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Introduction
Drug development is a lengthy, expensive, and high-risk complex process that encom-
passes several key stages, including discovery, development, clinical trials, and market-
ing. In recent years, with advancements in science and technology and improvements in 
data analysis methods, researchers have been able to predict associations between drugs 
and targets more accurately, significantly shortening development cycles and enhanc-
ing the efficiency of drug development. However, traditional methods for determining 
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Drug-target interactions (DTIs) are pivotal in drug discovery and development, 
and their accurate identification can significantly expedite the process. Numerous 
DTI prediction methods have emerged, yet many fail to fully harness the feature 
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similarity metrics, which is then encoded via a graph neural network. We concatenate 
and integrate the resultant representation vectors to merge multi-level information. 
Subsequently, principal component analysis is applied to distill the most informa-
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of the integrated data. Our method outperforms six baseline models in terms of accu-
racy, as demonstrated by extensive experimentation. Comprehensive ablation studies, 
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efficacy and interpretability, providing a novel tool for drug discovery that integrates 
multimodal features.
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drug-target interactions (DTIs) are often time-consuming, labor-intensive, and costly. 
Therefore, it is crucial to develop efficient computational methods for predicting drug-
target associations.

In recent years, computational methods have proven to be effective in several tasks 
within the field of bioinformatics, such as predicting disease-related miRNAs [1, 2],pre-
dicting drug-target affinity [3],identifying potential disease-related genes [4] and dis-
ease-associated lncRNAs [5–7],predicting drug-drug interactions [8], protein-protein 
interactions [9], and specific protein localization within cells [10]. Some existing models 
in the field of drug discovery [11, 12] have been successfully applied to DTI prediction 
tasks through further expansion and optimization, demonstrating their effectiveness and 
efficiency. DTI computational prediction has enormous research potential and broad 
application prospects, offering advantages such as short time, low cost, high precision, 
and wide range in uncovering potential DTIs [13].

According to different methods, existing prediction models can mainly be divided 
into four categories: molecular docking-based methods, text mining-based methods, 
ligand-based methods, and chemogenomics-based methods. Molecular docking-based 
methods predict binding situations by simulating the physical and chemical interactions 
between drug molecules and target proteins [14], which have high biological interpret-
ability. Text mining-based methods make predictions by extracting and analyzing rel-
evant information from scientific literature, patents, and databases [15]. Ligand-based 
methods use the characteristics of known active ligands to predict new drug-target 
interactions through similarity searching and modeling [16], allowing for rapid predic-
tions and suitable for high-throughput screening. Chemogenomics-based methods [17] 
integrate chemical and genomic data to predict drug-target interactions by construct-
ing chemical-biological networks. Depending on the implementation, these methods 
can be further refined into similarity-based, pharmacological characteristic-based, and 
network-based methods [18, 19]. Similarity-based methods include the nearest neighbor 
method [20, 21], bipartite local model (BLM) [22, 23], and matrix factorization meth-
ods [24]. Network-based methods make associative predictions by constructing and 
analyzing network structures, which can be divided into binary network methods [25] 
and heterogeneous network methods [26, 27] according to different network topolo-
gies. Currently, many DTI prediction methods combine deep learning with heteroge-
neous networks [28–33]. Deep learning-based methods utilize the advantages of neural 
networks to automatically learn the features of nodes and the complex relationships 
between nodes.

Recently, a method combining metapath-based graph convolutional networks with 
large-scale heterogeneous networks to effectively learn representations of drugs 
and target proteins [34] has been proposed. Additionally, a metapath-based hierar-
chical transformer combined with an attention network for drug-target interaction 
prediction [35] has been proposed. This method applies a metapath instance-level 
transformer, single-semantics attention, and multi-semantics attention to gener-
ate low-dimensional vector representations of drugs and proteins. Additionally, the 
CFSSynergy method, which combines feature-based and similarity-based approaches, 
demonstrates outstanding performance in drug synergy prediction [36]. This method 
extracts discriminative features from drugs and cell lines, utilizes the Node2Vec 
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algorithm to compute protein similarities, and ultimately feeds these features into 
XGBoost for prediction. Furthermore, the methods of constructing heterogeneous 
knowledge graphs, employing heterogeneous graph transformer networks, and cal-
culating relationship scores using fully connected networks have also proven to be 
highly effective [37], further highlighting the potential of heterogeneous graph neural 
networks in diverse applications. These studies still do not fully exploit the feature 
information of drugs and targets in DTI prediction, and the associations in heteroge-
neous biological information networks have not been fully utilized. At the same time, 
issues such as redundant features and low robustness of decoding methods have not 
been addressed. How to effectively utilize the topological structure between nodes 
to deeply mine feature information for DTI prediction remains an urgent problem to 
be solved. We aim to address the issue of redundant features and effectively leverage 
the topological structure among nodes to deeply mine feature information for DTI 
prediction.Therefore, we propose a framework MHAPR that constructs highly inte-
grated multi-level information by concatenating feature vectors obtained from each 
convolutional layer in a multimodal heterogeneous graph attention network and then 
combines feature optimizer PCA [38] and random forest algorithm [39, 40].

More specifically, MHAPR first constructs a heterogeneous graph from various 
similarity information between drugs and targets, using the heterogeneous graph as 
input to the graph neural network for encoding. By aggregating heterogeneous nodes 
through the graph attention mechanism and setting up a multi-head self-attention 
mechanism and metapath weighting strategy, deep integration of multi-source simi-
larity information in the heterogeneous graph is achieved. Then, the aggregated repre-
sentation vectors of the heterogeneous graph neural networks with self-attention are 
concatenated, preserving multi-level representation information. Subsequently, we 
apply various effective feature selection methods to the representation encoding for 
feature selection and finally use Principal Component Analysis (PCA) to improve the 
quality of features. Compared to traditional models, MHAPR places greater emphasis 
on extracting key feature information and enhances the model’s generalization ability 
through the robust ensemble learning mechanism of the random forest algorithm.In 
summary, our main contributions to this work are as follows:

•	 Multimodal information fusion By constructing a concatenated multi-layer het-
erogeneous graph attention network, we integrated various similarity information 
from drugs and targets (such as sequence and Gaussian similarity), enabling deep 
extraction and fusion of heterogeneous node representations. This method effec-
tively captures the complex interactions between drugs and targets.

•	 Feature selection and optimization Through extensive experimentation, we dem-
onstrated that different feature selection methods significantly enhance the quality 
of representation encoding. We explored their impact on improving multimodal 
biological information capabilities, providing theoretical support for feature opti-
mization.

•	 Selection of feature dimensionality reduction By comparing four dimensionality 
reduction algorithms, we ultimately chose PCA as the feature optimizer, aiming 
to reduce feature redundancy and computational complexity while ensuring the 
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model focuses on key biological information, thereby enhancing prediction accu-
racy and reliability.

•	 Enhancing model robustness The reduced features were input into a random forest 
algorithm, leveraging its powerful ensemble learning mechanism to improve the 
model’s tolerance to data noise, thereby enhancing overall robustness. This strategy 
ensures the model’s stability and practicality in real-world applications.

Method and materials
Data collection

To validate the generalizability of our model, we downloaded two drug-target protein 
datasets for benchmarking from references [41, 42], both sourced from relevant data-
bases. The first dataset, named the FSL dataset, is derived from the work of Tangmanus-
sukum et  al. [42] After removing duplicate relationships, it contains 862 drugs, 1,517 
target proteins, and 3,583 known DTIs. The second dataset, named the DC dataset, is 
sourced from the work of Peng [41]. Drug nodes, known DTIs, and drug-drug interac-
tions were extracted from the DrugBank database [43], while protein nodes and pro-
tein-protein interactions were extracted from the HPRD database [44]. This resulted in 
708 drug samples, 1512 target protein samples, and 1923 known DTIs,Table 1 provides a 
detailed description of the datasets.

We found that the number of unknown association samples far exceeds the known 
ones, with a significant amount of noisy data. To mitigate noise and ensure dataset bal-
ance, we labeled all known drug-target protein associations as positive 1 and randomly 
selected an equal number of negative samples, labeling them as 0. We then used five-fold 
cross-validation, with 80% of the samples for training and 20% for testing.

Overview of processes

In bioinformatics research, biological information features that are noisy and high-
dimensional often hinder models from capturing comprehensive and discriminative 
relationships within the data. Therefore, based on extensive comparative experiments 
and comprehensive consideration of the effectiveness of various feature combinations 
and their computational complexity, we propose a three-layer computational framework 
based on HAN-PCA-RF for predicting potential drug-target interactions. Figure 1 pro-
vides a detailed illustration of the DTI-MHAPR workflow, which specifically includes 
the following steps: 

(1)	 Constructing a heterogeneous graph from target protein sequence similarity, 
Gaussian similarity, drug structure similarity, Gaussian similarity matrices, and 

Table 1  Dataset details

Datasets Proteins Drugs Interactions Interaction 
proportion 
(%)

DC 708 1512 1923 0.17

FSL 1517 862 3583 0.27
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known DTIs information. This heterogeneous graph effectively represents the mul-
tifaceted relationships between different types of nodes and edges.

(2)	 After applying a linear transformation and ReLU activation to the embeddings of 
different nodes, a graph neural network is used to encode the heterogeneous graph, 
incorporating multi-head self-attention mechanisms and meta-path weighting 
strategies to achieve deep integration of multi-source similarity information within 
the heterogeneous graph.

(3)	 Concatenating the representation vectors obtained from multiple layers of the het-
erogeneous attention network to retain and integrate multi-level representation 
information.

(4)	 PCA to project the original representation vectors onto the principal components, 
reducing the feature dimensions while focusing the model on key information.

(5)	 Using the random forest algorithm to predict the final interaction scores between 
drugs and target proteins, leveraging its ensemble learning capabilities to handle 
high-dimensional data and capture nonlinear relationships effectively.

Multi‑view similarity feature integration

To gain a deeper understanding of the similarity information between drugs and tar-
gets, we employed a multi-modal feature extraction approach. Initially, we applied the 
Gaussian kernel function to the topological structure association network between 
bioinformatic nodes [45]. This method allows us to obtain more accurate Gaussian 
interaction profile kernel similarities by computing the Gaussian interaction profile 
kernel similarity. Similarly, we applied the Gaussian kernel function to the drug struc-
ture similarity matrix to derive the Gaussian similarity matrix for drugs.

Subsequently, we performed integration of multi-view similarity matrices to extract 
similarity features between drug-drug and target-target. This integration process 

Fig. 1  Workflow diagram of DTI-MHAPR
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comprehensively considers the similarities from different data perspectives, providing 
a more holistic and precise similarity assessment.

where the drug structure similarity matrix St ∈ R
T×T , the Gaussian similarity matrix 

Gt ∈ R
T×T ; the target sequence similarity matrix Sd ∈ R

D×D , and the Gaussian similar-
ity matrix Gd ∈ R

D×D.

Heterogeneous graph attention network

HAN [46, 47] applies the popular multi-head self-attention mechanism to the metapath 
node feature representation of a heterogeneous graph, then uses semantic-level atten-
tion to weight and aggregate the metapath attention, obtaining the final semantic repre-
sentation that includes node features and domain structure features. In a heterogeneous 
graph, drugs can reach other drugs or targets can reach other targets through different 
paths, which are called metapaths.In this paper, two types of meta-paths are considered: 
drug-edge-target and target-edge-drug.

In our in-depth study of the node-level attention framework, we focused on how to 
effectively process and integrate information from diverse metapath neighbors to con-
struct richer and more meaningful embedding representations for each drug and target 
node. In this process, the node-level attention mechanism plays a crucial role, allowing 
the model to dynamically consider the importance of each neighbor node when aggre-
gating neighbor information, thereby enhancing the model’s expressiveness and adapt-
ability. First, we use a specific type of transformation matrix Mφi for each type of node to 
project the features of different types of nodes into the same feature space. The projec-
tion process is as follows:

In the context of self-attention mechanism, hi represents the original features of node 
i , and h′i denotes the projected features. Using self-attention allows dynamic learning 
of relationship weights between different nodes, enhancing the model’s understanding 
of relative importance among various node pairs. Within the self-attention framework, 
the importance of node pairs (i, j), especially those connected via specific metapaths ∅i , 
can be represented by calculating their attention scores. This mechanism considers not 
only the nodes’ own features but also their interactions, thereby more accurately captur-
ing dependencies and information flow between nodes. The computational formula is as 
follows:

Here,the node attention value e∅ij indicates the importance of node j to node i , while h′i 
and h′j represent the projected features of nodes i and j , respectively.attnode represents 
a deep neural network that executes node-level attention. Then, structural information 
is injected into the model through masked attention. After obtaining the importance 

(1)Mt = mean{St ,Gt}

(2)Md = mean{Sd ,Gd}

(3)h′i = Mφi · hi

(4)e∅ij = attnode(h
′
i, h

′
j; ∅)
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between node pairs based on meta-paths, these are normalized using the softmax func-
tion to obtain weight coefficients.)

The symbol || represents the concatenation operation, aT∅  is the node-level attention vec-
tor for the metapath ∅ , and α∅

ij denotes the weight coefficient for each feature vector.The 
embedding z∅i  based on the metapath ∅ for node i can be aggregated using the projected 
features of its neighboring nodes weighted by corresponding attention coefficients, and 
then passed through an activation function, as shown below:

Due to the scale-free nature of heterogeneous graphs and their high variance in data, to 
further optimize the information aggregation process, we employ a multi-head atten-
tion mechanism. This mechanism runs multiple attention “heads” in parallel, allowing 
the model to capture information in different subspaces. Each “head” focuses on differ-
ent types of information. Through this approach, the model can achieve more compre-
hensive and in-depth learning by integrating information from multiple dimensions. 
Ultimately, the attention scores computed by these different “heads” are combined to 
generate a comprehensive and informative new feature representation for each node i:

After concatenating embeddings, we obtain a node embedding set for specific seman-
tics, denoted as Z(∅1), . . . ,Z(∅p) . Each element of this specific semantic node embedding 
set serves as input. The learning weights for each metapath (ω(∅1), . . . ,ω(∅p)) are com-
puted as follows:

Here, attsem represents a deep neural network performing semantic-level attention.Next, 
we calculate the importance f(∅i) of each metapath (∅i) . First, we use a single-layer MLP 
followed by an activation function for nonlinear transformation. Then, we measure the 
importance of specific semantic embeddings by their similarity to the semantic-level 
attention vector q:

For different tasks, metapaths (∅p) may have varying weights. By using learned weights 
as coefficients, we can integrate these specific semantic embeddings to obtain the final 

(5)α∅
ij = softmaxj(e

∅
ij) =

exp(σ (aT∅ · [h′i||h
′
j]))

∑

k∈N∅
i
exp(σ (aT∅ · [h′i||h

′
k ]))

(6)z∅i = σ







�

k∈N∅
i

α∅
ij · h

′
j







(7)z∅i =�Kk=1 σ







�

j∈N∅
i

α∅
ij · h

′
j







(8)(ω(∅1), . . . ,ω(∅p)) = attsem({Z(∅1), . . . ,Z(∅p)})

(9)f(∅i) =
1

|v|

∑

i∈v

qT · tanh(W · z
(∅p)

i + b)
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embedding vector Z , which combines the features of drugs and targets incorporating 
information from neighboring nodes:

Here, ω(∅p) represents the normalized importance of each metapath.

Feature optimiser

In our study, the multi-modal feature vectors extracted through the multi-layer heterogene-
ous graph attention network [46] contain rich information but also exhibit high dimension-
ality and a certain level of noise. To optimize these features and enable machine learning 
algorithms to more effectively learn discriminative information, we decided to use the PCA 
algorithm as a feature optimization tool within our framework.

Initially, we applied the heterogeneous graph attention network to extract a series of 
multi-modal feature vectors. Subsequently, we employed a strategy of concatenating fea-
ture vectors from various convolutional layers to integrate information from different lev-
els. This process helps to maximize the retention of useful information while enhancing the 
diversity of features.

The vectors Zconv1,Zconv2,Zconv3 are feature vectors from different convolutional layers, 
and concat denotes the operation of concatenating these feature vectors from different 
layers. The vector ZM-view is the resulting concatenated representation.

During the feature optimization phase, we input the integrated feature vector ZM-view 
into the feature optimizer, compute the covariance matrix of the centered feature matrix, 
and then perform eigenvalue decomposition to select the principal components based on 
their eigenvalues. Through orthogonal transformation, PCA converts the originally poten-
tially correlated feature vector variables into a set of linearly independent variables, thereby 
identifying the principal components of the data. This not only reduces the dimensionality 
of the data but also minimizes information loss to the greatest extent possible, effectively 
removing noise from the feature vectors.

Here,the vector µcol represents the mean vector for centering, and Z̃M-view denotes the 
centered feature vector, which is obtained by subtracting the mean of each column from 
the original feature vectors to ensure that the mean of the data in each dimension is zero. 
This is a necessary step for performing PCA.Cd−t represents the covariance matrix of 

(10)Z =

P
∑

P=1

ω(∅p) · Z(∅p)

(11)ZM-view = Concat(Zconv1,Zconv2,Zconv3)

(12)Z̃M-view = ZM-view − µcol

(13)Cd−t = Z̃T
M-view · Z̃M-view

(14)Wk = Sort{Decomp[Cd−t ]}

(15)Zfinal = Z̃M-view ·Wk
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the centered feature matrix, and Wk is the transformation matrix. Decomp denotes the 
decomposition of the covariance matrix, and Sort refers to the process of sorting the 
eigenvectors by the magnitude of their corresponding eigenvalues. The transformation 
matrix is constructed by selecting the eigenvectors corresponding to the eigenvalues 
that collectively account for 99.80% of the cumulative variance contribution rate,the vec-
tor Zfinal is obtained by multiplying the centered feature vector Z̃M-view with the trans-
formation matrix Wk . This represents the dimensionality-reduced feature representation 
after PCA processing, which retains the most important information in the data.

In practical applications, we selected a dimensionality reduction index of 0.9980, which 
means that we retained 99.8% of the data’s principal components. This choice was based on 
a trade-off between data simplification and information retention, ensuring that while sig-
nificantly reducing data complexity, we preserved the vast majority of information critical 
to the model’s predictive performance. This step is crucial for enhancing the overall perfor-
mance and prediction accuracy of the model, providing a solid foundation for deeply min-
ing and understanding complex bioinformatics data.

Classifier

After obtaining the optimized embedding vectors, we employ the random forest (RF) 
algorithm to predict the final drug-target interaction (DTI) associations. The RF algo-
rithm introduces randomness during the training process to reduce the risk of overfitting, 
thereby exhibiting strong resistance to overfitting. Additionally, it consists of multiple trees, 
each trained on a different dataset, enabling the capture of various patterns in the data, 
which grants it a superior generalization capability compared to other machine learning 
algorithms.

The concatenated features resulting from the embedding process comprise M × N  vec-
tors, each with 2× Lin features. These features serve as the input to the random forest, 
which generates a series of decision trees. Through bootstrap aggregating, k samples are 
drawn with replacement from the dataset to form the training sets, and w decision trees are 
trained. Each training set contains duplicate samples. The final prediction value is obtained 
by aggregating the mean predictions of the w decision trees.

where X(i) denotes the i-th generated training set.

where ŷDTI is the predicted drug-target interaction value.
By utilizing this approach, the RF algorithm effectively aggregates the predictions from 

multiple decision trees, thereby enhancing the robustness and accuracy of the DTI associa-
tion predictions.

(16)Ti ← Train(X(i)), i = 1, 2, . . . ,w

(17)ŷDTI =
1

w

w
∑

i=1

Ti(x)
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Experiments and results
To evaluate the accuracy of the MHAPR computational framework in predicting drug-
target interactions, we compared its performance on two benchmark datasets with 
seven state-of-the-art baseline models: MNGACDA [48], GATECDA [49], MINIMDA 
[50], HFHLMDA [51], CGHCN [52],MIDTI [53] and DTI-CNN [41].

MNGACDA [48] constructs a multimodal network using various information sources 
from drugs and circRNA, and then applies an inner product decoder based on the 
embedding representations of drugs and circRNA to predict their interaction scores. 
GATECDA [49] employs a graph attention autoencoder (GATE) to extract low-dimen-
sional representations of drugs/circRNA, effectively preserving key information from 
sparse high-dimensional features and realizing effective integration of node neighbor-
hood information. MINIMDA [50] constructs an integrated disease similarity network 
and miRNA similarity network using multiple information sources, then combines 
mixed high-order neighborhood information from multimodal networks to obtain dis-
ease and miRNA embeddings, and finally uses a multi-layer perceptron (MLP) for pre-
diction. HFHLMDA [51] utilizes a hypergraph learning model to learn a projection 
matrix for calculating the association scores of uncertain diseases and miRNAs. CGHCN 
[52] combines graph convolutional networks and hypergraph convolutional networks, 
while DTI-CNN [41] leverages the Jaccard similarity coefficient and random walk model 
to obtain feature embeddings, and then uses convolutional neural networks to predict 
drug-target protein interactions after dimensionality reduction.The MIDTI method [53] 
first utilizes graph convolutional networks (GCNs) to simultaneously obtain the embed-
ding representations of drugs and targets from multi-type networks. Then, it employs a 
deep interactive attention mechanism to further learn the discriminative embeddings of 
drugs and targets while fully considering the known DTI relationships.

To ensure fair and accurate results, we used the same similarity data for the baseline 
methods, specifically drug structure similarity, drug Gaussian similarity, target sequence 
similarity, and target Gaussian similarity. For the single-modal models CGHCN [52] and 
HFHLMDA [51], we only used the drug-target similarity matrix as training data.

To verify the generalizability of the model, we split the two benchmark datasets into 
training and testing sets with a 4:1 ratio, and applied 5-fold cross-validation (5-CV) 
on the training set to adjust the model parameters and structure. During the training 
process, for the FSL dataset, the embedding dimension was set to 1024, the number of 
attention mechanism heads to 4, and the number of layers in the heterogeneous atten-
tion network to 6. For the DC dataset, the embedding dimension was set to 512, the 
number of attention mechanism heads to 6, and the number of layers in the heteroge-
neous attention network to 4. The number of training epochs was set to 500, and the 
Adam optimizer was used. The optimal hyperparameter combination was a learning rate 
of 0.001 and a weight decay rate of 0.0002. Additionally, the dropout rate was set to 0.5 
to randomly ignore some neurons, preventing overfitting.

Performance evaluation of the DC dataset

On the DC dataset, we trained the model using five-fold cross-validation. As shown 
in Table  2 and Fig.  2, compared to other methods, the DTI-MHAPR computational 
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framework achieved significant improvements across six evaluation metrics, except for 
Recall. Notably, it also attained a commendable score in Recall.

Performance evaluation of the FSL dataset

In addition to the aforementioned seven methods, we also compared our results with 
those obtained using the Heterogeneous Network that employs the Forward Similarity 
Integration (FSI) algorithm [42] on this dataset. We conducted five-fold cross-validation 
experiments and the results are presented in Table  3, showcasing the model’s perfor-
mance across seven evaluation metrics. Figure 3 visualizes the training curves. It can be 

Table 2  Comparison of performance using 5-CV on the DC dataset

Method Auc Aupr F1-score Acc Recall Spec Precision

CGHCN 0.9001 0.9007 0.8370 0.8309 0.8664 0.7956 0.8107

DTI-CNN 0.9358 0.9423 0.8636 0.9412 0.8685 0.8726 0.8148

GATECDA 0.7918 0.8000 0.7501 0.7205 0.8270 0.6170 0.7011

HFHLMDA 0.8411 0.7529 0.8042 0.7938 0.8465 0.7407 0.7662

MINIMDA 0.9537 0.9359 0.9074 0.9030 0.9491 0.8569 0.8695

MNGACDA 0.8927 0.7500 0.9031 0.8928 1.0000 0.7854 0.8234

MIDTI 0.9769 0.9615 0.9609 0.9583 0.9938 0.9236 0.9285

Our model 0.9950 0.9941 0.9738 0.9735 0.9875 0.9595 0.9606

Fig. 2  Visualisation of AUC and AUPR values compared with the baseline model on the 5-CV

Table 3  Comparison of performance using 5-CV on the FSL dataset

Method Auc Aupr F1-score Acc Recall Spec Precision

CGHCN 0.9058 0.9061 0.8441 0.8456 0.8375 0.8542 0.8524

GATECDA 0.9146 0.9276 0.8372 0.8396 0.8266 0.8520 0.8497

HFHLMDA 0.8875 0.8715 0.8217 0.8145 0.8547 0.7740 0.7922

MINIMDA 0.9408 0.9198 0.8898 0.8840 0.9356 0.8327 0.8489

MNGACDA 0.9674 0.9629 0.9086 0.9035 0.9585 0.8474 0.8640

MIDTI 0.9634 0.9578 0.9032 0.8997 0.9497 0.8676 0.8831

Our model 0.9890 0.9869 0.9544 0.9535 0.9778 0.9295 0.9324
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observed that the DTI-MHAPR computational framework achieved an AUC of 98.90% 
and an AUPR of 98.69%, demonstrating significant improvements.

In summary, these experiments conducted on two independent datasets indicate that 
the performance of DTI-MHAPR surpasses all other tested methods. This demonstrates 
the broad applicability of our approach, effectively enhancing the prediction of drug-tar-
get interactions (DTIs).

Dimensionality reduction analysis

The DC dataset contains 708 drugs and 1512 target proteins, while the FSL dataset 
includes 862 drugs and 1517 target proteins. Consequently, the dimensionality of the 
multi-modal feature vectors obtained after feature fusion is extremely high. Handling 
such high-dimensional data poses significant challenges for the model. However, much 
of this data is highly redundant. By employing dimensionality reduction algorithms, we 
can focus the network layers on key information, enabling the model to learn more dis-
criminative features. Based on prior research, we experimented with various types of 
dimensionality reduction algorithms, including both linear and nonlinear methods. By 
comparing different algorithms and analyzing the performance of the model with vary-
ing dimensionality reduction parameters, we identified the optimal parameters for the 
model.

An exploration of dimensionality reduction algorithms

Feature engineering is an important preprocessing step that helps to extract transforma-
tional features from raw data to simplify machine learning models and improve the qual-
ity of machine learning algorithm results.Machine learning practitioners spend most of 
their time on data cleaning and feature engineering, so we are inspired to focus on the 
investigation of downscaling optimisation of the multimodal features mined by the HAN 
network, and the experimental steps are as follows:

•	 1) Using segmented sampling method and dense sampling method to apply PCA 
[38], t-SNE [54], LLE (Locally Linear Embedding) [55], FastICA (Fast Independent 
Component Analysis) [56] algorithms are applied to the normalised dataset and the 

Fig. 3  Visualisation of AUC and AUPR values compared with the baseline model on the 5-CV
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resulting dimensionality reduced dataset is experimented with using the ML algo-
rithm.

•	 2) Analyse the results obtained by the linear dimensionality reduction algorithms 
PCA, FastICA and the nonlinear dimensionality reduction algorithms LLE, t-SNE 
after dimensionality reduction using the ML algorithm, and investigate the effect of 
dimensionality reduction on the prediction performance of the ML algorithm with 
respect to DTIs.

After conducting the experiments, we obtained the results shown in Tables 4 and 5, with 
optimal values selected after intensive sampling. Among them, DRA represents different 
types of dimensionality reduction algorithms. The optimal AUC and AUPR values for 
PCA on the DC dataset are higher than those of the other three dimensionality reduc-
tion algorithms, reaching 99.50% and 99.41%, respectively. The two evaluation indexes of 
the PCA algorithm are also superior to the other algorithms on the FSL dataset, and only 
the AUC value of the t-SNE The AUC value of PCA algorithm is slightly higher than that 
of t-SNE algorithm.

We found that t-SNE algorithm needs to calculate the similarity between the samples 
in each iteration, and the time complexity required in processing a large amount of data 
is much larger than that of PCA. Therefore, considering the accuracy and time complex-
ity of the prediction of DTIs, the use of PCA algorithm as the feature optimisation algo-
rithm of our DTIs prediction framework is suitable for us. Therefore, considering the 
accuracy and time complexity of DTIs prediction, it is suitable to use PCA as our feature 
optimisation algorithm for DTIs prediction framework.

An investigation of the effect of PCA downscaling index on DTI prediction accuracy

After exploring two sets of advanced dimensionality reduction algorithms (linear and 
nonlinear), the result obtained is that PCA dimensionality reduction is superior to 

Table 4  Comparison of PCA dimensionality reduction versus t-SNE dimensionality reduction on the 
DC dataset

DRA Optimal AUC​ Optimal AUPR Best_n_
components

PCA 0.9950 0.9941 0.9980

t-SNE 0.9927 0.9912 3

LLE 0.9943 0.9933 70

FastICA 0.9882 0.9875 32

Table 5  Comparison of PCA dimensionality reduction versus t-SNE dimensionality reduction on the 
FSL dataset

DRA Optimal AUC​ Optimal AUPR Best_n_
components

PCA 0.9890 0.9869 0.9980

t-SNE 0.9891 0.9867 3

LLE 0.9886 0.9860 24

FastICA 0.9872 0.9868 48
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several other dimensionality reduction algorithms, next we will focus our attention on 
PCA dimensionality reduction (dense sampling after segmented sampling method).

PCA finds the main direction of the data by calculating the covariance matrix of 
the original data, and then solves for the eigenvalues and eigenvectors of this covari-
ance matrix using eigenvalue decomposition. The eigenvalues represent the variance of 
the data in the direction of the eigenvectors, while the eigenvectors represent the main 
distribution of the data in each direction. It will select the eigenvectors with the larg-
est eigenvalues as the principal components, and map the data onto the subspaces ten-
sored by the principal components, thus achieving the purpose of data dimensionality 
reduction. For PCA dimensionality reduction index the experimental results are as fol-
lows Tables 6 and 7.Among them, DC denotes the percentage of principal components 
retained by the PCA algorithm.

It can be seen that on the DC dataset, the PCA dimensionality reduction index 
between 0.9920 and 0.9980 will play a role in eliminating redundant information in the 
data, improving the efficiency of data representation, and can reduce the cost of com-
putation and storage, especially when the dimensionality reduction index is 0.9980 (i.e., 
99.8% of the principal components are retained), the AUC value on this dataset reaches 
99.50%, the The AUPR value reaches 99.41%, and the other five metrics are all improved 
in different magnitudes relative to no dimensionality reduction;

On the FSL dataset, the downscaling indices between 0.9960−0.9980 are better opti-
mised for multimodal features, similarly, when the downscaling index is 0.9980, the 
AUC value reaches 98.90%, the AUPR value reaches 98.69%, and the other five evalua-
tion metrics are also improved in different magnitudes compared to no downscaling.

Despite the fact that the heterogeneous graph network consists of nonlinear data, the 
feature matrix input to the PCA algorithm remains linear after feature extraction using 
HAN. It is important to note that PCA assumes the data follows a linear distribution, so 
it may fail when the data has a nonlinear structure. Additionally, the results of PCA are 

Table 6  Dimensionality reduction analysis on the DC dataset

DC AUC​ PRC F1_Score Acc Recall Specificity Precision

None 0.9808 0.9800 0.9225 0.9212 0.9396 0.9029 0.9072

0.9980 0.9950 0.9941 0.9738 0.9735 0.9875 0.9595 0.9606

0.9960 0.9941 0.9929 0.9722 0.9719 0.9845 0.9596 0.9603

0.9940 0.9939 0.9928 0.9714 0.9711 0.9823 0.9601 0.9607

0.9920 0.9936 0.9925 0.9689 0.9685 0.9833 0.9538 0.9550

Table 7  Dimensionality reduction analysis on the FSL dataset

DC AUC​ PRC F1_Score Acc Recall Specificity Precision

None 0.9825 0.9822 0.9239 0.9228 0.9351 0.9105 0.9140

0.9980 0.9890 0.9869 0.9544 0.9535 0.9778 0.9295 0.9324

0.9960 0.9862 0.9835 0.9480 0.9468 0.9722 0.9220 0.9253

0.9940 0.9787 0.9724 0.9332 0.9305 0.9742 0.8872 0.8960

0.9920 0.9756 0.9682 0.9292 0.9266 0.9672 0.8855 0.8941
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influenced by eigenvalue decomposition, and for high-dimensional data, approximate 
calculations of eigenvalue decomposition may be required, increasing computational 
complexity.

Notwithstanding these challenges, we achieved good results on both datasets, demon-
strating that the PCA dimensionality reduction algorithm effectively optimizes features. 
Moreover, applying the PCA algorithm with a dimensionality reduction index of 0.9980 
significantly improved the classification performance of multimodal data features in 
machine learning. Taking the DC dataset as an example, the embedding dimensions of 
drug and target features were 1536 before dimensionality reduction. Notably, since the 
data for each fold is reduced to different dimensions during the dimensionality reduc-
tion process, the final embedding dimensions of each fold vary. In five-fold cross-valida-
tion, the embedding dimensions for drug nodes were 8, 9, 10, 9, and 11, while for target 
nodes, they were 9, 8, 10, 9, and 12. For the FSL dataset, the embedding dimensions for 
drug nodes were 4, 6, 5, 6, and 4, while for target nodes, they were 3, 6, 5, 6, and 2.

Choice of classifier

We explore the classification effectiveness of seven machine learning algorithms on 
two datasets using grid point search. The evaluation metrics of the machine learning 
algorithms on five-fold cross-validation are shown in Tables 8 and  9, and their AUC 
vs. AUPR graphs are shown in Figs. 4 and 5. In the table, RF outperforms all other 
algorithms in five of the seven metrics and has the highest values of AUC vs. AUPR 
among the seven algorithms, indicating that the Random Forest algorithm outper-
forms other machine learning algorithms on both datasets. Therefore, we choose the 
random forest algorithm for supervised learning to perform DTI prediction. SVM 

Table 8  Performance of different machine learning algorithms for 5-CV on the FSL dataset

Classifier AUC​ PRC F1_Score Acc Recall Spec Precision

KNN 0.9493 0.9377 0.8939 0.8859 0.9650 0.8062 0.8329

NB 0.8969 0.8414 0.8483 0.8256 0.9773 0.6730 0.7497

SVM 0.9724 0.9434 0.9489 0.9477 0.9758 0.9200 0.9241

LR 0.8941 0.8124 0.8587 0.8468 0.9339 0.7601 0.7967

RF 0.9890 0.9869 0.9544 0.9535 0.9778 0.9295 0.9324

DT 0.9423 0.8955 0.9438 0.9282 0.9251 0.9711 0.8800

XGB 0.9842 0.9787 0.9542 0.9534 0.9763 0.9305 0.9331

Table 9  Performance of different machine learning algorithms for 5-CV on the DC dataset

Classifier AUC​ PRC F1_Score Acc Recall Spec Precision

KNN 0.9659 0.9570 0.9317 0.9269 0.9952 0.8583 0.8761

NB 0.9301 0.8844 0.9009 0.8900 0.9995 0.7804 0.8201

SVM 0.9850 0.9754 0.9706 0.9704 0.9807 0.9600 0.9608

LR 0.9402 0.8672 0.9262 0.9210 0.9921 0.8495 0.8686

RF 0.9950 0.9941 0.9738 0.9735 0.9875 0.9595 0.9606

DT 0.9569 0.9227 0.9512 0.9501 0.9760 0.9242 0.9278

XGB 0.9926 0.9898 0.9715 0.9711 0.9870 0.9554 0.9566
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refers to support vector machine, RF refers to random forest, XGB refers to eXtreme 
gradient boosting, KNN refers to K-nearest neighbors, DT refers to decision tree, LR 
refers to logistic regression, and NB refers to Naive Bayes.

The random forest algorithm has two critical parameters: n_estimators and max_
depth. Generally, increasing n_estimators enhances the model’s performance but 
also raises computational costs. The max_depth parameter controls the complexity 
of the trees, thereby preventing overfitting. We employed grid search to determine 
the optimal parameters for RF within the MHAPR framework.

As illustrated in Fig. 6, for the FSL dataset, the model achieves the highest AUC 
and AUPR values when max_depth is set to 20 and n_estimators is 300. For the DC 
dataset, shown in Fig.  7, the model reaches its optimal performance with a max_
depth of 20. The AUC achieves its peak when n_estimators is 500, while the AUPR 
continues to show minor improvements up to n_estimators of 800. However, since 
the AUPR increases marginally beyond n_estimators of 500 and the model complex-
ity significantly increases, we determined that the optimal parameters for the DC 
dataset are n_estimators of 500 and max_depth of 20.

Fig. 4  AUC and AUPR curves for seven machine learning algorithms on the DC dataset

Fig. 5  AUC and AUPR curves for seven machine learning algorithms on the FSL dataset
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Ablation experiment

To evaluate the effectiveness of various modules within the MHAPR computational 
framework, we proposed three model variants: MHAPR-PCA, MHAPR-dropout, and 
MHAPR-concat. By controlling for major variables, we systematically excluded the 
PCA layer, dropout layer, and concat layer from the framework to understand the 
performance of each module within DTI-MHAPR. To assess the impact of the PCA 
layer in feature optimization, we first removed this layer from the model, naming this 
approach -PCA. Similarly, to evaluate the effect of the concat layer, we excluded the 
concatenation layer in the forward propagation, naming this approach -concat. The 
model with the dropout layer removed is referred to as -dropout.

All three methods are used in the DTI prediction task to compare the performance 
and the comparison results are shown in Fig.  8. The results show that the DTI-
MHAPR framework can simultaneously obtain higher AUC, AUPR, F1-score, and 
ACC scores compared to the other three methods on both datasets, and the standard 
deviation of our model is very small with good generalisation ability, which indicates 
that the three modules of our model are well-designed.

Fig. 6  Parameter grid search on the DC dataset
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Fig. 7  Parameter grid search on the FSL dataset

Fig. 8  Ablation experiment results on different network architectures. Mean represents the average, STD 
represents the standard deviation, and the vertical axis represents the evaluation indicators corresponding to 
each variant
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Case study

We extracted the known DTIs from the DrugBank database and similarly selected the 
three drugs with high number of interactions among the known DTIs, which are Olan-
zapine, Quetiapine and Cabergoline.Then we found out the prediction results of the 
three drugs and obtained the target proteins with the score ranked in the top 20 for vali-
dation, and it was found that the The vast majority of DTIs were validated by the Drug-
Bank database, as shown in Tables  10,  11,and 12 below, which shows the three drugs 
corresponding to the target proteins with the top 20 scores. In addition, in Fig.  9,we 
selected ten DTIs to be visualised using the knowledge graph, and the weights between 
the edges are the predicted scores for the extent to which the target is associated with 
the drug. These results indicate that the DTI-MHAPR method has good performance in 
drug-target interaction prediction.

Discussion
Motivated by the potential to harness the rich information encoded in the topological 
structure, our study introduces the DTI-MHAPR framework, which efficiently prior-
itizes and encodes the most salient features during the encoding-decoding process, 
thereby significantly enhancing the prediction of drug-target interactions.MHAPR 

Table 10  The top 20 targets associated with the drug Olanzapine

Ranking Target Evidence Ranking Target Evidence

1 P21728 DrugBank 11 P28335 DrugBank

2 P20309 DrugBank 12 P34969 None

3 P21918 DrugBank 13 P28221 DrugBank

4 P08912 None 14 P28222 DrugBank

5 P08908 DrugBank 15 P08913 None

6 P18825 None 16 P08172 DrugBank

7 P21917 DrugBank 17 P18089 None

8 P08173 DrugBank 18 P35368 DrugBank

9 P28223 DrugBank 19 P35462 DrugBank

10 P35348 DrugBank 20 P14416 DrugBank

Table 11  The top 20 targets associated with the drug Quetiapine

Ranking Target Evidence Ranking Target Evidence

1 P28223 DrugBank 11 P08173 DrugBank

2 P08913 DrugBank 12 P21728 DrugBank

3 P08172 DrugBank 13 P20309 DrugBank

4 P14416 DrugBank 14 P35462 DrugBank

5 P35368 DrugBank 15 P30536 None

6 P08908 DrugBank 16 P18825 DrugBank

7 P35348 DrugBank 17 P08912 DrugBank

8 P18089 DrugBank 18 P34969 DrugBank

9 P28222 DrugBank 19 P21918 DrugBank

10 P28221 DrugBank 20 P41595 None
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integrates diverse biological information of drugs and targets, providing the model 
with a rich biological information base. Additionally, by employing a hierarchical 
structure of multi-layer HAN, the framework effectively achieves deep representa-
tion extraction and fusion of multi-layer heterogeneous nodes. Furthermore, prior to 
feature decoding, MHAPR utilizes the PCA algorithm for feature optimization and 
employs the random forest algorithm as the classifier, enhancing the model’s toler-
ance to data noise and improving overall robustness. Experimental results indicate 
that DTI-MHAPR outperforms existing methods in key evaluation metrics such as 
AUC, AUPR, and F1-Score.

However, despite the excellent performance of DTI-MHAPR, the framework still 
faces certain challenges and limitations. Specifically, in the application of the PCA 

Table 12  The top 20 targets associated with the drug Cabergoline

Ranking Target Evidence Ranking Target Evidence

1 P28223 DrugBank 11 P08173 DrugBank

2 P08913 DrugBank 12 P21728 DrugBank

3 P08172 None 13 P20309 None

4 P14416 DrugBank 14 P35462 DrugBank

5 P35368 DrugBank 15 P18825 DrugBank

6 P08908 DrugBank 16 P08912 None

7 P35348 DrugBank 17 P34969 DrugBank

8 P18089 DrugBank 18 P21918 DrugBank

9 P28222 DrugBank 19 P41595 DrugBank

10 P28221 DrugBank 20 P28335 DrugBank

Fig. 9  Drug-target association subnetwork. The pink nodes represent the three drugs and the light blue 
nodes represent the top10 targets associated with the drugs
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algorithm, the computational complexity of eigenvalue decomposition for high-
dimensional data is relatively high, sometimes necessitating the use of approximate 
computation methods, which increases computational complexity.

To reduce the computational cost and complexity of the proposed method, we will 
implement model compression techniques in the future, utilizing pruning and quantiza-
tion strategies to decrease the model’s storage and computational demands. Addition-
ally, we will optimize the data preprocessing pipeline by employing streaming processing 
techniques to filter and standardize data in real time, thereby enhancing the efficiency of 
subsequent training and prediction. Through these specific measures, we aim to improve 
the model’s operability and efficiency, alleviating the high computational complex-
ity associated with the eigenvalue decomposition of high-dimensional data from PCA, 
ensuring that it maintains good performance in larger-scale applications.

Moreover, the potential extensibility of the DTI-MHAPR framework opens new direc-
tions for future research. We plan to apply this framework to predict other types of 
interactions, such as drug-drug, drug-disease, and protein-disease interactions, to verify 
its applicability and extend its application scope.

Conclusion
In this study, we propose a novel computational method, DTI-MHAPR, designed to 
predict potential interactions between drugs and targets. Compared to existing mod-
els, DTI-MHAPR not only integrates sequence and Gaussian similarity information of 
drugs and targets but also constructs a multi-layer heterogeneous graph attention net-
work (HAN) that effectively encodes and extracts representation vectors of drugs and 
targets. This approach can deeply explore the complex and subtle relationships between 
drugs and targets, enhancing the representation capability between nodes. To optimize 
model features, this study also investigates four different feature selection methods and 
ultimately adopts the PCA algorithm to improve the quality of feature representation 
and enhance the model’s discriminative power. Extensive experimental results demon-
strate that DTI-MHAPR provides an efficient new method for drug-target identifica-
tion, contributing to the advancement of precision medicine and personalized treatment 
strategies.

In future research, we will focus on addressing the computational challenges of the 
PCA algorithm in handling high-dimensional data from the perspective of feature opti-
mization. We plan to adopt advanced approximate eigenvalue decomposition methods, 
such as the Lanczos or Arnoldi algorithms, which can significantly reduce computa-
tional complexity, accelerate feature extraction speed, and enhance the model’s respon-
siveness. Additionally, we will explore the introduction of ensemble learning methods 
to combine multiple feature selection algorithms, automatically identifying the features 
that contribute most to model performance, thereby reducing computational load while 
retaining important information.
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