also employed; 
however, they provide less detailed images due to a significant amount of unfocused 
background noise. In studies focusing on the dynamics of differentiation, time-lapsed 
photos may not be a feasible method [23, 24, 27]. Alternatively, light microscopy imaging 
might be used. Nevertheless, despite the lower image resolution, computational image 
processing techniques could compensate for this limitation. Consequently, the analysis 
of the topographic shapes and parameters of the spheroids promises to yield valuable 
insights. This information will help us to calibrate and adjust various parameters during 
the proliferation and differentiation processes. Importantly, this methodology circum-
vents the need for costly tools, resulting in considerable time and energy savings.

Segmenting the spheroids presents a significant challenge in processing these images, 
as it involves the task of separating the objects in the image from the background. While 
this process may seem straightforward, it is nonetheless critical. Various techniques, 
including machine learning methods, have been developed for image segmentation, 
especially to process biomedical images [25, 26, 28]. Although recent machine learning 
techniques like convolutional neural networks (CNNs) have achieved successful seg-
mentation results when applied to large, labeled benchmark datasets, their performance 
adaptation to biomedical data has been constrained by the limited availability of ground 
truth labels.
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This paper presents a novel multi-stage, weakly supervised segmentation method 
that eliminates the need for human annotation. Our approach requires only raw labo-
ratory images, and minimal human eye inspection to perform segmentation on a large 
dataset. The key insight involves generating weak but automated annotation masks 
for a small portion of the data using traditional unsupervised segmentation models. 
These initial masks are subsequently enhanced in two steps: first by a shallow, then 
a deeper U-net like CNN [26]. The improvements achieved in these stages pertain to 
both the quantity and quality of the masks.

In this work, we present a multi-stage computational procedure designed to extract 
morphological information from daily images of cells undergoing differentiation. For 
this purpose, we cultured bone marrow-derived mesenchymal stem cells on three dif-
ferent concentrations of medium-sized chitosan-based membranes and subsequently 
differentiated them into adipocytes and osteocytes as self-developed 3D spheroids. 
This approach allowed us to investigate the effect of the polymer concentration on 
the cells’ fate. To develop a practical and cost-effective approach to study the dynam-
ics of differentiation, light microscopy images of the spheroids daily throughout the 
differentiation process. These images were then processed using a self-developed arti-
ficial intelligence (AI)-based technique. Our in-house developed algorithm extracted 
a wide range of information based on change in size, shape, and various properties of 
spheroids formed on our biopolymer films (Fig. 1).

To the best of our knowledge, this is the first study on MSC differentiation utiliz-
ing on light microscopic images of spheroids aided by AI techniques. This research 
employs advanced multi-stage learning techniques for detecting and segmenting of 
spheroids from low-resolution microscopic images without any manual annotation. 
Using such an accurate segmentation technique, the feature analysis of spheroids will 
be more reliable results. Overall, our contributions can be summarized as follows:

1. Our investigation of stem cell dynamics during differentiation utilized light micros-
copy. The affordability and accessibility of light microscopic imaging confer a notable 
advantage for this research.

2. It has been proven that various concentrations of chitosan affect the quality of cell 
attachment, spheroid formation, and differentiation by changing the structure of 
the chitosan film and its mechanical properties. However, the effects of parameter 
changes, specifically variations in chitosan concentration over time, has not been 
thoroughly investigated. Therefore, three concentrations of medium-sized chitosan 
0.5%, 1%, and 2% were employed to investigate spheroid dynamics during differentia-
tion.

3. We propose a high-performance and robust segmentation framework that does not 
rely on human annotation. This framework integrates the advantages of classical 
unsupervised segmentation approaches (i.e., high speed and convenience) with the 
advantages of weakly supervised deep learning models (i.e., performance-boosting).

4. We created a unique database of annotated light microscopic images of spheroids, 
which can be used to develop deep learning-based segmentation models and study 
MSCD dynamics.
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5. Through extensive experiments conducted on both our collected data and a bench-
mark annotated dataset, we demonstrated that our proposed segmentation algo-
rithm can reliably detect and segment spheroids, achieving performance comparable 
performance to fully supervised state-of-the-art approaches.

Methodology
Cell culture

Human bone marrow-derived mesenchymal stem cells (hMSCs) were purchased from 
the Royan Stem Cell Institute. This cell belongs to a 4-year-old boy (passage 3). Cells 
were grown and passaged twice in DMEM-f12 (Gibco) containing 10% fetal bovine 
serum (FBS, Gibco), 10 ng /mL FGF-2 (Miltenyi Biotec), 1 mM l-glutamine (Gibco), 
1% nonessential amino acids (Gibco), and 100 U/mL penicillin/streptomycin (Gibco) 
with daily medium exchange. Cells were seeded at 25,000 cells/cm2 in 24-well plates 
(SPL, Korea Republic) and treated with the same DMEM/F12 for 48 h for proliferation 

Fig. 1 Graphical Abstract. Overview of the project framework, including the procedures for spheroid 
generation, differentiation, and image acquisition in the wet lab (A), as well as segmentation and image 
processing in the AI lab (B). Schematic representation of results from both biological and computational 
investigations (C). These results are presented separately in the article or supplementary file
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and stress reduction. The same medium (toward adipocytes and osteocytes) was used 
throughout the experiment to maintain constant differentiation conditions.

Differentiation approach

The differentiation of hMSCs into adipocytes and osteocytes was conducted within 
21  days (including the first 2  days of proliferation). The adipogenic medium used 
in the study was prepared using DMEM/F12 complete medium (DMEM/F12 + 10% 
FBS + 2  mM L-glutamine) enriched and supplemented with 1  μM dexamethasone 
(Sigma, D4902), 0.5 mM isobutyl methylxanthine (IBMX Serva, 26,455.02) 60 μM of 
indomethacin (Sigma, 17,378) and 0.5  μM hydrocortisone. The osteogenic medium 
was the same DMEM/F12 (+ 10% FBS + 2  mM L-glutamine) enriched and supple-
mented with 10 nM dexamethasone (Sigma, D4902), 50 µM ascorbate-2-phosphate, 
and 10 mM ß-glycerophosphate [22, 29].

Relative gene expression by real‑time PCR

To assess the quality of differentiation in our 3D cell spheroids, total RNA was 
extracted from the cells at three different time points: days 7, 14, and 21. We col-
lected RNA samples from cells cultured with varying concentrations of chitosan 
(0.5%, 1%, and 2%) for both adipocyte and osteocyte differentiation pathways. RNA 
was extracted from the spheroids in 2D culture using milli-columns and an extraction 
kit, following the manufacturer’s protocol (Novin-Zist Co., Tehran, Iran). The concen-
tration, quantity, and quality of the RNA were determined using a NanoDrop 2000c 
spectrophotometer.

The extracted mRNA was used to synthesize cDNA by adding the appropriate 
amount of RT-master mix and nuclease-free water, following the manufacturer’s pro-
tocol (SMOBIO Technology, Inc., Hsinchu, Taiwan). Primers were designed using the 
online NCBI Primer-BLAST tool, as detailed in Table S1. Real-time PCR was subse-
quently performed using the synthesized cDNA, working solutions of relative prim-
ers (10 μM) (Sina Clone, Tehran, Iran), a SYBR Green master mix, and the required 
amount of RNase-free water from the real-time PCR kit, following the manufacturer’s 
instructions (SMOBIO Technology, Inc., Hsinchu, Taiwan). The thermal cycling pro-
gram for the real-time PCR included an initial denaturation step at 95 °C for 5 min, 
followed by 40 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s, and 
extension at 72 °C for 30 s, with a final extension at 72 °C for 5 min.

The ΔCt (Delta Ct) values for each gene from all the samples were calculated based 
on the expression of Beta-2-microglubine (β2M) as our housekeeping gene. The rela-
tive mRNA gene expression was then determined using the 2-ΔΔCt method for each 
gene at days 7, 14, and 21 of differentiation, considering the different concentrations 
of the chitosan scaffold [30]. To quantify adipose differentiation, we measured the rel-
ative expression of PPARγ and lipoprotein lipase (LPL) mRNAs, which are well-estab-
lished indicators of adipocyte maturity factors [31–33]. Additionally, for the osteocyte 
differentiation pathway, we measured the relative expression of alkaline phosphatase 
(ALP), the most recognized factor involved in bone differentiation studies [34, 35].
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Preparation of chitosan films

Three concentrations of chitosan films were prepared according to the method pre-
viously described by Lin [36] and our earlier work [15]. Briefly, to obtain chitosan 
solutions at concentrations of 0.5, 1, and 2 wt% chitosan powder (Sigma-Aldrich) of 
a specific molecular weight was dissolved in a 2 wt.% v/v aqueous solution of acetic 
acid (Sigma-Aldrich) by subjecting the sealed mixture to magnetic stirring for 48 h at 
room temperature. Floating undissolved microparticles removed by centrifugation for 
20 min at 5000 rpm and 4 °C, followed by filtration of the supernatant using a sintered 
glass funnel with a G0 degree of porosity. Subsequently, the filtered chitosan solution 
was poured into culture plates and incubated overnight at 45 °C for evaporation of the 
solvent and chitosan film formation. The residual acetic acid on the chitosan films was 
neutralized using a 0.5 M NaOH solution of for 2 h, followed by multiple washings 
of the films with deionized distilled water. The plates were then sterilized for 30 min 
under direct UV-C light (6W, ZW6S15Y instrument, Foshan Bolien Co., China) [15].

Cell viability and cell attachment comparison

The biocompatibility of chitosan scaffolds, as a function of cell viability, was deter-
mined using an MTT cell viability assay after 24, 48, and 72 h of cell culture. For this 
experiment, cells were cultured in three 48-well plates, and the standard MTT assay 
protocol was followed [17]. The absorbance of the samples was measured at 570 nm 
using a Cytation3™ microplate reader (BioTek, Vermont, USA). Moreover, to compare 
the attachment of hMSC cells to various concentrations of chitosan, a Hoechst 33,342 
live cell staining assay was performed. Cells were cultured in two 48-well plates and 
incubated for 4 and 24 h. After 20 min of incubation, the cells were washed twice with 
PBS, and the excitation and emission of the plate were measured using the Cytation 3 
microplate reader [37].

Data acquisition

To collect morphological data from our generated spheroid on three different con-
centrations of chitosan scaffolds, for each differentiation pathway, the cells were 
seeded on 48-well plates already coated with the chitosan biofilm using the procedure 
explained above. The first 12 wells of the plate were used as the control (without any 
chitosan coating). The second 12-well group was coated with 0.5% chitosan, and the 
next 12 well groups were coated with 1% or 2% chitosan scaffolds. After seeding, 48 h 
of proliferation was provided to avoid splitting stress on the cells. The following day, 
we acquired getting microscopic images every 24 h and continued to do so until the 
day 21. The first half of each plate was treated with a fat differentiation medium, and 
the other half was treated with osteogenesis differentiation medium.

Similarly, in each differentiation pathway for each chitosan concentration (0.5, 1, 
and 2%), at least 6 photos were taken daily (6 repeats for each condition). We did 
so to normalize the images statistically and increase their credibility. All microscopic 
images in this study were taken with the same objective (10X magnification) using the 
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same setup of cell sense dimension life science imaging software on an Olympus IX81 
inverted microscope (Olympus; Hamburg, Germany).

Image processing

Morphological analysis of light microscopic images consists of two main parts: sphe-
roid segmentation and feature extraction from the segmented spheroids. The following 
sections provide a detailed explanation of these parts. It is important to note that the 
experiments have been performed using TensorFlow 2.4 and Keras libraries in Python 
3.5 running on a desktop workstation equipped with an NVIDIA 4 GB GeForce GT 730 
GPU.

Spheroids segmentation

The long-standing challenge of image segmentation primarily focuses on localizing spe-
cific objects within an image. The ideal outcome is the generation of pixel-level labeled 
masks, where each pixel is classified as belonging to specific regions [38–40]. This tech-
nique has a wide range of applications in various scientific fields, including autonomous 
vehicles [38], satellite image analysis [41], medical imaging [42] etc. Precise image seg-
mentation is vital in our morphology-based feature analysis of spheroids during the 
experimental periods. Traditional segmentation approaches, like those used by Deckers 
et al. 2018 [43] failed to follow the gradual changes happening in our spheroids during 
the experiment period because several parameters needed to be manually set in these 
models.

Fig. 2 (a–d) Shows four random examples of raw laboratory data. Circles mark the interesting spheroids to 
be found
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Figure 2 presents a sample of four images from our diverse dataset, marking the tar-
geted objects highlighted by circles. Discrimination between the spheroids, background, 
and noises is not a straightforward classical image processing problem to be addressed 
by features like the object’s size, contrast with the background, edges, etc. This raises 
the need to hire an intelligent framework containing the least hyperparameters to be set 
manually.

Proposed approach

Regarding of AI-based semantic segmentation approaches, CNNs are specifically 
designed for complex data analysis and extracting semantic-level features [44–46]. 
However, these models require a substantial annotated data for effective training. 
Image segmentation could be approached through various combinations of supervised 
and unsupervised ways. In a study performed by Baby et  al. in 2020 [47], a compara-
tive analysis of the performance between supervised and unsupervised image segmen-
tation techniques was explored. For our mission, a multi-stage procedure is preferred 
to ensure reliable results on our unlabeled data. To train a CNN capable of labling all 
images effectively, a controlled dataset comprised of well-annotated images is necessary 
first. Benchmark datasets are typically annotated manually, which is a labor-intensive 
and resource-draining process. This challenge becomes particularly pronounced when 
labeling a substantial number of images, often making it seem unfeasible.  To tackle this 
issue, we propose a design aimed at creating a large labeled dataset from raw laboratory 
images.

In this work, as illustrated in Fig.  3, We propose a multi-stage design in which the 
initial step involves labeling portions of the images using traditional image processing 
methods. In other words, the usual procedure of manually painting the objects of images 
is automated. Although this process does not achieve perfect results, it is sufficiently 
effective to serve as an imperfect source of annotated images, which are then fed into a 

Fig. 3 A summarized schematic of the segmentation workflow. It consists of three main steps; step 1 
produces non‑perfect masks for a part of raw data. After visual inspection and pruning, the remaining 
masks are fed to an initial shallow CNN via weakly supervised training in step 2, just to improve the masking 
performance. In a multi‑stage procedure, these steps are repeated once again by a deeper CNN to follow 
more abstract features from the inputs to produce the final masks
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weakly supervised procedure. The next step uses the chosen masks in a semi-automated 
process. In other words, pruning the outcome of the first step requires human-eye 
inspection. To accelerate pruning, we have proposed an anomaly mask detection proce-
dure that filters candidates for corrupted masks for visual inspection. Figure 4 illustrates 
the process of spheroid labeling at different steps, whereas Fig. 4(b) shows the weakly-
labeled example resulting from the first step. After preparing of small but cleaned anno-
tated data (530 images out of ~ 1.8 k input images in our case), an initial shallow CNN 
is used to generalize and enhance the performance of the first-step outputs, and not for 
generating the desired dataset for feature extraction. We found that the simple shal-
low CNN mostly boosted the previous results. Figure  4(c) shows the results obtained 
in this step. The output of the second step must to be filtered as described above. Then, 
for the final step, approximately 1 K well-annotated data are ready to train a deep CNN 
designed for precise semantic segmentation. Detailed descriptions of different steps in 
the proposed framework are given in the following.

First step: traditional image processing methods to obtain initial masks

To prepare an initial imperfect mask dataset, a combination of image thresholding anal-
ogous to the hired method in [43] and ballistic modification is used. Initially, the Robert 
gradient was applied, followed by Otsu thresholding on the gray-scaled images. Otsu 
thresholding is commonly employed to differentiate foreground objects from the back-
ground [1]. This method is effective for segmenting individual images by adjusting a few 

Fig. 4 An example of the segmentation procedure through all three steps. a Laboratory image. The 
candidate spheroids are marked by circles. The yellow circle shows a lost spheroid in the first step of 
traditional image processing. b The traditional image processing output. c The shallow CNN result. (In 
comparison to the first step, one more spheroid is detected.) d The final mask by deeper CNN (in comparison 
to the second step, the modification on the spheroid edges is seen in some cases)
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parameters, but it is not suitable for large datasets. The results from this approach on 
our data primarily include spheroid areas that did not meet the threshold criteria.

To address this limitation, we implemented our ballistic modifier, which identifies 
sparsely distributed OFF pixels (indicating the background) within densely packed ON 
pixels (representing the objects) and compensates for them. Additionally, the modifier 
eliminates noise by turning off sparse pixels in the background. Following these com-
pensation and noise removal steps, the edges of the spheroid areas were detected using 
the Canny operator [2] and then filled to produce binary masks. This step was applied to 
less than half of all our raw images (about 900 images) since the corresponding output 
requires time-consuming inspection. As a result, we ought to be working with a small 
portion of all the data. To bypass this challenge and enhance the results of this step, we 
might use a compact model with a limited number of parameters. Therefore, prior to 
proceeding to the final step, we leverage an intermediate shallow CNN.

Second Step: Shallow CNN to modify annotation performance
The output masks from the first step were not as accurate as expected for the target 

analysis. This dataset still necessitates certain adjustments to train a sophisticated CNN 
capable of extracting semantic information. To achieve this, we utilized a small anno-
tated dataset to train a compact CNN. Although deeper neural networks are more adept 
at handling intricate data, they require a larger volume of training data to ensure effec-
tive training. The level of abstract features in our dataset is far less than that of real-life 
datasets like CFAR10 [48]. Hence, for such data, a relatively simpler CNN can easily per-
form segmentation tasks for an acceptable portion of images.

As illustrated in Fig. 5, there are two parallel calculation branches in this part of our 
model. The main branch (lower branch) is a shallow CNN that includes one convolu-
tional layer followed by max-pooling and another convolutional layer followed by an up-
sampling layer, which aims at feature extraction. The other branch (upper branch) has 

Fig. 5 A shallow CNN is used in the second workflow step. With a minimal number of layers and parameters, 
it contains a single pooling level paralleled by a single skip connection. The skip connection is used to remind 
the spatial features of the input to the output masks
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only one convolutional block, and its output is concatenated to that of the first branch. 
This branch aims to remind the spatial information to the output for better configuration 
regeneration [26]. Based on our preliminary experience, we concluded that this direct 
branch (skip connection) with minimal convolutions would significantly help localizing 
objects while it minimizes the computational cost for the model by reducing the need 
for more convolutional layers.

After weekly training this CNN on ~ 25% () of all the data and extrapolating on all the 
images, including the training set, for the second time, human inspection is needed to 
remove corrupted masks from the results. It is worth noting that due to the nature of 
employing a weak training process, the model inherently avoids overfitting. Therefore, 
in this scenario, utilizing the training set for extrapolation can not be interpreted within 
the framework of conventional supervised processes. This is elaborated in the following 
sections.

Third step: deeper CNN to obtain final masks
Following the completion of the preceding two steps, there is now a satisfactory quan-

tity of masked images (approximately 1 k) prepared to be input into the U-net-like CNN, 
which is designed to accurately annotate the spheroids. Although the performance of 
the shallow CNN was acceptable on a substantial portion of images, it was still a simple 
model that could not follow all the gradual changes in images throughout the experi-
mental period. Hence, a deeper CNN was required to successfully generalize our work-
flow for various kinds of data. In Fig. 6, an illustration of this model is shown, which is a 
more complex version of the previous CNN but still simpler than the original U-net [26]. 
The details are the same as discussed in the previous step.

Notes on the optimization process and weakly supervised learning
To optimize the CNNs, we employ the Adam optimizer with a gradually decreasing 

learning rate, starting from 10 and ending at 1. We also propose to use the Dice loss 

Fig. 6 Schema of deeper CNN used in the third step of the workflow
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function as a successful metric for medical segmentation assessment [49, 50]. Dice loss 
is a robust and suitable deep learning loss function, especially for unbalanced classes.

All training procedures conducted in this study are performed using weakly super-
vised learning, which provides a practical solution when acquiring accurate ground-
truth labels is difficult due to the high costs associated with data labeling.

In this study, we regulated the weak learning process by implementing rigorous regu-
larization techniques during training. Generally, in deep learning, regularization serves 
to strike a balance between overfitting and underfitting [51]. We have implemented two 
distinct strategies to control the regularizations effectively. First, we applied relatively 
high values for the L2 regularizers, set between 0.05 and 0.5 for different scenarios. Sec-
ond, we incorporated a 40 percent dropout rate after each convolutional layer.  These 
regularization techniques ensure that the model does not converge perfectly during 
the training process, thereby promoting weaker learning and enhancing generalization. 
In a weakly supervised process, the model should not fully adapt to the input due to 
imperfect annotations and high levels of noise present in the training data. Similar to 
an underfitted model, a weakly supervised model can identify patterns within the train-
ing data. Consequently, the weakly trained model cannot simply replicate its training 
set; however, this characteristic would benefit to surpass the imperfect input data [51]. 
An illustration of the quality enhancement achieved by our model, facilitated by weakly 
supervised shallow and deeper CNNs compared to their inputs, is depicted in Fig.  4. 
Further results are presented in subsequent sections.

Anomaly detection for filtering corrupted images
To speed up and automate the inspection process as much as possible, we defined 

some characteristics of candidate anomalies and designed a tool to filter corrupted can-
didate masks. The proposed tool mostly takes advantage of statistical features and distri-
bution of ON/OFF pixels in the masks.

The simplest rule is to find the empty masks by counting “ON or OFF” pixels and com-
paring it to a threshold, let’s say 500 pixels, considering too small objects as fooled sphe-
roids. Other anomaly candidates are images containing a high number of recognized 
objects (arising from sample pollution), too large area of recognized objects (arising 
from burned areas of images), or objects with large perimeters that are far from the nor-
mal distribution (arising from imperfect recognized spheroids with redundant edges). 
According to this list of criteria, for example, in the last step, about 400 candidate cor-
rupted masks were filtered to be removed or kept after being checked by the human eye, 
instead of inspecting ~ 1.8 K image-mask pairs in total.

Feature extraction

To study MSCD dynamics, the morphological parameters of segmented spheroids 
should be quantified and analyzed during the experimental periods. The following fea-
tures are described in detail:

Convex Area: In a picture, an area is defined by the number of pixels, and the con-
vex area of a spheroid refers to the area of the convex hull that encloses the object. The 
convex area of the spheroid would be measured and used to define and measure deeper 
and more complex features of the spheroid, such as its solidity. Additionally, the convex 
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perimeter of a spheroid is defined as the perimeter of the convex hull that surrounds the 
spheroid.

Spheroid Compactness: The compactness of a spheroid is defined as the ratio of the 
area of the spheroid to the area of a circle with the same perimeter. The rounder the bor-
ders of the spheroid that fit within the mentioned circle (the most compact shape), the 
closer this ratio approaches one. This ratio could be a useful representation of the qual-
ity of cell–cell and cell-surface interactions. As the number of pseudo-shape particles 
within the spheroids increases, the spheroid’s compactness decreases.

Spheroid Solidity: Spheroid solidity quantifies the density of a cellular spheroid, by 
comparing the area of the spheroid to the area of its convex hull. A solidity value of 1 
indicates a solid spheroid, while values less than 1 suggest irregular boundaries or perfo-
rations within the structure. A decrease in insolidity corresponds to more dendritic-like 
boundaries of the spheroid. This metric can elucidate the interaction between the 3D 
spheroid and its scaffold.

Spheroids Eccentricity: The eccentricity of a spheroid is defined as the ratio of 
its minor axis length to its major axis length. This value ranges from 0 to 1, where a 
higher value indicaties a more elongated shape, while a value closer to 0 suggests a 
more rounded shape. The term "ellipticity" is often used interchangeably with spheroid 
eccentricity.

Results
MTT assay

The viability of the cultured cells at various concentrations of chitosan scaffolds was 
measured during the first 72 h of culturing MSCs on the polymers. The data extracted 
from the viable cells were highly correlated with the data extracted from our in-house 
developed image processing algorithm. As shown in figure S1, the number of cells that 
survived on 2% chitosan in the first 24 h was almost two times greater than that on 2D 
PET plastic culture plates. Analysis of Variance (ANOVA) of data from multiple test rep-
etitions also supported the data extracted from processing the images.

Hoechst assay

The attachment of the cells to different concentrations of biopolymer scaffolds was 
investigated using the fluorescent Hoechst 33,342 assay. As illustrated in figure S2, the 
number of cells after the first four hours of culture on the scaffold surface was twofold 
higher compared to other concentrations. This was highly correlated with the values 
measured in the MTT assay. ANOVA of repeated experiments also confirmed the supe-
rior performance of the 2% scaffold concentration.

Imaging through differentiation

To develop and train our in-house image processing algorithms, we prepared six iden-
tical controls for each concentration of chitosan biofilm (0.5, 1, and 2%) for both dif-
ferentiation pathways (adipogenesis and osteogenesis) following the self-formation of 
spheroids on chitosan films. The spheroids were segmented from the images using rec-
ognition methods, and the presented dataset was extracted from the whole dataset.
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In this study, 2D images of the spheroids were captured daily. The spheroids were seg-
mented from the raw images after running six copies of each condition per day. Subse-
quently, the primary data obtained from the segmentation and various morphological 
factors of the spheroids were statistically analyzed. The following graphs represent the 
effects of basal scaffolds on cell aggregate-substrate interactions, the quality of differ-
entiation toward adipocytes and osteocytes, and also visualize the effect of the physical 
stiffness of different scaffolds on these differentiation pathways.

Our algorithm provides a rapid, morphology-based feature analysis of spheroids. Sub-
sequently, we compare the differentiation and differentiation potential of various con-
centrations of our 3D scaffolds based on the extracted data. Furthermore, regardless of 
cell type and environmental situation, our setup can be used for diverse spheroid analy-
sis applications, including drug discovery and fundamental cell biology research. This 
innovative tool has the potential to enhance cancer drug delivery studies and investiga-
tions that focus on the effects of external or internal factors influencing 3D cell cultures 
or mimicking the physiological environment of solid tumors [52].

AI‑based image segmentation

This section provides qualitative evaluations of the proposed segmentation algorithm 
based on our collected data. Apart from our label-free database, we conduct exten-
sive experiments on an available annotated data to quantitatively assess the segmenta-
tion approach and be able to compare the method to other state-of-the-art approaches. 
Additionally, to quantitatively demonstrate the effectiveness of our algorithm specially 
in segmenting our low-resolution database when compared to other weakly supervised 
approaches, we manually annotated several images from our collected dataset. We then 
compared the results of our algorithm with those produced by existing segmentation 
tools in this field.  However, since we wish to maintain the reader’s focus on the primary 
objective of the paper—studying the dynamics of MSCs in spheroids over a specified 
time period—we have included the technical details of our results in the supplementary 
materials (figures S4-S8, and tables S2-S3).

Note that the total number of training images for the final step is 1500 (out of 1800 
original images), while the total number of images for testing and evaluation in this final 
step is 21.  Given the absence of ground truth data to report any quantitative results, 
retaining a large dataset for testing or validation is unnecessary. The limited amount 
of data we are using is solely intended to verify that the regularizers are functioning 
properly.

Figure 7 and Fig. 8 depict a visual comparison between the results obtained from dif-
ferent stages of our proposed segmentation algorithm. The figures demonstrate the pro-
gressive improvement in capturing challenging details from (b) to (c), and the enhanced 
comparability of edges to the raw image from (c) to (d).

Feature analysis

The extracted data sets from the deep learning algorithm reveal valuable information 
about the cellular spheroids grown on different concentrations of chitosan scaffolds. The 
statistical graphs are all scaled between 0 and 1, to reach a clear comparison between 
the two different graphs regarding a specific path. Every pair graph compares a specific 
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Fig. 7 An example of the multi‑stage improvement in masking raw input images: (a) laboratory image: (b) 
traditional image processing steps output as an initial mask: (c) shallow CNN boosted output: (d) final output 
of deep CNN (It is shown that from b to c, more challenging details are captured and from c to d, edges are 
more comparative to the raw image)

Fig. 8 An example of the multi‑stage improvement in masking raw input images: (a) laboratory image: (b) 
traditional image processing steps output as an initial mask: (c) shallow CNN boosted output: (d) final output 
of deep CNN (It is shown that from b to c, more challenging details are captured and from c to d, edges are 
more comparative to the raw image)
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morphological property regarding the osteocyte and adipocyte pathways. separately 
over 21 days for three different chitosan densities.

Convex area

Based on the convex area graphs displayed in Fig. 9, According to the convex area graphs 
displayed in Fig.  9, the trends observed for the two distinct differentiation pathways 
diverge. However, certain similarities can still be discerned in these graphs. In the case 
of osteogenic differentiation, the total convex area of spheroids in 2% chitosan biofilms is 
nearly double that of the other concentrations. Conversely, in the adipogenesis pathway, 
the convex areas for the three chitosan concentrations remained relatively consistent.

The trend for the two different differentiation directions (adipocytes and osteocytes) 
throughout the first half of the differentiation period (the first 10–12 days) was not the 
same. MSCD into osteocytes shows even a decrease in the number of cells, which could 
mean that cells are already turning into pre-osteocytes and have stopped proliferating. 
On the other hand, in the adipogenesis pathway, the trend is increasing until a similar 
time point and then decreases dramatically.

Comparing the distribution graphs as shown in Fig. 9 reveals that in the adipogenesis 
pathway, the spheroids’ maximum convex areas are mostly larger than the other sphe-
roids. Generally, we can conclude that the adipocyte spheroids are bigger. The mean 
convex area graphs in the osteogenesis pathway show that for density 2, giant spheroids 
are constructed. But between days 4 and 12, the mean area will be reduced reduced, 

Fig. 9 Violin plots with emphasized mean values for comparison between spheroids convex areas regarding 
the a osteocyte and b adipocyte pathways, during a 21‑days period for three different densities of chitosan. 
red: 0.5, blue: 1, and green: 2
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which means large spheroids will start to break down. This breaking down could be a 
result of sedimentations that happen during osteo-differentiation [20]. For both densi-
ties equal to 1 and 2, the mean size remains the same with some fluctuations, and for 
1 the spheroids are almost smaller. In the adipogenesis pathway, for all densities, at the 
beginning spheroids grow every day, but they start to break down at day 7 for density 2, 
day 4 for density 1, and day 5 for density 0.5. For densities 1 and 0.5, the mean sizes are 
almost the same, and for density 2, it is always larger.

Spheroid compactness

The analysis of spheroids’ compactness in both differentiation pathways is illustrated 
in Fig.  10. It demonstrates more compact spheroids in the first two weeks, which is 
the result of a tighter cell–cell and cell-substrate connection. Also, this compactness 
is observed to be higher in the density of 2% and is more in the osteo-differentiation 
pathway. These observations show the relationship between substrate stiffness and cell 
attachment quality.

Spheroid’s solidity

Solidity is also an indicator of the cell’s attachment to the substrate. As depicted in 
Fig. 11, the extracted data exhibit a pattern similar to spheroid compactness results. The 

Fig. 10 Normalized violin plots with emphasized mean values for comparison between spheroids 
compactness regarding (a) osteocyte and (b) adipocyte pathways during a 21‑day period, for three different 
densities of chitosan: red: 0.5, blue: 1, and green: 2
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solidification of spheroids is higher on the sample with a chitosan density of 2% than the 
other. This shows a higher cell attachment quality for this substrate.

Spheroids eccentricity

Results illustrated in Fig. 12 reveal increased eccentricity in cells during the adipocyte 
pathway in the latter two weeks, whereas osteocytes exhibit sustained lower eccentricity. 
This finding confirms the stronger cell–cell attachment observed in osteocyte spheroids.

Discussion and conclusion
Developing and suggesting alternative and innovative strategies for studying the dynam-
ics of cellular shifts and changes based on phenotypic screening has been a hot topic 
recently. This trend can be attributed to the increasing shift toward 3D cell cultures in 
different fields of biology, from regenerative medicine and cancer studies to drug devel-
opment and the screaming process. These approaches are still mostly limited to 2D 
culture models and are calibrated to study morphological changes in single cells and to 
measure cell viability.

Despite the availability of commercialized software like ImageJ or CellProfiler, tools 
that perfom high level analysis capable of spheroid segmentation from low-resolution 
images with noisy backgrounds are not enough accurate to meet our requirements.

In our research, we developed a machine learning-based pipeline able to segment 
cells without using fluorescent staining. We measured and compared the shape 

Fig. 11 Normalized violin plots with emphasized mean values for comparison between spheroids solidity 
regarding (a) osteocyte and (b) adipocyte pathways during a 21‑day period for three different densities of 
chitosan. red: 0.5, blue: 1, and green: 2
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metrics of various 3D cell spheroids formed on chitosan films, analyzing their changes 
during differentiation toward adipocytes and osteocytes.

The affordability and accessibility of light microscopy make it advantageous for 
this research. Accurate image segmentation is crucial for analyzing the morphologi-
cal characteristics of spheroids during the experimental phase and for understand-
ing the dynamics of MSCD for therapeutic purposes. To address the labor-intensive 
nature of manual annotation for obtaining pixel-level ground truth labels, we devised 
an innovative, weakly supervised multi-stage model that leverages CNNs for label-
free spheroid segmentation. Our approach improves the overall quality of ground 
truth maps by incorporating a multi-stage process within a weakly supervised learn-
ing framework. We systematically evaluated the proposed framework using our col-
lected low-resolution microscopic data with noisy backgrounds. The experimental 
results demonstrate the effectiveness of our segmentation approach in accurately 
isolating spheroids from the background. To quantitatively assess our algorithm, we 
also conducted extensive experiments using available annotated data, confirming the 
reliability and robustness of our method (refer to supplementary materials). Through 
costly experiments on both our collected data and a benchmark annotated dataset, 
we demonstrated that our proposed segmentation algorithm can reliably detect and 
segment spheroids, achieving performance comparable to fully supervised state-of-
the-art approaches.

Fig. 12 Normalized violin plots with emphasized mean values for comparison between spheroids 
eccentricity regarding (a) osteocyte and (b) adipocyte pathways during a 21‑day period for three different 
densities of chitosan. red: 0.5, blue:1 and green:2
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Indeed, our segmentation algorithm effectively identifies spheroids, particularly when 
a large labeled dataset is not available.  However, since a portion of the algorithm neces-
sitates human expert review of potentially corrupted candidates, the inspection process 
may become time-consuming when dealing with larger datasets, such as those contain-
ing millions of images. In such cases, labeling a small subset of images and using them 
as training sets through a supervised learning approach may be a more effective strategy. 
Another limitation of our approach is its ability to identify roughly circular objects. As 
part of our anomaly detection framework, one of the rules is to exclude highly elongated 
objects, which represent artifacts or noise resembling hair-like structures. Those wish-
ing to segment such shapes must modify this segment of the algorithm and establish 
alternative rules within their automatic anomaly detection system. Additionally, we have 
implemented a rule to eliminate noise based on the size of objects by setting a defined 
threshold. If the goal is to distinguish between noise and objects of approximately the 
same size, this may pose a challenge to our segmentation design.  Certainly, this limita-
tion may impact the performance of our proposed algorithm when addressing the spatial 
overlap of organoids.  When multiple organoids overlap, various scenarios can arise that 
may result in the removal of certain cases. These scenarios may include the application 
of a size filter or situations involving high elongation, both of which are automatically 
eliminated during the “Anomaly detection” step, as detailed in Sect. 3.1.

To conclude, in this research, the MSCs were cultured on chitosan substrates with con-
centrations of 0.5%, 1%, and 2%. These cells were then differentiated into “adipocytes” 
and “osteocytes” using adipogenic and osteogenic media, respectively, as described in 
the material and methods section. Cell viability within the spheroids was assessed using 
the using MTT assay and a cell-surface attachment test (using Hoechst dye) for each chi-
tosan substrate concentration. To confirm proper differentiation, a real-time PCR analy-
sis was conducted (see Supplementary Table  S1 and Figure S3). The results indicated 
successful differentiation into adipocytes, as evidenced by the expression of PPARγ and 
lipoprotein lipase (LPL) genes, or into osteocytes, indicated by the expression of alkaline 
phosphatase (ALP) genes. Beta-2 microglobulin was utilized as the housekeeping gene. 
Our results are consistent with those of Zanoni et al., who showed a correlation between 
the cell viability within the spheroids and various morphological characteristics of the 
spheroids [53]. Among the three concentrations of chitosan used in the substrate, the 2% 
chitosan concentration demonstrated superior cell attachment and viability, as well as 
the formation of more compact spheroids with higher solidity and convex area, making 
it the most suitable and more pronging to differentiate osteocytes. To study the dynam-
ics of differentiation, we aimed to use the morphological properties of the 3D spheroids 
and develop a pipeline to analyze and quantify these properties based on daily 2D images 
captured from the 3D cellular spheroids. For this purpose, from the day that the differ-
entiation medium was added, every day for 21 days, the images of the spheroids were 
taken with an optical microscope (Olympus IX81) to extract the morphological features 
of the spheroids with artificial intelligence algorithms. The morphological properties 
obtained from spheroids via machine learning approaches include sphericity, roundness, 
total surface area, convex area, compactness, solidity, and eccentricity. Most of these 
studies used advanced microscopy techniques or fluorescent staining to acquire more 
detailed data within 3D cellular spheroids. These techniques require time-consuming 
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sample preparation and imaging time, are not easily feasible for screening purposes, and 
require a large number of samples. Our current research aims to compare the differen-
tiation potential of three different concentrations of our in-house chitosan biofilm as a 
basal scaffold for differentiating stem cells into adipocytes and osteocytes. Wu et al. used 
multiplexed immunofluorescence imaging along with deep learning for the characteriza-
tion of tumor microenvironments [54]. This demonstrates that deep learning approaches 
are now widely used to analyze the morphology, microenvironment, and even mechani-
cal properties of 3D spheroids. Vaidyanathan et al. used a machine learning pipeline to 
investigate the responses of vascular smooth muscle cell spheroid morphology to drug 
perturbations [55]. In our work, the morphological properties of 3D cell spheroids have 
also been obtained by an innovative deep learning pipeline to analyze time-lapse images 
from these cell culture methods, which can facilitate more efficient, cost-effective, and 
accurate analyses.
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