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Abstract 

In recent years, combined drug screening has played a very important role in mod-
ern drug discovery. Generally, synergistic drug combinations are crucial in treatment 
for many diseases. However, the toxic side effects of drug combinations are probably 
increased with the increase of drugs numbers, so the accurate prediction of toxic side 
effects of drug combinations is equally important. In this paper, we built a Metapath-
based Aggregated Embedding Model on Single Drug–Side Effect Heterogeneous 
Information Network (MAEM-SSHIN), which extracts feature from a heterogene-
ous information network of single drug side effects, and a Graph Convolutional 
Network on Combinatorial drugs and Side effect Heterogeneous Information Net-
work (GCN-CSHIN), which transforms the complex task of predicting multiple side 
effects between drug pairs into the more manageable prediction of relationships 
between combinatorial drugs and individual side effects. MAEM-SSHIN and GCN-
CSHIN provided a united novel framework for predicting potential side effects in com-
binatorial drug therapies. This integration enhances prediction accuracy, efficiency, 
and scalability. Our experimental results demonstrate that this combined framework 
outperforms existing methodologies in predicting side effects, and marks a significant 
advancement in pharmaceutical research.

Keywords: Combinatorial drugs, Side effect prediction, Metapath, Graph 
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 Introduction
The use of combinatorial drug therapy or polypharmacy has become a primary clinical 
approach in modern disease treatment, with most hospital visits resulting in prescrip-
tions for more than two types of drugs [1, 2]. The absorption and metabolism of different 
drugs within the body can lead to various negative interactions, such as enhancing or 
diminishing clinical efficacy and increasing the risk of drug interactions, and potential 
adverse drug reactions [3–6]. Therefore, predicting the side effects of multiple drugs and 
adequately preparing for them is critically important.

However, as the number of drugs increases, the potential combinations sometimes 
reach an explosive level, making precise prediction challenging, akin to finding a needle 
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in a haystack. Mathematical models can effectively address this complexity by system-
atically analyzing and prioritizing treatment options, thereby aiding clinicians in making 
effective decisions and devising suitable treatment strategies [7, 8].

To address these challenges, pioneering computational methods have been developed 
to predict drug side effects. For instance, Atias et al. [9] first proposed a computational 
approach focusing on individual drugs. Building on this foundation, the field has seen 
advancements with models like the Decagon [10], which integrates multimodal net-
works including protein and drug-protein interactions to predict multiple drug side 
effects using a graph convolutional network and a tensor decomposition decoder. This 
model significantly outperforms traditional methods by 69% in accuracy. Subsequent 
enhancements by Xu et al. [11] with the Tripartite Information Propagation model, and 
Carletti et al. [12] through the incorporation of a graph attention network, have further 
refined the accuracy of these predictions by emphasizing different weights in side effect 
relationships within heterogeneous graphs. Liu et al. [13] developed SC-DDIS, introduc-
ing additional drug features into the model to optimize predictions further. Extended 
applications like those by Brandon et al. [14] utilize Decagon data to create drug-pro-
tein knowledge graphs employing learning frameworks such as DistMult and KBlrn for 
improved prediction outcomes. New methodologies like the TriVec [15] and SimVec [16] 
models respectively, focus on enhancing node initialization in knowledge graphs, illus-
trating ongoing innovation in the field. Most recently, Jinwoo et al. [17] presented a uni-
fied embedding prediction model based on knowledge graphs, setting a new direction 
for future drug research by improving the accuracy of multi-drug side effect predictions.

In response to these advancements, this study proposes two distinct heterogeneous 
graph neural network models tailored for single and combination drugs within hetero-
geneous information networks. These models are designed to enhance the learning of 
feature vector representations of drugs and side effect nodes, optimizing the prediction 
of combinatorial side effects. An in-depth evaluation of these models demonstrates their 
predictive effectiveness, underscoring the potential of heterogeneous graph embedding 
in drug research.

Heterogeneous graph embedding, essential for projecting nodes into a low-dimen-
sional vector space, has evolved significantly with two main categories of models. The 
first category, including shallow embedding algorithms like those based on the skip-
gram model, captures semantic similarities through proximity in low-dimensional space, 
assuming nodes with similar neighbors should be closely positioned [18–24, 57]. The 
second category encompasses Graph Neural Networks (GNNs), which employ complex 
encoders to model network structure and node features more deeply [25–33 ]. This cat-
egory includes significant innovations such as the application of GNNs to heterogene-
ous graphs by models, each contributing uniquely to the field by handling different types 
of data and network dynamics. For our Single Drug–Side Effect Heterogeneous Infor-
mation Network, integrating metapaths based on proteins and side effects, as well as 
their features, is crucial to better represent drug node features and enhance prediction 
accuracy.

In this paper, we introduce two innovative models: the Metapath-based Aggregated 
Embedding Model for Single Drug-Side Effect Heterogeneous Information Networks 
(MAEM-SSHIN) and the Graph Convolutional Network for Combinatorial Drugs and 
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Side Effect Heterogeneous Information Networks (GCN-CSHIN). MAEM-SSHIN effec-
tively extracts features from a heterogeneous information network, focusing on the side 
effects associated with individual drugs, while GCN-CSHIN simplifies the complex 
task of predicting multiple side effects between drug pairs by forecasting interactions 
between combinatorial drugs and individual side effects. The integration of these models 
into a unified framework significantly enhances the accuracy, efficiency, and scalability 
of predicting potential side effects in combinatorial drug therapies. Our experimental 
results demonstrate that this combined approach substantially outperforms existing 
methodologies in side effect prediction, representing a major advancement in pharma-
ceutical research. This achievement highlights the transformative potential of advanced 
computational models in enhancing drug safety and efficacy.

Methods
Notations and definitions

Heterogeneous Information Graph: Let G = (V, E,A , R ) be a graph, where V is the set 
of nodes of the graph G, E is the set of edges of the graph G, is the set of node types, 
each representing a distinct category of nodes based on their features or roles within 
the graph, and R is the set of edge types, each signifying a distinct kind of relationship 
or interaction between the nodes. If | A| +| R |> 2, then the graph G is called a hetero-
geneous graph, which can also be referred to as a Heterogeneous Information Network 
(HIN).

Metapath: Given a heterogeneous graph G = (V, E, , R ), a metapath P is a sequence com-
posed of node types and edge types, represented as A1 →

R1 A2 →
R2 · · · →Rl Al+1 , which 

can be abbreviated as A1A2 · · ·Al+1 . Here, A1,A2, . . . ,Al+1 ∈ A,R1,R2, . . . ,Rl ∈ R , 
describing a composite relationship R = R1 ◦ R2 ◦ · · · ◦ Rl , where ∘ is a composite rela-
tion operator.

Metapath Instance: Given a metapath P = A1A2 · · ·Al+1 in a heterogeneous 
graph G = (V ,E,A,R) , an instance of metapath P refers to a sequence of nodes in 
graph G that follows the pattern of metapath P, denoted as v1i v2j . . . v(l+1)k . Here, 
v1i , v2j , . . . , v(l+1)k ∈ V  , with v1i being of type A1 , v2j of type A2 , and v(l+1)i of type Al+1.

Metapath-based Neighbors: Let G = (V ,E,A,R) be a heterogeneous graph and P be a 
metapath. Define the set of neighbors NP

v
 for a node v based on metapath P as:

Furthermore, if P is symmetric, then include v in NP
v

 , i.e.,v ∈ NP
v

.
Metapath-based Graph: Given a heterogeneous graph G = (V ,E,A,R) and a meta-

path P.
The metapath-based graph GP is defined as GP =

(

V ,EP
)

 , where V  is the set of all 
nodes in the original graph G , EP is the set of edges in the graph GP , specifically defined 
as:

NP

v
= {u ∈ V : there exists a path from v to u following instances of P}

EP
= {(u,w) ∈ V × V : u,w ∈ NP

� for some v ∈ V and there exists a path following P between u and w}
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If P is symmetric, then GP is defined as a homogeneous graph, implying that all edges 
(u,w) conform uniformly to the relations specified by P.

Heterogeneous Graph Embedding: Let G = (V, E,  A, R ) be a heterogeneous graph. 
For each node type Ai ∈ A , let VAi ⊆ V  denote the set of nodes of type Ai , and let 

XAi ∈ R

∣

∣

∣VAi

∣

∣

∣×dAi be the feature matrix associated with nodes of type Ai , where dAi rep-
resents the dimensionality of the feature space for nodes of type Ai . Here, R denotes 
the real numbers.

Heterogeneous graph embedding aims to learn a d-dimensional vector representa-
tion for each node v ∈ V  , denoted as v ∈ Rd . This representation should satisfy the 
condition that d is significantly smaller than |V | , the total number of nodes in the 
graph.

Heterogeneous information network construction

In this study, we initially constructed six network structures using data from the bio-
informatics database at Stanford University BioSNAP Datasets [34]. The sources and 
methods of construction for these networks are detailed as follows:

Combinatorial drugs and side effect network

The TWOSIDES database [35] revealed 4,649,441 combinatorial drugs and side effect 
relationships, involving 63,473 drug pairs, 645 drugs, and 1,317 side effects. Here, the 
term ’drug’ includes both combinatorial and single drugs unless specified otherwise. 
The frequency distribution of combinatorial drugs with side effects is shown in Fig. 1, 

Fig. 1 Distribution of side effects across drug combinations and single drugs. A Distribution of side effects 
across different drug ranges. B Distribution of side effects across different combinatorial drug ranges. C 
Distribution of drugs across different ranges of side effects. D Distribution of combinatorial drugs across 
different ranges of side effects
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with 964 side effects occurring in at least 500 drug combinations, forming our final 
dataset for experimentation.

Drug‑side effect network

Individual drug side effect information was derived from the SIDER [36] and OFFSIDES 
[35] databases. SIDER data, includes 286,399 drug-side effect relationships involving 
1556 drugs and 5868 side effects. OFFSIDES data, collected from adverse event report-
ing systems, consists of 487,530 drug-side effect pairs involving 1332 drugs and 10,097 
side effects. Combining these databases, we compiled 174,977 drug-side effect relation-
ships involving 639 drugs and 10,184 side effects. The frequency distribution of single 
drugs with side effects generally ranges from 100 to 300, up to over 1000 (Fig.  1). In 
contrast, single drug side effects are more specific, with 9271 side effects observed in a 
maximum of only 50 drugs.

These four charts illustrate the distribution of drugs and their combinations across 
different ranges of side effect counts, providing an in-depth analysis of the relationship 
between side effect frequency and the number of drug combinations.

The first chart (A) shows the distribution of side effects across different drug count 
ranges. It is evident that the number of side effects is concentrated in a small range of 
drugs, particularly in the [1, 9] range, where the number of side effects is significantly 
higher than in other ranges. This suggests that a small number of drug combinations are 
responsible for generating many side effects.

The second chart (B) displays the distribution of side effects across different drug 
combination count ranges. Similar to the first chart, the number of side effects is largely 
concentrated in the lower drug combination ranges (such as [0, 100] and [100,500]), 
indicating that these combinations are more likely to produce a higher number of side 
effects.

The third chart (C) focuses on the distribution of drugs within different ranges of side 
effect counts. The data shows that most drugs have a small range of side effects (e.g., 
[100,200] and [200,300]), while drugs with a high number of side effects are relatively 
rare.

The final chart (D) illustrates the distribution of drug combinations across different 
ranges of side effects. The results indicate that the majority of drug combinations gener-
ate fewer side effects (e.g., [0, 50] and [50, 100]), while the number of drug combinations 
sharply decreases as the number of side effects increases.

Drug‑drug similarity network

Utilizing chemical structural information, we obtained SMILES notation for each drug 
from DrugBank and transformed it into 2048-dimensional binary vectors using RDKit 
[37, 38]. Let A and B be vectors in Z2048

2  , representing the corresponding binary vectors 
for drugs a and b. Here, Z2 refers to the set of binary values {0, 1} , where each vector 
component is either 0 or 1. The similarity of their chemical structures is calculated using 
the following formula (1). Subsequently, a threshold c is selected. If the chemical struc-
ture similarity SimChem is greater than or equal to c , an edge is established between the 
nodes of drug a and drug b ; otherwise, no edge is formed.
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Building on the combinatorial drugs and side effect data from the previous database, 
we analyzed the similarity distributions among 639 drugs, as summarized in Table  1, 
finding that most similarities were below 0.3. To more effectively leverage chemical 
structural similarities in our network construction, we established a similarity threshold 
of 0.2. Drugs exhibiting a similarity above this threshold were linked, resulting in the for-
mation of 52,557 edges in the network.

Drug‑protein network

Relationships between drugs and proteins were obtained from the STITCH database 
[39], focusing solely on experimentally verified interactions between small molecular 
compounds and target proteins. This dataset includes 8,083,600 drug-protein interac-
tions, involving 8934 proteins and 519,022 compounds. In the resulting network, each 
protein and each compound are represented as nodes. Edges between nodes represent 
the verified interactions from the STITCH database.

Protein–protein interaction network

We utilized the human PPI network compiled by Menche et  al. [40] and Chatr-Ary-
amontri et al. [41], combined with additional PPI data from STRING [42] and Rolland 
et al. [43]. This network includes physically interacting proteins as recorded in human 
experiments, unweighted and undirected, comprising 19,085 proteins and 719,402 
interactions.

Side effect‑protein network

While no database directly records side effect-protein interactions, indirect relationships 
can be established through associated diseases. We extracted side effect-protein rela-
tionships from disease-protein data sourced from the DisGeNET database [44], which 

(1)SimChem=
2ATB

|A| + |B|

Table 1 Statistics of chemical structure similarity of 582 drugs

Similarity Combinatorial 
drug pairs

0 5607

(0, 0.1] 23,737

(0.1, 0.2] 89,072

(0.2, 0.3] 43,642

(0.3, 0.4] 5571

(0.4, 0.5] 864

(0.5, 0.6] 273

(0.6, 0.7] 165

(0.7, 0.8] 99

(0.8, 0.9] 64

(0.9, 1] 13
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includes 21,357 relationships between 519 diseases and 7294 proteins. In this network, 
nodes represent both proteins and side effects. Edges are established based on a docu-
mented association between a protein and a disease that manifests a given side effect.

In this study, we focused on predicting side effects related to combinatorial drug 
therapies. We selected 964 side effects that appeared in at least 500 drug combina-
tions as our experimental dataset. Detailed dataset and network information is in 
Table 2.

Utilizing the above network information, we integrated and constructed two heteroge-
neous information networks as follows:

The first network is the Single Drug–Side Effect Heterogeneous Information Net-
work (SSHIN), depicted in Fig.  2. This network is composed of five sub-networks: 
the drug-drug chemical structure similarity network, the drug-side effect network, 
the drug-protein network, the side effect-protein network, and the protein–pro-
tein interaction network. It is formally represented as the heterogeneous graph 
GSSHIN = (V1,E1, {D,P, S}, {D − D,D − P,P − P,D − S, S − P}) . Here, D (Drug) 
denotes the set of drug nodes, P (Protein) denotes the set of protein nodes, and S 
(Side effect) denotes the set of side effect nodes. To analyze and interpret this complex 

Table 2 Experimental data for predicting combination drug side effects

Networks No. of interaction No. of 
combinatorial 
drugs

No. of drug No. of protein No. of side effect

Combinatorial 
Drugs-Side Effect

4,576,287 63,472 645 – 964

Drug-Side Effect 169,906 – 611 – 9167

Drug-Drug 169,071 – 582 – –

Drug-Protein 18,632 – 276 3632 –

Protein–Protein 460,803 – – 17,861 –

Side Effect-Protein 5489 – – 3039 125

Fig. 2 Single drug–side effect heterogeneouss information network
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network, we utilized a metapath-based graph neural network model, which was spe-
cifically designed to learn feature vector representations of drugs, thereby laying the 
groundwork for subsequent predictive tasks.

The second network we constructed is the Combinatorial Drugs and Side Effect 
Heterogeneous Information Network (CSHIN), as illustrated in Fig. 3. This network 
establishes a bipartite graph structure between combinations of drugs and their corre-
sponding side effects. An edge in this network indicates that a specific combination of 
drugs is associated with a particular side effect. However, it is important to note that 
the edges between drug combinations and side effects in Fig. 3 do not imply that indi-
vidual drugs necessarily cause these side effects (i.e., this result is not derived directly 
from the information in Fig.  2); rather, it is the combination of different individual 
drugs that may lead to these side effects (independent of Fig.  2’s information). It is 
formally represented as the heterogeneous graph GCSHIN = (V2,E2, {C , S}, {CD − S}) , 
where C (Combinatorial drugs) represents nodes of drug combinations, and S (Side 
effect) represents nodes of side effects. For analysis and prediction within this net-
work, we utilized advanced graph convolutional neural network models specifically 
designed for edge prediction tasks, effectively identifying potential adverse effects 
arising from drug combinations.

Computational models

Inspired by the metapath-based models [33, 45], we propose the Metapath-based 
Aggregated Embedding Model on Single Drug–Side Effect Heterogeneous Informa-
tion Network (MAEM-SSHIN), to learn embeddings of drug and side effect nodes in 
SSHIN.

In this paper, within the Combinatorial Drugs and Side Effect Heterogeneous Informa-
tion Network, we transform the relationships between combinatorial drug pairs and side 
effects into an edge prediction problem. To address this, we employ a two-layer graph 
convolutional neural network model, which is specifically designed for predicting new 
connections. This model utilizes feature vectors of drug nodes and side effect nodes, 
which are learned from the SSHIN (Single Drug–Side Effect Heterogeneous Information 

Fig. 3 Combinatorial drugs and side effect heterogeneous information network
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Network). We denote this model as GCN-CSHIN (Graph Convolutional Network Model 
on Combinatorial Drugs and Side Effect Heterogeneous Information Network), empha-
sizing its tailored application for intricate network dynamics and interactions.

MAEM‑SSHIN model

This section outlines the Metapath-based Aggregated Embedding Model in the Single 
Drug–Side Effect Heterogeneous Information Network (MAEM-SSHIN). The model 
includes the following components: metapath selection, node feature transformation, intra-
metapath information aggregation, metapath inter-information aggregation, and node fea-
ture vector embedding learning.

Metapath selection In the construction of the single drug and side effect network, our 
objective is to elucidate the relationships among drugs in terms of chemical structure, tar-
get protein, and side effects, as well as the connections between side effects, proteins, and 
individual drugs. To achieve this, we begin by setting the maximum length of metapaths 
at 3, allowing for comprehensive exploration within the network. This constraint includes 
two types of nodes: firstly, the first-order neighboring nodes of drug nodes (or side effect 
nodes); secondly, the nodes at the second and third orders of adjacency from drug nodes (or 
side effect nodes), essentially limiting the selection to metapaths that start and end at the 
same type of node. This strategic selection results in 11 types of metapaths for drug nodes 
(DD,DP,DS,DPD,DSD,DDPD,DDSD,DPDD,DSDD,DPPD,DPSD) , and 8 types for side 
effect nodes (SD, SP, SDS, SPS, SDDS, SPPS, SPDS, SDPS) , effectively mapping the intri-
cate interconnections within the network. Conversely, longer metapaths (e.g., length of 4) 
tend to introduce excessive noise, potentially diminishing the accuracy of predictions. Our 
approach to restrict the path length aims to balance computational complexity and the need 
for predictive accuracy, ensuring the model remains efficient without being overly complex.

Node feature transformation In heterogeneous graphs, which contain nodes with diverse 
features, different node types may have feature vectors—numerical representations captur-
ing the attributes or characteristics of nodes—of varying dimensions, meaning the number 
of elements in each vector can differ. Even when these vectors share the same dimensionality, 
they may still originate from distinct feature spaces, which are mathematical spaces defined 
by the possible values and relationships of the features. To effectively process entities like 
drugs, target proteins, and side effects within a unified analytical framework, it is essential 
to map the initial feature vectors of various node types into a common latent feature space. 
This mapping is accomplished through type-specific linear transformations, ensuring that 
disparate data types are harmonized for subsequent analysis and modeling [32].

In our model, the initial feature vectors of all nodes are encoded as one-hot vectors based 
on their type, and subsequently projected into the same feature space using a node type-
specific transformation matrix Wl . The transformation is represented by the equation:

where h′v and xv are the post-transformation and original feature vectors of node v , 
respectively, with l ∈ {D,P, S} denoting the node’s type.

(2)h′v = Wl · xv , v ∈ V
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Intra-metapath information aggregation This section is dedicated to elucidating the 
process of information aggregation. It uses metapaths originating from drug nodes as a 
primary example to demonstrate how this process unfolds.

Given a metapath related to a drug node Pm , where m belongs to the set {1,2, . . . , 11} , 
and considering pm(v,u),u ∈ Nv

Pm
 as the metapath instance for node v , the feature 

information of node v is transmitted along the metapath instance pm(v,u) as follows:

In this equation, hpm(v,u) ∈ R
d′ is a vector of dimension d′ , where Vpm(v,u) signifies 

all nodes present in the metapath instance pm(v,u) , and fθ(·) represents an informa-
tion transfer function connected with the parameter θ . The metapath instances are 
encoded into feature vectors, following which a graph attention mechanism is uti-
lized to assign weights to diverse metapath instances for the target protein node v . 
The information from all metapath instances is aggregated through a weighted sum-
mation approach.

Here, aPm ∈ R
2d′ represents the attention parameter vector for metapath Pm , with 

’ ‖ ’ denoting the concatenation of two vectors. The term epm(v,s) signifies the impor-
tance of the metapath instance pm(v,u) for node v . This importance is then normal-
ized using the softmax function to obtain the weight αpm(v,u) for the metapath instance 
pm(v,u) . Consequently, all metapath instances are aggregated to derive the feature 
vector hPmv  for node v on metapath Pm . The symbol σ(·) denotes the activation func-
tion. To enhance the model’s expressive power and stabilize the learning process, we 
employ a multi-head attention strategy, executing K  independent attention mecha-
nisms and subsequently concatenating their outputs as the final result.

Here, 
[

αpm(v,u)
]

k
 denotes the weight of the metapath instance pm(v,u) under the kth 

attention mechanism.
The methodology for metapaths starting from side effects is analogous and will not 

be elaborated on further.

Metapath inter-information aggregation After aggregating node and edge data 
within each metapath, we further aggregate the features across different metapaths to 
achieve a comprehensive feature expression for all nodes across all metapaths. Here is 
an example for drug nodes, which are representations of pharmaceutical compounds 
in the network, each characterized by their vector feature expressions. While this 

(3)hpm(v,u) = fθ
(

h′t ,
)

, ∀t ∈ Vpm(v,u)

(4)

epm(v,u) = LeakyReLU
�

aTPm ·
�

h′v � hpm(v,u)
�

�

αpm(v,u) =
exp (epm(v,u))

�

s∈N
Pm
v

exp (epm(v,s))

h
Pm
v = σ





�

u∈N
Pm
v

αpm(v,u) · hpm(v,u)





(5)hPmv = �Kk=1σ





�

u∈N
Pm
v

�

αpm(v,u)
�

k
· hpm(v,u)
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example focuses on drug nodes, the same aggregation process is applied to side effect 
nodes, which also involve assembling vector feature expressions to capture the com-
prehensive impact of potential adverse effects associated with the drugs.

For a node v in a graph G , after the steps previously described, we obtain feature 
vector expressions for a drug node v across metapath Pm , represented as hPmv  , where 
m ∈ {1, 2, · · · ,M}.

Next, we assign a different weight to each metapath to aggregate all metapath infor-
mation comprehensively. Specifically, we calculate the average of the feature vectors for 
drug node v , represented in VD , across each metapath Pm , where m ∈ {1, 2, · · · ,M} . This 
average reflects the consolidated information from all instances of node v on metapath 
Pm , capturing the integrated effects of various relational paths in the network.

where, MD ∈ R
dD×d′ and bD ∈ R

dD are the parameters to be learned.
Then, an attention mechanism is employed to aggregate the node vectors of node v 

across all metapaths.

where, qD ∈ R
dD is the attention parameter for drug nodes to be learned, and hv is the 

final aggregated embedding vector for node v.

Node feature vector embedding learning To predict drug-drug and drug-side effect link-
ages, we employ the Binary Cross Entropy loss (BCE) as the loss function to assess the 
discrepancy between the predicted values and the actual outcomes. The formula is:

Here, B represents the number of training data per batch, yb denotes the actual value 
of the bth edge prediction sample, where the presence of an edge is indicated by 1, 
and absence by 0. y′b = F(hu, hv) signifies the predicted probability of an edge existing 
between node pair (u, v) in the model, where F(·) is a function calculating the similarity 
between two feature vectors. Ultimately, when the loss function falls below a set thresh-
old, the resulting hv is the final embedding vector for node v.

With this, the complete process of the MAEM-SSHIN model is thoroughly described. 
The specific flowchart is presented in Fig. 4.

GCN‑CSHIN model

The goal of GCN-CSHIN model is to predict whether an edge exists between combina-
torial drugs and side effects in a heterogeneous graph. An edge signifies the emergence 

(6)sPm =
1

|VD|

∑

v∈VD

tan h

(

MD · hPmv + bD

)

(7)

ePm = qTD · sPm

βPm =
exp (ePm)

∑

M

i=1 exp (ePi)

hv =

M
∑

i=1

βPm · hPmv

(8)L = −
1

B

∑B

b=1

[

yblog
(

y′b
)

+
(

1− yb
)

log
(

1− y′b
)]
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of a particular side effect due to the combinatorial drugs. We employ a Graph Convo-
lutional Network (GCN) model to aggregate structural information of combinatorial 
drugs and side effect nodes for this edge prediction task.

Leveraging the MAEM-SSHIN model, we obtain feature vector representations for 
each drug node. By combining the feature vectors of two drug nodes, we derive the ini-
tial feature f c0 = hvi + hvj for the combinatorial drugs node in the heterogeneous graph 
GCSHIN , where c ∈ VC and vi, vj ∈ VD . This additive approach is chosen to mitigate the 
influence of the drug combination’s sequence on prediction outcomes. The initial feature 
of side effect nodes is as obtained from the MAEM-SSHIN model, i.e., f s0 = hvs , where 
vs ∈ VS.

In the GCN model, the node information propagation formula for each layer (illus-
trated here for combinatorial drugs nodes) is:

Here, f ck  and f ck+1 denote the feature representations of node c at the kth and (k + 1)th 
layer, respectively, N (c) is the set of neighboring nodes of c , γcu = 1/|N (c)| , Wk is the 
parameter matrix, and φ(·) is the activation function. We use a two-layer GCN model to 
ultimately derive the feature representations fc and fs for combinatorial drugs and side 
effect nodes in the aggregated CSHIN graph, where c ∈ VCandvs ∈ VS . The node pair 
combines as f = fc||f s and inputs into a Multilayer Perceptron (MLP) model to yield the 
prediction result:

Here, Wf  represents the trainable parameters, and σ(·) is the activation function. The 
Binary Cross-Entropy loss is used to evaluate the difference between predicted and 
actual results:

(9)f ck+1 = φ

(

∑

u∈N (c)
γcuWkf

u
k + f ck

)

(10)y = σ
(

Wf f
)

Fig. 4 Flowchart of MAEM-SSHIN
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In this formula, B is the number of training data per batch, yb = 1 indicates the pres-
ence of an edge between the bth pair of combinatorial drugs and side effect nodes, and 
yb′ denotes the model’s predicted probability of an edge existing between them. For the 
flowchart of the GCN-CSHIN process, refer to Fig. 5.

Results
Evaluation metrics

To assess the performance of our model, we utilized three commonly employed metrics 
in the field of multi-drug side effect prediction:

• AUROC (Area under the curve ROC) This is the area under the Receiver Operating 
Characteristic (ROC) curve. The ROC curve’s vertical axis represents the True Posi-
tive Rate (TPR), defined as TPR = Recall = TP

TP+FN  , where the horizontal axis is the 
False Positive Rate (FPR), defined as FPR = FP

FP+TN .

• AUPRC (area under the curve PRC) This is the area under the Precision-Recall Curve 
(PRC). The PRC curve’s vertical axis is Precision, defined as Precision = TP

TP+TN  , and 
the horizontal axis is Recall, defined as Recall = TP

TP+FN .

Parameter settings

Parameter settings were determined using a grid search approach for evaluating candi-
date values, while ensuring the consistency of the training, testing, and validation nodes. 
The key settings for the MAEM-SSHIN model include employing a dual attention mech-
anism and a two-layer neural network architecture, with each layer having a dimension 
of 128. Negative sample selection is based on random walk sampling, and the loss func-
tion is set to binary cross-entropy. Similarly, the GCN-CSHIN model utilizes a two-layer 
graph neural network, where each layer is also 128-dimensional.

(11)L = −
1

B

∑B

b=1

[

yblog
(

yb′
)

+
(

1− yb
)

log
(

1− yb′
)]

Fig. 5 Flowchart of GCN-CSHIN
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We conduct a fivefold cross-validation, ensuring that the training, validation, and test 
nodes are consistent across both MAEM-SSHIN and GCN-CSHIN. During each fold 
of cross-validation, we keep the node division fixed to ensure consistency of the train, 
validation, and test nodes. For each fold, 80% of the positive and negative samples are 
randomly selected as the training set, and the remaining samples are used as the test set. 
All models are trained and evaluated on the same partitioned datasets. The learning rate 
is a dynamic learning rate, where the initial rate is 1e-3 and decreases by 0.05 every 100 
steps. The batch sizes for training and testing differ, with the training batch size being 
1024 and the test batch size being 4096. The smaller batch size during training allows 
for more frequent updates and better memory management, while the larger batch size 
during testing enables faster and more efficient evaluation of the model’s performance.

Case study

To validate whether our model is capable of predicting side effects for drug combina-
tions that currently lack recorded side effect information, we designed a case study spe-
cifically to test the model’s predictive capabilities.

We conducted experiments using a dataset containing 915,583 edges. Given the large 
size of the dataset, we adopted a batch processing approach, predicting 4098 positive 
edges per batch. Through multiple experiments, the model generated over 200 top-10 
prediction results. Among all the predicted results, the side effect of "anaemia" was pre-
dicted the most frequently, appearing in 25 combinations. We then conducted an in-
depth study on all the drug combinations related to anaemia (Table 3).

During the testing phase, all drug combinations were treated as having no direct side 
effects, allowing the model to predict potential side effects from scratch. The 25 combi-
nations related to "anaemia" were the result of predictions made on the entire test set, 
not specifically pre-selected combinations without direct side effects.

Although the side effects of these 25 drug combinations are not fully documented in 
the literature, upon validation, we found that 9 of these combinations have indeed been 
reported to be associated with anaemia. For the remaining combinations, literature has 
documented individual drugs that may cause similar side effects. For example, the study 
[46] reported that some patients treated with Taxol for recurrent anaplastic astrocyto-
mas experienced various toxicities, including anaemia. Similarly, the study by reference 
[47] explored haemolytic anaemia induced by Taxol. These literature validations support 
the model’s predictions and further demonstrate its potential in identifying previously 
unreported side effects of drug combinations.

Model comparison and analysis

In our model comparison, we selected commonly used multi-relational prediction mod-
els, the classical Decagon model, and its improved versions. The specific models are as 
follows:

• Concatenated Drug Features [10]: This approach constructs feature vectors for each 
drug based on PCA representations of drug-target interaction matrices and indi-
vidual drug side effects. Combinatorial drugs features are obtained by concatenating 
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corresponding single-drug feature vectors, followed by using a gradient boosting tree 
classifier to predict the side effects of combinatorial drugs.

• DeepWalk Neural Embeddings [48, 49]: This method learns d-dimensional feature 
representations of drug nodes through a biased random walk process. Combinatorial 
drug features are derived by concatenating individual drug vectors. A logistic regres-
sion classifier is applied to predict the occurrence of specific side effects for each 
drug combination.

• DEDICOM Tensor Decomposition [50]: A tensor decomposition method suit-
able for sparse data. Given a drug-drug feature vector matrix Xi , it is decomposed 
as: Xr = AUrTUrA

T . The association prediction between drugs i and j for r is 
aiUrTUraj.

• RESCAL Tensor Decomposition [51]: A tensor decomposition method that consid-
ers multi-relational structures. Given a drug-drug feature vector matrix Xi , based on 
side effect r, it is decomposed as: Xr = ATrA

T , r ∈{1, 2, …, 963}. The association pre-
diction between drugs i and j under side effect r is: aiTaj.

• Decagon [10]: Constructs a multimodal network of protein-drug multi-drug side 
effects, where in the drug-drug interaction network, different edge types are estab-
lished based on different side effects. It develops a combination model of a new 

Table 3 The predicted drug combinations associated with anaemia side effect and their 
corresponding literature validation

Drug combinations (CID) Drug combinations name References

CID000003324,CID000150311 Famciclovir, Ezetimibe [35]

CID000004917,CID000005978 Prochlorperazine, Vincristine [35]

CID000005039,CID000005291 Noctone, Imatinib [35]

CID000004168,CID000005394 Metoclopramide, Temozolomide [35]

CID000004585,CID000003365 Olanzapine, Fluconazole [52]

CID000002666,CID000001983 AC1L1E6T, Paracetamol [53]

CID000003143,CID000003750 Docetaxel rihydrate, AC1L7AJI [54]

CID000005372,CID000060147 NSC717865, Dexamethasone [55]

CID000005426,CID000000450 Thalidomide, Estropause [56]

CID000004170,CID000002088 Metolazone, Alendronate –

CID000004900,CID000004666 DeltaE, Taxol –

CID000001775,CID000123620 Phenytoin, Elocom –

CID000004601,CID000004205 Orphenadrine, Mirtazapine –

CID000000444,CID000056339 Bupropion, Methylphenidate –

CID000003476,CID000002130 Glimepiride, Amantadine –

CID000005090,CID000087177 Rofecoxib, Maltulose –

CID005381226,CID000005466 CID-078, AC1Q5UBL –

CID000003463,CID000003403 Gemfibrozil, Fluvastatin (Lescol) –

CID000004889,CID000002803 AC1L1J6H, Clonidine –

CID000003463,CID000001117 Gemfibrozil, Sulphate –

CID000003672,CID000003042 Ibuprofen, Dicyclomine –

CID000040976,CID000002771 Mavacamten, Citalopram –

CID000002576,CID000002250 Carisoprodol, AC1L1D9C –

CID000004893,CID000002250 Prazosin, AC1L1D9C –

CID000004634,CID005353980 Oxybutynin, ’potent and selective mGlu2 receptor 
agonist’

–
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graph convolutional neural network and a tensor decomposition decoder for multi-
relational link prediction in multimodal networks.

• TIP [11]: A Tripartite Information Propagation (TIP) model using the multimodal 
network of protein-drug multi-drug side effects from the Decagon method. It builds 
a message passing neural network (MPNN) framework through GCN (P-P graph 
embedding model), Decagon (graph-to-graph information propagation model), and 
R-GCN (D-D graph embedding model), propagating pharmacological information 
from P-P to D-D graphs via P-D graphs, obtaining drug feature representations, and 
using a neural network as the decoder.

• DistMult [14]: Constructs a drug-protein knowledge graph, using the classic knowl-
edge graph embedding method—DistMult—and an end-to-end knowledge graph 
representation learning framework—KBlrn—to predict the side effects of combina-
torial drugs.

• SC-DDITS [13]: A novel heterogeneous signature network model that combines 
more drug features, dividing multi-modal relationships into positive or negative cat-
egories, and builds a graph neural network model based on extended structural bal-
ance theory in social networks to learn drug feature representations.

In our study, we ensured that the data partitioning process was consistent across all 
phases. The test data were isolated at the beginning and never used during training or 
tuning. This partitioning was strictly followed from preprocessing to model evaluation, 
ensuring that no test data were inadvertently exposed during model development.

The test dataset remained unseen throughout the framework and was solely used for 
the final evaluation to assess the model’s generalization performance on unseen data. 
This ensures that the results reported are unbiased and adhere to best practices in 
machine learning.

 We utilized fivefold cross-validation to ensure robust evaluation across all models. 
Each fold involved using one subset of the data as the test set, with the remaining used 
for training, ensuring comprehensive testing across all data points. We also conducted 
ablation studies on the GCN-CSHIN model, replacing the original GCN + MLP with a 
simple MLP or other graph neural network models (such as GraphSAGE) + MLP. The 
results showed that neither using MLP directly nor replacing GCN with other graph 
models performed as well as the current approach. These ablation study results further 
emphasize the critical role of incorporating graph structure information in enhancing 
overall model performance. Table  4 shows our model outperforms other models on 
three metrics: AUROC and AUPRC. Unlike Decagon and other models, ours integrates 
drug chemical structure and side effect data, simplifying multi-relational prediction 
within CSHIN. This allows extending to higher-order drug combination side effect pre-
diction and incorporating more drug feature information in learning feature vectors via 
the MAEM-SSHIN model (Table 5).

To better illustrate the model’s performance and the importance of drug features, we 
modified the drug-side effect heterogeneous feature network, omitting some relational 
features. We denote this adapted network as MAEM-SSHINddpps, which includes drug-
drug chemical structure, drug-protein, drug-side effect, protein–protein interaction, and 
side effect-protein information. Similarly, we define MAEM-SSHINdds(only containing 
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drug-drug chemical structure and drug-side effect information), MAEM-SSHINdpp(only 
containing drug-protein and protein–protein interaction information), MAEM-
SSHINdpps(with drug-protein, drug-side effect, protein–protein interaction, and side 
effect-protein information), and MAEM-SSHINddpp(with drug-drug chemical structure, 
drug-protein, drug-side effect, and protein–protein interaction information). MAEM-
SSHINddpps performed best, while MAEM-SSHINdds performed worst, highlighting the 
significance of drug-drug chemical structure and drug-side effect information in pre-
dicting combinatorial drug side effects.

Discussion and conclusions
In this study, we have innovatively proposed a predictive framework for combinatorial 
drugs side effects based on heterogeneous graph neural networks. The framework com-
prises two core components: a metapath-based heterogeneous graph embedding model 
(MAEM-SSHIN) for single drug side effects, and a graph convolutional network predic-
tion model (GCN-CSHIN) for combinatorial drugs side effects. The integration of these 
models not only enriches methodology for predicting multiple drug side effects, but also 
opens new avenues for practical clinical applications. The MAEM-SSHIN model extends 
beyond traditional drug-protein heterogeneous network analyses by incorporating drug 
chemical structure and individual drug side effect data, resulting in a more comprehen-
sive single drug side effect heterogeneous network. The GCN-CSHIN model presents a 
novel approach for combinatorial drugs side effect predictions, transforming the prob-
lem of predicting multiple side effect relations for drug pairs into a network relation 

Table 4 Comparison of AUROC and AUPRC between our proposed model and the classical models

The bold formatting indicates the best-performing results for each evaluation metric

Model AUROC AUPRC

RESCAL tensor decomposition 0.693 0.613

DEDICOM tensor decomposition 0.705 0.637

DeepWalk neural embeddings 0.761 0.737

Concatenated drug features 0.793 0.764

Decagon 0.872 0.832

TIP 0.914 0.890

DistMult 0.923 0.898

SC-DDIS 0.947 0.930

MAEM-SSHIN + GCN-CSHIN 0.965 0.955

Table 5 Comparison of AUROC and AUPRC under different SSHIN networks

The bold formatting indicates the best-performing results for each evaluation metric

Model AUROC AUPRC

MAEM-SSHINdds + GCN-CSHIN 0.875 0.801

MAEM-SSHINdpp + GCN-CSHIN 0.889 0.819

MAEM-SSHINdpps + GCN-CSHIN 0.935 0.898

MAEM-SSHINddpp + GCN-CSHIN 0.955 0.919

MAEM-SSHINddpps+ GCN-CSHIN 0.965 0.955
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prediction problem between combinatorial drugs and side effects, utilizing the potent 
learning capabilities of GCN for more accurate and efficient predictions.

Our experimental results demonstrate that the combined MAEM-SSHIN and GCN-
CSHIN models outperform existing models in predicting combinatorial drugs side 
effects. This validates the effectiveness of the proposed methods and indicates potential 
application of the framework in addressing real-world issues. Future research directions 
include multidimensional data integration, model interpretability, drug repositioning, 
personalized medicine, and design of multi-drug combination therapies. Through these 
studies, we aim to provide a solid scientific foundation for safety assessment and efficacy 
prediction of drug combinations, ultimately benefiting a wide range of patients.
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