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Abstract 

In the context of multi-omics data analytics for various diseases, transcriptome-wide 
association studies leveraging genetically predicted gene expression hold promise 
for identifying novel regions linked to complex traits. However, existing methods 
for multi-tissue gene expression prediction often fail to account for tissue-tissue 
expression interactions, limiting their accuracy and effectiveness. This research 
addresses the challenge of predicting gene expression across multiple tissues by incor-
porating tissue-tissue expression correlations based on a nonlinear multivariate model. 
Our findings demonstrate that this model excels in estimating tissue-tissue interac-
tions and accurately predicting missing data. These results have significant implications 
for multi-omics data analytics and transcriptome-wide association studies, suggesting 
a novel approach for identifying regions associated with complex traits.

Keywords:  Transcriptomics, Multiple-tissues, Machine learning, Sparse covariance 
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Introduction
eQTL (expression Quantitative Trait Loci) studies explore the relationship between 
genetic variants, such as SNPs (Single Nucleotide Polymorphisms), and gene expres-
sion levels. By identifying how specific SNPs influence gene expression, researchers 
can gain insights into the genetic basis of complex traits and diseases. In the context 
of transcriptomics, which involves the comprehensive analysis of RNA transcripts, 
eQTL mapping is particularly valuable (Fig.  1). When considering multiple tissues, 
incorporating tissue-tissue correlations becomes essential, as gene expression can be 
influenced by interactions across different tissues. This approach allows for a more 
holistic understanding of gene regulation and the identification of novel regions asso-
ciated with complex traits, enhancing the precision and effectiveness of transcrip-
tome-wide association studies. Transcriptome-wide association studies (TWAS) 
have therefore gained prominence in the field of genomics and genetics for their 
potential to uncover genetic variants associated with complex traits. These studies 
leverage gene expression data to bridge the gap between genetic variations and phe-
notypic traits. Although TWAS holds great promise, the accuracy of gene expression 
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prediction across multiple tissues remains a challenge. Previous research addressed 
the challenge of multi-tissue gene expression (Grinberg and Wallace, 2021) [1]

Machine learning algorithms have been used to predict eQTL regulation of a gene 
by analyzing adjacent genetic variants [2, 3]. Researchers have used genetically pre-
dicted gene expression models to conduct transcriptome-wide association studies 
(TWAS) and identify novel areas linked to complex traits. However, many of these 
regions lack a GWAS relationship within 1Mb.

There are various benefits to such analyses: Leveraging gene expression enriches 
possible trait-associated SNPs, whereas joint eQTL modeling improves overall associ-
ation strength and reduces the number of tests from millions to roughly 20,000 genes.

Leveraging shared eQTLs across tissues enhances eQTL discovery and gene expres-
sion imputation accuracy, leading to more powerful transcriptome-wide association 
analyses [4–6]. Hu et  al. [7] and Molstad et  al. [8] developed a penalized regres-
sion strategy for collaborative modeling of eQTLs. The penalty encourages shared 
eQTLs between tissues. Using genotype and expression data from the Genotype-
Tissue Expression (GTEx) project, multi-tissue eQTL models significantly increase 
gene association identification and imputation accuracy compared to single-tissue 
techniques.

While Hu et  al.’s technique [7] does not account for tissue-specific gene expression 
correlation in combined eQTL modeling, Molstad et al. [8] uses cross-tissue imputation 
with EM algorithm. Both approach uses linear model to derive their algorithm. Recent 
research suggests that accounting for metric based on skewness improves variable 
selection and prediction accuracy and can identify regulators or genes in large patient 
cohorts. A recent study showed that significant correlation was detected between 
expression skewness and the top 500 genes corresponding to the most significant differ-
ential DNA methylation occurring in the promotor regions in TCGA [9]

Fig. 1  Overview of TISSLET method. The inputs required for TISSLET is a matrix of gene expression for several 
tissues. We also use the subjects genotypes with sample matched measured expression. TISSLET’s weights 
output are calculated based on the CEM algorithm using measured gene expression and provide the weights 
and covariance structure of tissues. For full details, see the Materials and Methods section
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Recent research suggests that accounting for tissue-tissue correlation in high-dimen-
sional penalized multivariate response linear regression improves variable selection and 
prediction accuracy. This phenomena may be explained by a seemingly unrelated regres-
sion interpretation of high-dimensional sparse multivariate response linear regression. 
Moreover, certain tissue types are more difficult to obtain due to biological and cost 
constraints. Using tissue-tissue correlation with skewness assumption enhances gene 
expression prediction accuracy, particularly for small data numbers.

In this paper, we propose an approach (TISSLET) which not only impute missing 
gene expression using cross information from several tissue, but also estimate tissue-
tissue correlation. We calculate a joint eQTL weights while imputing missing gene 
expression using a skewed normal modeling. The technique by which our approach 
works is straightforward. Measuring expression in one tissue can provide a reli-
able estimate of expression in the other, especially if their expression is substantially 
correlated. Ignoring tissue-tissue correlation can significantly reduce gene expres-
sion prediction accuracy. Our methodology offers several advantages over previous 
approaches for multi-tissue joint eQTL mapping, including: 

1.	 Incorporation of a full tissue-tissue correlation matrix in the model, rather than 
assuming a diagonal matrix, which reveals cross-tissue expression dependencies that 
eQTLs alone cannot explain.

2.	 Efficient estimation of eQTL weights by modeling cross-tissue associations.
3.	 Relaxation of the normality assumption by allowing for a heavy-tailed error distribu-

tion, assuming that errors follow a multivariate skewed distribution.

Figure 1 gives an overview of TISSLET method. This figure demonstrates the train-
ing of the imputation model. The inputs required for TISSLET is a matrix of gene 
expression for several tissues. We also use the subjects genotypes with sample 
matched measured expression. TISSLET’s weights output are calculated based on the 
CEM algorithm using measured gene expression and provide the weights and covari-
ance structure of tissues. For full details, see the Materials and Methods section.

Materials and methods.
Regression models are commonly used to map the relationship between SNPs and 
gene expression levels in eQTL studies. Traditional models often assume normality of 
errors, which may not capture the true distribution of gene expression data. Introduc-
ing a skewed model with a cross-tissue expression based on SNP genotypes can pro-
vide a more accurate representation by allowing for heavy-tailed error distributions, 
improving the precision of eQTL mapping and the identification of genetic influences 
on gene expression.

Let xi ∈ R
p represent the genotypes of p SNPs (both centered and normalized) and 

let yi ∈ R
q represent the vector of centered and normalized measured expression in 

q tissues for the ith subject for a specific gene within a certain distance (e.g. 500 kb) 
or less away from the gene of interest. We assume that gene expression represents a 
realization of the random vector for the ith subject:
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where SNq denotes the q-dimensional multivariate skewed normal distribution, where 
β ∈ R

p×q is the unknown regression coefficient matrix (i.e., eQTL weights), and 
�−1 ∈ R

q×q is the cross-tissue error precision (inverse covariance) matrix. We further 
assume that ǫi is independent of ǫj for all i  = j.

The skewed distribution SN can reveal the asymmetric information when the obser-
vations such as gene expression are skewed [10]. Asymmetrical distributions have an 
additional shape parameter � ∈ R

q×q to represent the direction of the asymmetry of the 
density. If the skewness in observations is ignored, inferences with symmetric distribu-
tions may result in biased or even misleading conclusions.

Penalized skew‑normal log‑likelihood

In appendix (7.2) we outline in details the derivation of the model parameters (weights 
and cross-correlation matrices) under the normality assumption. This approach uses 
the ECM algorithm for parameter estimation. Algorithm 1 gives the pseudocode of the 
approach using normality assumption.

Algorithm 1  Regularized ECM Algorithm with normality

Similarly, using equation (2.1) and assuming that the errors ǫ ’s i.i.d∼ SN(0,�,�) , for 
1 ≤ i ≤ n , and assuming that gene expression represents a realization of the random 
vector for the ith subject:

where xi = (xi,1, . . . , xi,p) is the vector of covariates (here xi is the ith individus genotype), 
βt = (β1, . . . ,βp)

t , is an unknown matrix of mean regression coefficient and TN is a 
truncated normal distribution.

(2.1)yi ∼ βtxi + ǫi, ǫi ∼ SN(0,�,�).

(

yi|β ,�,�
)

∼ Np

(

βtxi +�τ ,�
)

τ ∼ TNp

(

0, Ip
)
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On the other hand, since gene expression matrix has random missing values, we consider 
that y′is are partially observed with an arbitrary missing pattern. In order to set up estimat-
ing equations for multivariate data with possible missing values, we separate yi(q × 1) into 
two components ( yoi , y

m
i  ) accordingly, where yoi (q

o
i × 1) is the observed component and 

ymi ((q − qoi )× 1) is the missing component. Further, we introduce two missingness indi-
cator matrices, denoted by Oi and Mi henceforth, corresponding to yi such that yoi = Oiyi 
and ymi = Miyi , respectively. More specifically, Oi(q

o
i × q) and Mi((q − qoi )× q) are sub-

matrices extracted from the rows of an identity matrix of order q, Iq , corresponding to 
row positions of yoi  and ymi  in yi , respectively. When yi is fully observed, Oi = Iq and Mi 
is null. Meanwhile, it is easy to verify that: yi = OT

i y
o
i +MT

i y
m
i  and OT

i Oi +MT
i Mi = Iq . 

Using appendix (7.3) and Bayes Theorem the negative log-likelihood for the observations 
y1, y2, . . . , yn

Then the expected conditional log likelihood Q(β ,�,�) is expressed as

where

Regularization for precision matrix �

We regularize the entries of � using ℓ1 penalties, then the regularized conditional log likeli-
hood Q is expressed as:

For sufficiently large tuning parameter values �1 , the penalty results in precision matrix 
estimations � with all off-diagonal entries equal to zero. The penalty assumes that some 
entries are equal to zero. In multi-tissue joint eQTL mapping, a zero in the (j,k)th entry of 
� indicates independent expression in the j th and k th tissues, given expression in all other 
tissues and p SNP genotypes (1). We do this for two reasons: first, when p > n (which 
is the case for practically every gene we test, more SNPs than observations), without 
penalizing the diagonals, a perfect fit can occur in the M-step and not in E step (see 
Algorithm 2): Recent literature, has shown that precision matrix estimators employed in 
predictive models exhibit this behavior [11]. Next we summarize the main ECM Algo-
rithm 2. Algorithm 3 gives a detailed version of Algorithm in appendix 7.3 ):

(2.2)

L
(

�|yo, ym, τ
)

= log p(ym|yo, τ )p(τ |yo) =
1

2

n
∑

i=1

{

log |�|) +
(

yi − βtxi −�τ
)

�
(

yi − βtxi −�τ
)

+ τ iτ
t
i

}

E[L
(

β ,�,�|yo, ym, τ
)

] ∝ 1

n

n
∑

i=1

tr{Ri(β ,�)�} − log |�|

(2.3)Ri(β ,�,�) = E

[

(

yi − ξ −�τ i)(yi − ξ −�τ i
)t |yoi ,�

]

Q(β ,�,�)+R(�) = Q(β ,�,�)+ �1

q
∑

j=1

p
∑

k=1

|�j,k |
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Algorithm 2  Regularized ECM Algorithm with non-normality

Remark 1: Step 4 of Algorithm 2 can be expressed

Conveniently, (2.4) is exactly the optimization problem for computing the ℓ1-penalized 
normal log-likelihood precision matrix estimator with input sample covariance matrix 
R(.) . Many efficient algorithms and software packages exist for computing (2.4). We can 
use our R software BiGQUIC to solve (2.4) which is available at BiGQU​IC [12]

Remark 2. Step 5 of Algorithm 2 can be expressed as:

Using appendix (7.3), we have

where

Illustrations
Simulation study

In this section, we utilize 80 replications of data generated from multivariate regression, 
where the sample size is n = 50, 150 , p = 22 , and q = 24 . The choice of q is made to 
align with the dimension of the regression models applied to the GTEx data. In each 

(2.4)�(k+1) = arg min
�∈Rq×q

[

tr(R(k)�)− log |�| + �1

q
∑

j=1

p
∑

k=1

|�j,k |
]

ξ (k+1) = arg min
ξ ∈Rp×q

1

n

n
∑

i=1

{

(y
(k)
i − ξ −�τ i)�

(k+1)(y
(k)
i − ξ −�τ i)

t

}

ξ̂
(k+1) = 1

n

( n
∑

i=1

ŷ
(k)
i − �̂

(k)
n

∑

i=1

η̂
(k)
i

)

ŷi = �−1Sooi yi +
(

I−�−1Sooi

)(

ξ̂ + �̂η̂i

)

https://cran.r-project.org/web/packages/BigQuic/index.html
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replication, a sparse matrix B is generated using the element-wise product of three 
matrices: B = W ⊙ K ⊙Q where ⊙ is the elementwise product, (W)ij ∼ N (0, 1) and 
(K)ij ∼ Bernouilli(s1) and each row of Q consists of either all 1’s or all 0’s with a success 
probability of 1’s equal to s2.

By generating B in this manner, we anticipate that (1− s2)p predictors will be irrel-
evant for all q responses, and each predictor will be relevant for s1q of all the response 
variables. An n× p predictor matrix X is also generated with rows drawn independently 
from N (0,�X) , where (�X)ij = 0.7|i−j| , following the approach of Yuan and Lin (2007) 
[13] and Peng et al. (2010) [14]. We consider an AR(1) covariance structure for the scale 
matrix of the errors, which is � = ρ|i−j|.

Lastly, every row of the error matrix E is independently sampled from a multivari-
ate skew-Normal distribution SN(0,�,�) , and the response matrix Y is formed as 
Y = XB+ E . To reduce computation time, we independently generate validation data 
(sample size n = 50 ) within each replication to estimate the prediction error for the 
algorithms, akin to performing a K-fold cross-validation for the algorithm, as described 
in Rothman et al. (2010) [15].

We consider 36 different combinations of � ; ρ ; s1 and s2 from the following ranges:(1) 
ρ = {0, 0.4, 0.8} , (2) � = diag(−1, 1,−1, . . . , 1)    or 1q , where 1q is a column vector 
of ones, (3) s1 = 0.1, 0.5 , and (4) s2 = 1 . Tuning parameters is selected from the set 
{2a, a ∈ 0;±1, . . . ,±5}.

Results on simulation study

In the simulation study, we measure the overall performance of various methods in terms 
of the mean squared prediction error (PE). We have computed the prediction errors (PE) 
values of the entropy loss functions of the estimators of � for the 80 simulated datasets 

Fig. 2  Prediction errors (PE) values of the entropy loss functions of the estimators of � for the 80 simulated 
datasets using the k-NN, Normal, the G-Lasso and the TISSLET (skewed) algorithm
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using the k-NN, Normal, the G-lasso and the TISSLET algorithm (Fig. 2). To assess the 
significance of the difference in prediction error between the Normal and Tisslet algo-
rithms, we conducted a Wilcoxon signed-rank test ( Ri = Sign(Di)− rank(|Di|) where Di 
is the difference of both predictions. The results indicated a statistically significant dif-
ference, with a p-value of 0.0124 at the 5% significance level ( α = 0.05).

While the ℓ1 loss is used to evaluate the performance of � , the sparsity recognition 
performance of � is measured by the true positive rate (TPR) as well as the true negative 
rate (TNR) defined as

The corresponding true positive rates (TPR) and true negative rates (TNR) for � are 
reported in Tables 1 and 2. From these tables it is evident that a slightly higher TPR is 
accompanied by a lower TNR for our algorithm Tisslet algorithm versus Molstad et al. 
algorithm (normal assumption). We have also compared the numerical performance of 
the algorithms and the G-Lasso method obtained from Friedman et al. (2022) [16] by 
setting � to be 0 for the 36 combinations. In general, it turns out that for higher error 
correlations ( ρ = 0.8 ) the mean square error of these methods is somewhat lower com-
pared to the K-NN method, but the estimators of � are improved considerably. Finally, 
the computational times of the two algorithms are computed.

The computational times for the four algorithms were evaluated and compared. 
On average, the CPU time ratios of Normal, K-NN, and Lasso to our algorithm, 

TPR(�̂,�) = #{(i, j); �̂ij �= 0 and �ij �= 0}
#{(i, j);�ij �= 0}

TNR(�̂,�) = #{(i, j); �̂ij = 0 and �ij = 0}
#{(i, j);�ij = 0}

Table 1  TPR/TNR for the matrix � averaged over 80 replications with s1 = 0.1 , s2 = 1 and 
� = (1; 1; 1; . . . ; 1)T

Sample size Correlation Normal Skewed Normal

n=50 ρ = 0.0 78.24/78.64 80.43/80.20

ρ = 0.4 79.26/79.39 82.10/78.60

ρ = 0.8 86.88/76.79 88.27/76.04

n=150 ρ = 0.0 86.73/77.68 88.55/76.72

ρ = 0.4 88.41/74.60 89.66/74.93

ρ = 0.8 92.16/74.27 93.35/73.43

Table 2  TPR/TNR for the matrix � averaged over 80 replications with s1 = 0.5 , s2 = 1 and 
� = (1; 1; 1; . . . ; 1)T

Sample size Correlation Normal Skewed Normal

n=50 ρ = 0.0 88.16/37.44 88.89/35.43

ρ = 0.4 87.99/38.92 88.52/37.42

ρ = 0.8 90.16/39.12 91.36/34.34

n=150 ρ = 0.0 92.88/43.17 92.97/43.58

ρ = 0.4 93.21/42.20 93.27/41.60

ρ = 0.8 95.76/36.93 95.97/36.81
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Tisslet, were 3.79, 4.72 and 2.17 respectively. These computations were performed 
on the Panther cluster, equipped with 2.5 GHz processors. The differences in com-
putational time are attributed to their computational complexities, which are gener-
ally O(np), for all except for K-NN, which has a complexity of O(kn2p) . Lasso exhibits 
a lower ratio compared to the other algorithms because it penalizes small values in 
the covariance matrix, effectively reducing the time spent on its computation.

Data generating study for SPATC1L gene

We conducted extensive numerical experiments to examine how the number of 
shared eQTLs, population R 2 (also known as narrow-sense heritability), and how 
tissue-tissue correlation structure affect the performance of various methods for 
estimating eQTL weights across multiple tissues. To closely replicate the conditions 
of joint eQTL mapping in GTEx data, we obtained whole-genome sequencing SNP 
genotype data for all SNPs within 500kb of the SPATC1L gene for 620 subjects from 
the GTEx dataset [17]. After removing highly correlated SNPs (see Data Prepara-
tion section), we were left with p = 1178 SNP genotypes. For each replication, we 
then generated n = 620 subjects’ expressions in q = 29 tissues. Denoting xi ∈ Rp as 
the SNP genotypes for the i th subject, we generated yi ∈ R

q as a realization of the 
random vector βt

∗xi + ǫ for i = [n] , where β ∈ R
p×q are the eQTL weights and errors 

are independent and identically distributed as SNq(0,�,�−1
∗ ) (Same protocol as [8] 

and [7]). For five hundred independent replications in each scenario, we randomly 
divided the n = 620 subjects into a training set of size ntrain = 400 , a validation set of 
size 110, and a testing set of size 110.

To create missingness, in each independent replication, we generated y as follows: 
first, we created a matrix B ∈ R

p×q with entries that were independent N (0, 1) . Then, 
we generated a matrix S ∈ R

p×q to be a matrix whose rows are either all zero or all one: 
we randomly selected s rows to be nonzero, where s ∈ [20] . Given S , we then generated 
a matrix U ∈ R

p×q so that each of the q columns has 20− s randomly selected entries 
equal to one only from entries which are zero in S and all others equal to zero. We calcu-
lated y = B⊙ S+ B⊙U , where ⊙ denotes the element-wise product. This construction 
ensured that each tissue has twenty total eQTLs, s of which are shared across all tissue 
types. We considered s = {5, 10, 15, 18, 20} in the simulations presented in this section. It 
is important to note that due to high linkage disequilibrium, many SNPs are highly cor-
related, resulting in a larger number of SNPs associated with gene expression. Figure 3 
gives a summary of the protocol for generating data.

In addition, we randomly introduced missing values to both the training and vali-
dation set responses with a missing probability of 0.55, which corresponds to the 
missing rate in the GTEx gene expression data. For each method, we trained the 
model on the training data, chose tuning parameters using the validation data, and 
evaluated prediction and variable selection accuracy on the testing data.

To construct the covariance matrix � , we build it to have a block-diagonal 
structure and to control the R 2 . Specifically, we consider a covariance struc-
ture for the scale matrix of the errors, which is �ij = ρ|i−j|, for i ∈ [20, 20] and 
�ij = (ρ + 0.2)|i−j|, for i ∈ [10, 10].
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Results on SPATC1L gene study

Comparative Analysis of Covariance Approaches: We evaluated the s-TISSLET 
imputation method’s performance at different values of s for imputing missing data 
generated in section (3.3). Figure  4 shows that despite the varying s values, the 
imputed distributions closely align with the original distribution. This indicates that 
the imputation method maintains the overall structure of the gene expression data, 
which is critical for the reliability of subsequent analyses.

Dataset size and prediction accuracy. In the assessment of the TISSLET frame-
work’s performance, a nuanced relationship between dataset size (N) and R 2 scores 
became apparent (Fig. 5a). An increase in N was correlated with a decline in R 2 scores, 
underscoring the challenges in sustaining prediction accuracy with the expansion 
of data volume inherent in multi-omics studies. Despite this, the TISSLET frame-
work displayed a remarkable resilience in R 2 scores across varying levels of skewness 
in gene expression data (Fig.  5b), attesting to its robustness and adaptability to the 
diverse data distributions encountered in multi-omics research. Further illustrating 
its efficacy, the TISSLET method demonstrated superior predictive accuracy when 
compared with other imputation methods such as MEANimputer, k-NN and iterative 

Fig. 3  Overview of the Data Pre-processing Steps. Input WGS SNP data then prune highly correlated SNPs. 
Create U and V and generate B. Generate error annd fit the model

Fig. 4  Left: comparing distribution of original versus Tisslet imputed SNP2 using several choice of s 
(5, 10, 15, 20) distributions. Right: providing the Mean absolute error (MAE)
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imputation for multi-tissue gene expression prediction (Fig. 5c), reinforcing its suit-
ability for complex genomic analyses.

Impact of the number of causal variants in simulation study: We extended our sim-
ulation study to assess the impact of a larger number of causal variants, ranging from 5 
to 125, across a wide range of heritability levels. We found that increasing the number 
of causal variants had very little effect on the predictive performance of TISSLET. We 
believe this is because the expected imputation accuracy primarily depends on the total 
heritability explained by the causal SNPs (Fig. 6).

Performance of fitting the skewed normal versus normal on predicted gene: 
Finally the density plot provides a visual comparison between the distributions of gene 
expression predictions using two [8] and our method of imputation. The curves are 
closely aligned and have a similar shape, peaking around a value of 1, which suggests that 
both methods yield relatively similar predictions in terms of their distribution. However, 
one curve is slightly shifted towards the right indicating that our approach may predict 
slightly higher expression values compared to the one that uses Normality assumption 
(Fig. 5d).

Results of for SPATC1L gene study: In this section, we present results with tissue-
tissue correlation for several errors, where ρ ∈ {0; 0.1; 0.3; 0.5; 0.7} varying. In this 
setting, we observe that our method, TISSLET performs better than all realistic com-
petitors: only G-Lasso, outperforms slightly our method when ρ is less or equal than 
0.015. As one would expect, when expression is nearly uncorrelated ( ρ = 0 ), our method 

Fig. 5  a Relationship between dataset size and R 2 scores. TISSLET (CEM) R 2 scores across skewness 
coefficients. b A bar graph displaying the TISSLET framework’s R2 scores, indicating consistent predictive accuracy 
despite varying levels of skewness {−1.0;−0.5; 0; 0.5; 1.0} in gene expression data. c R 2 score comparison 
among imputing methods for N = 100. d Bar chart illustrating R2 scores for different imputing methods, 
highlighting the superior performance of the TISSLET framework over MEANimputer, k-Nearest Neighbor (k=2), and 
iterative methods 
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TISSLET performs better than all the others 3 methods that does implicitly assumes no 
tissue-tissue correlation. Remarkably, when ρ is greater than or equal to 0.3, TISSLET 
outperforms even the normal method which assume normality and missingness. In fact, 
the prediction accuracy of TISSLET increases as ρ increases, whereas all other meth-
ods, which do not explicitly model tissue-tissue correlation, have prediction accuracy 
remaining constant or slightly decreasing as ρ increases. This demonstrates the benefit 
of not only accounting for tissue-tissue correlation in multi-tissue joint eQTL mapping 
but also assume the correct distribution of the gene expression when expression across 
tissue types can be reasonably assumed to be conditionally dependent (Fig. 7).

Furthermore, the heatmap of gene expressions presented in Fig. 8 illustrates a detailed 
example of a specific gene. In this case, out of the eight eQTLs (expression quantitative 
trait loci) that have been identified for this gene, seven of these eQTLs are consistently 
shared across all 29 examined tissues, demonstrating a uniform regulatory effect. Addi-
tionally, one of the eQTLs is shared across 28 of the 29 tissues, indicating a high level 
of commonality with a single tissue exception. This comprehensive visualization under-
scores the widespread influence of these eQTLs on gene expression across a broad range 
of tissue types, highlighting their significant role in the regulatory network.

Conclusion and discussion
Our results suggest that the proposed TISSLET framework can robustly handle miss-
ing data in multi-tissue gene expression studies. The framework’s ability to retain 
accuracy across different imputation parameters, such as ‘k’, and its superior perfor-
mance compared to other imputation methods, underscores its potential in improving 

Fig. 6  Impact of number of causal variants in simulation study
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complex trait predictions in multi-omics studies. The consistency of R² scores regard-
less of skewness and dataset size provides evidence of the model’s stability. However, 
the observed decline in prediction accuracy with increasing dataset size suggests that 
further optimization of the framework may be necessary to manage the complexities 
of large-scale multi-omics data.

Fig. 7  Average test R 2 for 4 competing methods where ρ the correlation of the errors varies from 0.0 to 0.8

Fig. 8  A heatmap depicting the expression of SNPs per tissue, with darker blue shades indicating weaker 
relationships
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In conclusion, our findings advocate for the TISSLET framework’s application in 
multi-omics studies to improve the prediction of complex traits. Its ability to accu-
rately account for tissue-tissue correlations and withstand data distribution asym-
metries positions it as a powerful tool in the advancement of personalized medicine. 
As the complexity of multi-omics studies grows, the development of robust statisti-
cal machine learning like TISSLET is crucial for unveiling the genetic foundations of 
complex traits and advancing our understanding of gene expression dynamics.

While the TISSLET framework marks a significant advancement in gene expression 
prediction across multiple tissues, this study demonstrates its precision and stability, 
showcasing its high accuracy in predictions. However, the framework is still in its foun-
dational stages and requires further refinement. The next steps involve optimizing the 
model to enhance its performance, particularly for large-scale datasets, thereby fully 
realizing its potential in complex multi-omics research and personalized medicine.

Appendix
Definition and notation

•	 β .,mi
= Miβ

t
.,i β .,oi

= Oiβ
t
.i

•	 �oi = Oi�Ot
i �oi ∈ R(q0×q0)
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xi,�mi)
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T
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Penalized normal log‑likelihood

Using Aaron et al. (2020), then can summarize the derivation of EM for estimating miss-
ing gene expression ŷi , eQTL weights β and cross-tissue correlation �.

where

Then the negative log-likelihood of the conditional multivariate normal distribution for 
yi,mi | yi,oi is proportional to
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The negative log likelihood is useful in the EM steps because we needed to calculate the 
expectation of the log-likelihood Q(�):

We regularize the entries of β and � using l1 penalties, and estimate them by minimizing 
the penalties likelihood

where the empirical covariance matrix

Then the algorithm is summarized as the following:

Penalized skew‑normal log‑likelihood

where � = (β ,�,�) represents all unknown parameters. In the E-step of ECM, we 
need to calculate the Q-function, which is the conditional expectation of the complete 
data log-likelihood function (7) given the observed data yo and the current estimate 
�̂k = (β̂ , �̂, �̂) . Herein, the term − 1

2E(τ
t
j τj|y0j ,�k) can be omitted because it does not 

include any parameters. Therefore, we have

Using the formula E
(

ZZt
)

= Var(Z)+ E(Z)E(Z)t , we have:

Q(�) = tr

{

S(β ,�)�
}

− log det�
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}

− log det�+ �1���1 + �2

∑

jk

|βjk |

(5.3)
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Using iterative expectation and Ot
iOi(Ip −�Sooi ) = 0 , we have

After simplification we have

The predicted gene expression ŷi is given by

Using those derivation, Algorithm becomes:
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Algorithm 3  Regularized EM Algorithm with skewed-normality

Precision matrix estimator

To estimate the inverse of the covariance matrix, several thresholding approaches 
have been proposed. The two most popular ones that we propose to use in this paper 
are GLASSO, available in R, that was proposed par Friedman et  al. (2007) [16] and 
CLIME that was proposed by Cai et al. (2011) [18] If we use CLIME from Cai and Zhou 
approach, their equation emphasizes the fact that the solution may not be unique. Such 
nonuniqueness always occurs since � = XXT where X ∈ R

n×p is the sample data matrix 
and rank(X) ≤ n ≪ p which is our case. However, there is no guarantee that the thresh-
olding estimator is always positive definite [19]. Although the positive definite property 
is guaranteed in the asymptotic setting with high probability, the actual estimator can be 
an indefinite matrix, especially in real data analysis.

In the following we will describe quickly the argument and parameters of implement-
ing BigQuiC in R.

Previous ad‑hoc process for association SNPs with tissues

1.	 Create a copy of the genotype data matrix for each tissue. Only keep the samples that 
are matched with the corresponding gene expression and covariates data.

2.	 Remove SNPs with low minor allele frequency (MAF).



Page 18 of 19Miloudi et al. BMC Bioinformatics           (2025) 26:65 

3.	 Remove genes with consistently low expression level.
4.	 For each tissue, load the tailored genotype data, gene expression data, covariates 

data, and gene/SNP location files into R.
5.	 To do a single tissue analysis, we will feed the data into MatrixEQTL to conduct sin-

gle-tissue eQTL analysis and obtain summary statistics (i.e., t-statistics).
6.	 Using the cis window size to be 1 kb (i.e., 1 × 105) or 1 Mb (i.e., 1 × 106) and the p 

value threshold to be 1 in order to output summary statistics for all cis gene-SNP 
pairs then we convert each summary statistic t to a correlation r in each tissue 
r = 1√

df+t2
 where df is the degree of freedom (the number of samples minus the 

number of covariates minus two) in the corresponding tissue.
7.	 Further we convert the correlations to z-statistics using Fisher transformation 

z = 1
2

√

df − 1 log( 1+r
1−r ).

8.	 Then we get the list of common gene-SNP pairs across all tissues and curate the 
obtained z-statistics into a matrix where each row corresponds to a gene-SNP pair in 
the common list and each column corresponds to a tissue. The z-statistics matrix is 
all we need for subsequent analyses.
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