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Abstract 

Background:  Adaptive Banded Event Alignment (ABEA) stands as a critical algorith-
mic component in sequence polishing and DNA methylation detection, employing 
dynamic programming to align raw Nanopore signal with reference reads. Motivated 
by the observation that, compared to CPUs and GPUs, cutting-edge FPGAs demon-
strate—in certain cases—superior performance at a reduced cost and energy con-
sumption, this paper presents an efficient FPGA-based accelerator for ABEA, leveraging 
the inherent high parallelism and sequential access pattern within ABEA.

Result:  Our proposed FPGA-based ABEA accelerator significantly enhances ABEA 
performance compared to the original CPU-based implementation in Nanopolish 
as well as the state-of-art acceleration on GPU and FPGA platforms. Specifically, target-
ing Xilinx VU9P, our accelerator achieves an average throughput speedup of 10.05× 
over the CPU-only implementation, an average 1.81× speedup over the state-of-art 
GPU acceleration with only 7.2% of the energy, and a speedup of 10.11× compared 
to an existing FPGA accelerator.

Conclusion:  Our work demonstrates that intensive genome analysis can benefit 
significantly from cutting-edge FPGAs, offering improvements in both performance 
and energy consumption.

Keywords:  Nanopore sequencing, Genome polishing, Signal-level alignment, FPGAs, 
Hardware acceleration

Introduction
DNA sequencing is the process of determining the precise order of nucleotides (A, T, 
C, G) within a DNA molecule. Among the emerging third-generation sequencing tech-
nologies, Nanopore sequencing stands out for its capabilities to produce long sequence 
reads, ranging from thousands to tens of thousands of base pairs at a high speed. This 
sequencing technology is valuable for a wide range of applications in genomics, epige-
netics, and transcriptomics.

†Y. Feng and Z. Li contributed 
equally to this work.

*Correspondence:   
ypf5071@psu.edu

1 Department of Computer 
Science and Engineering, The 
Pennsylvania State University, 
201 Old Main, University Park, PA 
16802, USA

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-06011-1&domain=pdf


Page 2 of 24Feng et al. BMC Bioinformatics           (2025) 26:83 

The nanopore sequencing detects individual DNA molecules as they pass through 
a biological nanopore and generates continuous electrical signals or current traces. 
Changes in these signals are measured to identify nucleotide bases [36] via a ‘basecall-
ing’ step. Long reads generated by nanopore sequencing facilitate the assembly of com-
plex genomes, the characterization of structural variations, and the analysis of repetitive 
regions, which are challenging for short-read sequencing technologies.

However, nanopore sequencing technologies also come with their specific challenges. 
For example, compared with second-generation sequencing, nanopore sequencing tech-
nologies exhibit higher error rates (up to 8%), due to probabilistic methods employed 
in converting electrical signals to nucleotide strings  [3, 26]. Consequently, a subse-
quent ‘polishing’ process is necessary to improve the accuracy and quality of nanopore 
sequencing data. This polishing process aligns the raw signals to a biological reference 
sequence to correct sequencing errors and detect the modified nucleotides. Given the 
long length of the reads, these downstream processes for analyzing nanopore sequenc-
ing data are computationally intensive and require specialized optimization and accel-
eration strategies.

Adaptive Banded Event Alignment (ABEA), introduced by Nanopolish  [31], is a key 
algorithmic component of the genome polishing workflow, aligning the raw signals to 
a reference sequence via a dynamic programming (DP) strategy. Our profiling results 
show that ABEA takes approximately 70% of the total CPU processing time as imple-
mented in Nanopolish. Prior works have attempted to accelerate the ABEA algorithm 
on various hardware architectures. For example, in CPUs, Nanopolish  [31] and Multi-
Nanopolish  [9] launch multiple threads to deal with batches of reads. In comparison, 
f5c [8] optimizes ABEA on heterogeneous CPU-GPU architectures, processing most of 
the reads on GPU and the remaining longer reads on CPU.1 f5c can perform 3–5× faster 
than the CPU-only implementation of ABEA in Nanopolish. Samarasinghe et al. [28] use 
OpenCL to accelerate ABEA targeting FPGAs with energy considerations. Their work 
consumes only 43% of the energy required by the GPU-based acceleration in f5c with a 
performance penalty of 4 × slower execution.

Recent work also utilizes deep learning to correct errors in nanopore sequencing. 
HERRO  [34] is proposed as a deep learning-based framework for correcting Simplex 
nanopore reads, achieving a 100-fold improvement in accuracy. However, in the context 
of telomere-to-telomere assemblies, HERRO targets nanopore reads longer than 10,000 
base pairs, instead of all reads with varying length. Additionally, the training and infer-
ence of HERRO take up to several hours on 4 Nvidia A100 GPUs, making it quite time-
consuming and highly energy-inefficient. In comparison, ABEA achieves comparable 
accuracy (>99%) for assembly with higher throughput and less energy consumption [10].

On the other hand, some other works skip the computation-intensive basecalling 
step and analyze the raw signal directly to meet real-time processing needs. Such 
works primarily involve subsequence dynamic time warping (sDTW)  [6, 27, 29] to 
align raw signal to reference genomes and eject uninterested reads directly. sDTW 
has a similar dynamic programming pattern to ABEA and also works for raw signal 

1  Specifically, the reads whose average events per base exceed 5 are processed on CPU.
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analysis. However, while sDTW mainly works as a pre-filter to reject untargeted reads 
in real time, ABEA enhances the accuracy of the assembly after basecalling and read 
mapping. Unlike ABEA, which does not have size limitations, sDTW is impractical 
for reference genomes of gigabase size, such as the human genome, due to unaccepta-
ble latency. Additionally, ABEA delivers higher alignment accuracy based on precise 
event-level alignment and adaptive bands to reduce noise.

Compared with CPUs and GPUs, modern FPGAs offer—in certain cases – high per-
formance at a lower cost and with reduced energy consumption [4] (the details of the 
FPGA used in this study are given in Supplementary Materials: Section 2). Addition-
ally, FPGAs exhibit the inherent advantage of flexibility, allowing the programmers to 
configure memory and power usage depending on the specific tasks required by the 
application. However, the previous FPGA accelerator for ABEA [28] exhibits lack of 
parallelism in cell calculation in DP table, and also does not optimize memory access 
patterns to make full use of available memory bandwidth based on the specific char-
acteristics of ABEA.

Motivated by the observations above, this paper develops, implements, and evalu-
ates an efficient FPGA-based accelerator for ABEA using Xilinx Vivado High-Level 
Synthesis (HLS) tool-set [18]. Despite the massive parallel calculation involved in the 
DP table of ABEA, deploying ABEA on an FPGA presents several critical challenges. 
Firstly, significant challenges arise from the ‘data dependencies’ among multiple 
bands (rows in the DP table) and cells, rendering the parallelization of ABEA non-
trivial. Additionally, the varying processing times of different lengths of reads lead to 
load imbalance, degrading the overall performance substantially. Thus, leveraging the 
hardware architecture of FPGA, this paper addresses these challenges and makes the 
following main contributions:

•	 It proposes an FPGA-based accelerator for ABEA, with the goal of exploiting both 
intrinsic high parallelism and sequential data access pattern characteristics exhib-
ited by ABEA.

•	 The proposed ABEA accelerator allows multiple reads to perform alignment con-
currently in a pipelined fashion, benefiting from the data independence across the 
bands. This new design enables us to achieve the throughput of one band per cycle 
for each alignment pipeline.

•	 Our accelerator integrates two specialized types of Compute Units (CUs): the 
Pipeline CU and the Ultra Long CU. The Pipeline CU is optimized for processing 
buckets of regular reads in a fine-grained pipelining approach. On the other hand, 
the Ultra Long CU is designed to handle the alignment of ultra-long reads indi-
vidually, ensuring a balanced load and an efficient alignment process.

•	 We perform a thorough empirical evaluation of ABEA under different types of 
compute engines. Our evaluations indicate that the proposed FPGA-based ABEA 
accelerator demonstrates a remarkable average throughput improvement of 10.05× 
compared to a classical CPU-only implementation  [31]. Further, in comparison 
to a state-of-the-art GPU-based acceleration  [8], it achieves an average speedup 
of 1.81× while consuming only 7.2% of the energy. Additionally, it achieves a 
throughput speedup of 10.11× compared to an existing FPGA accelerator [28].
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Background
Adaptive banded event alignment (ABEA)

As a vital component of the genome polishing and methylation detection workflow 
(genome sequencing and DNA methylation workflow are detailed in Supplementary 
Materials: Section 1), the ABEA algorithm accounts for approximately 70% of the total 
CPU processing time in Nanopolish, based on our profiling results. Given the substan-
tial volumes of data produced by the nanopore sequencing technology, there is a press-
ing need for efficient solutions to accelerate ABEA and enhance the performance of the 
widely-used nanopore sequencing applications.

The ABEA algorithm performs signal-level alignment between events and k-mers to 
obtain the true annotation. Specifically, events identified from raw signals are aligned 
to a generic k-mer model signal, which encapsulates the frequency distribution of all 
possible k-mers within a sequence. The generic k-mer model is constructed using the 
base-called read and a pore-model table provided by Oxford Nanopore Technologies 
(ONT). The pore-model table contains comprehensive information on all potential 
k-mers, including their corresponding mean signal value and standard deviation. Con-
sequently, the k-mer model signal is generated by retrieving the appropriate entry in the 
pore-model table for each k-mer in the read. By aligning events to k-mers, the ABEA 
algorithm can determine which event corresponds to a specific k-mer in the reference 
sequence (read mapping results to a reference genome) [30].

Sequence alignment typically utilizes the dynamic programming (DP) approach to 
compute the alignment score at each pair of positions within a DP table [23, 33]. The pro-
cess consists of three steps: initialization, score calculation, and backtracking. Due to the 
quadratic time and memory space complexity of traditional DP alignment, banded align-
ment techniques are utilized to restrict the search space. In banded alignment, bands of 
fixed width, centered around the main diagonal, are defined as the DP table. During the 
alignment process, only the cells within these bands are calculated. As depicted in Fig. 1, 
only the cells intersecting with these bands are computed, and these cells are marked 
with ‘*’. To ensure that the alignment falls within the bands, an appropriate bandwidth 

Fig. 1  Alignment with a fixed bandwidth set to 3. Only cells within bands are calculated, marked with ‘*’. 
Backtracking traces back to find the optimal alignment as the red arrows show
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needs to be set. In the backtracking step, the alignment traces back to find the optimal 
alignment, as indicated by the red arrows shown in the figure.

Given the substantial length of reads with a high error rate produced by nanopore 
sequencing, alignments frequently deviate significantly from the diagonal. This devia-
tion requires a wider bandwidth for alignment, posing substantial computational chal-
lenges. To address this issue, ABEA utilizes an adaptive band scheme instead of static 
bands when aligning events to k-mers. In this adaptive approach, bands are dynamically 
adjusted by moving either downward or to the right, determined by the Suzuki–Kasa-
hara heuristic rule  [35], as depicted by the blue arrows in Fig. 2a. This dynamic adap-
tation ensures that the alignment result falls within these bands, facilitating efficient 
alignment while maintaining accuracy.

Figure 2 provides a simple example illustrating ABEA with a bandwidth set at 3. Fig-
ure 2a depicts the score calculation step, featuring 12 bands aligning 8 events to 5 k-mers 
of reads. These 12 bands are computed sequentially along the left diagonal, from top-left 
to bottom-right. Each score calculation depends on three previously calculated scores 
from the left, up, and previous diagonal cells. For example, as shown by the red arrows 
in Fig. 2a, cell(4,2) depends on cell(4,1), cell(3,2), and cell(3,1). In this case, the calcula-
tion of the n-th band is dependent on the (n-1)-th band and (n−2)-th band. Following 
the score computation, the backtracking step starts from the maximum cell score at the 
last k-mer, tracing back along recorded directional flags. The resulting backtracking path 
represents the ‘optimal’ alignment, as depicted by the red arrows in Fig. 2b.

Algorithm 1 provides the pseudo-code for ABEA. The input data includes k-mers of 
the read, events, and pore-model table. The resulting alignment is represented as a list 

Fig. 2  Alignment with adaptive bands a Score calculation step. Bands with a width set at 3 are dynamically 
adjusted by moving downward or to the right, as depicted by blue arrows. Bands are computed from the 
top-left to the bottom-right along the left diagonal. Each score calculation depends on three previously 
calculated scores from the left, up, and previous diagonal cells, as bold red arrows show. b Backtracking step. 
The optimal alignment is found by tracing back from the maximum score along the recorded directional 
trace flags, as indicated by red arrows
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of event and k-mer pairs. Line 1 declares three intermediate arrays: band_score, trace_
table and band_lower_left. The band_score, trace_table store the scores and trace-back 
direction flags in bands. The band_lower_left array holds the coordinates of the first cell 
(event index, k-mer index) for each band. Lines 2–4 initiate scores and trace flags of the 
first two bands. Lines 5–6 initiate the starting cell’s coordinates for the first two bands. 
For example, band_lower_left[0]={1,−1} and band_lower_left[1]={1,0} in Fig. 2. Next, the 
for-loop between lines 7–24 iterates over the remaining bands. The direction of band 
movement is determined in line 8 and the starting cell’s coordinates are updated in lines 
9–13. If the movement direction is to the right, the k-mer index increases by one while 
the event index remains unchanged for the starting cell’s coordinates. Conversely, if the 
movement direction is downward, the event index increases by one while the k-mer 
index remains unchanged. Subsequently, the index bounds of each band are decided in 
line 14, ensuring that only cells within the boundary of events or k-mers are considered. 
The inner loop from lines 15 to 23 calculates scores within the index bound. Firstly, three 
neighboring scores are obtained. Then, the value of lp_emission is calculated, represent-
ing the log probability value that signifies the likelihood of a specific event correspond-
ing to a particular k-mer. lp_emission is used along with some heuristically-determined 
constants (lp_skip, lp_stay, and lp_step) to compute scores from the diagonal, upward, 
and leftward directions. The maximum score is then determined, and both the maxi-
mum score and the direction from which it is obtained are stored in the band_score and 
trace_table arrays, respectively. After iterating over all bands, ABEA traces back from 
the maximum score at the last k-mer to obtain the alignment, represented as (event 
index, k-mer index) pairs along the direction flags recorded in the trace table.
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Algorithm 1  ABEA algorithm

Related works

Nanopore sequencing data analysis is usually performed by aligning genomic reads to 
the reference genome. Based on the input types, the alignments can work on base space 
or signal space. The conventional workflow translates raw signals generated from Nano-
pore sequencers to strings of nucleotide bases with basecallers [24, 38], and then maps 
these strings to reference genome to get some mapping locations for downstream analy-
sis [5, 13]. Due to the high latency, high cost and low throughput of the basecalling step, 
some methods analyze raw signals in real-time for selective sequencing [6, 27].

For the conventional nanopore data analysis workflow, basecalling primarily relies on 
deep neural networks (DNN) for high accuracy, such as Guppy  [39] and Dorado [37]. 
Due to the computational intensity of these methods, some hardware-specific designs 
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were proposed for acceleration. RUBICALL [32] is the first hardware-optimized mixed-
precision basecaller evaluated on a GPU and spatial vector computing system that out-
performs the state-of-the-art basellers. GenPIP [16] is an in-memory genome analysis 
accelerator by integrating basecalling and read mapping tightly. DeepNano-coral [25] is 
an energy-efficient basecaller developed for Edge TPU, consuming only 10w of power. 
After basecalling, traditional read mappers, such as minimap2 [13], follow Seed-Filter-
Align paradigm to align basecalled reads to a genome reference, identifying similarities 
between sequences. Pre-alignment filtering based on specific architecture [1, 2, 11] is 
also employed to eliminate highly dissimilar pairs and accelerate read mapping. Addi-
tionally, since errors are often introduced by nanopore basecalling from noisy raw signals, 
especially in long reads, various methods have been proposed for error correction. ABEA 
[31] aligns raw signals to the mapping results to recover the lost information in basecall-
ing. HERRO [34] corrects Simplex nanopore reads longer than 10,000 base pairs using 
deep learning.

Due to the computational intensity of basecalling in conventional analysis workflows, 
signal space-based analysis methods for selective sequencing without basecalling are 
proposed to satisfy the real-time processing requirements. During selective sequencing, 
classification is performed to eject non-target reads, saving significant time and cost. 
Subsequent dynamic time warping (sDTW) [15] is commonly used by existing methods 
to filter non-target reads by aligning signals to reference genomes. Due the quadratic 
complexity of sDTW, several hardware-specific acceleration methods were proposed. 
SquiggleFilter [6] is a hardware/software co-designed filter on an edge device for virus 
detection based on a custom sDTW, which adaptively adjusts the length of read prefix 
to improve accuracy. DTWax [27] adapts SquiggleFilter’s underlying sDTW algorithm 
to suit GPU via floating point operations and Fused-Multiply-Add operations for high 
throughput. HARU [29] targets low-cost and resource-constrained system-on-chip 
devices and accelerates sDTW with on-chip FPGA using fine-grained parallelism. Addi-
tionally, indexing methods [41], hash tables [7] and Seed-Filter-Align mappers [14] are 
also be employed for direct raw signals analysis.

While most analysis workflows utilize conventional CPU, GPU implementations, 
there is a growing interest in accelerating these workflows using hardware implementa-
tions such as FPGAs. Many alignment workflows share a common computational pat-
tern - filling a 2D Dynamic Programming(DP) score matrix to compute the edit distance, 
which can be efficiently mapped to a systolic style architecture consisting of multiple 
Processing Elements(PE) on an FPGA. Early works, such as CELL [40], maps the Smith-
Waterman algorithm using the systolic approach on FPGA, accelerating the distance 
computation stage between two genome strings. Another approach [17] also employs 
systolic-style architecture on FPGA, performing both the forward distance computation 
stage and traceback mapping stage. Gandafl [12] incorporats a dataflow architecture to 
perform an end-to-end genome mapping flow, leveraging optimizations like reads inter-
leaving and software co-design to further enhance the efficiency and reduce host-FPGA 
communication overhead. However, Gandafl only addresses short-read mapping without 
considering variable lengths. While these previous works have shown promising results, 
they mostly focus on genomic reads in string representations at the base level. Addition-
ally, they only address limited workloads (fixed-size or short reads). Furthermore, none 
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of them optimize the heuristic move-up/move-down behavior of the ABEA algorithm. 
One recent work [28] attempts to accelerate the signal-space ABEA on FPGA. However, 
it lacks parallelism among cell calculations and multiple reads alignment, significantly 
limiting its speedup. In contrast, our accelerator integrates two types of CUs (one for 
regular reads and the other for ultra-long reads) and employs an ‘inter-read pipeline’ 
to enhance the parallelism across multiple reads, addressing the limitations of previous 
approaches.

Methodology
Challenges in hardware optimization for ABEA

The core of ABEA lies in computing and storing the ‘band score table’ and ‘trace table’, 
both updated from the top-left to the bottom-right. It is to be noted that no data depend-
ency exists in alignments among different reads or score calculations among multiple 
cells of a band. Given this high degree of parallelism in score calculations of ABEA, 
FPGA is positioned as a promising device for its acceleration. However, the paralleliza-
tion of ABEA for FPGA deployment poses at least two challenges. Firstly, there exist 
‘data dependencies’ across different bands, with the movement direction of the current 
band determined by the previous band using the Suzuki-Kasahara rule. Additionally, 
each score calculation relies on scores from the left, diagonal, and up cells, which are 
derived from the previous two bands. Secondly, the varying lengths of reads lead to sig-
nificant differences in processing times. Unfortunately, this load imbalance degrades the 
performance, especially as the longest read dominates the total processing time.

To address these challenges, we propose the following solutions. Firstly, we employ 
two-level parallelism for ‘inter-read alignment’ to address the data dependency issues. 
This approach allows for parallel score calculations and pipelined processing of multiple 
reads. Specifically, launching a sufficient number of new reads establishes a ‘full pipeline’, 
resolving data dependence between consecutive bands within a read. Figure  3 depicts 
the timeline of pipelined inter-read alignment, where input and output operations take 
1 cycle separately and computation takes 3 cycles. In this scenario, launching at least 3 

Fig. 3  Timeline of inter-read alignment in full pipeline. Each input and output takes 1 cycle and computation 
takes 3 cycles. At least 3 reads enable a full pipeline
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reads working in a full pipeline adequately addresses the band dependency. For instance, 
when band 1 of read 0 begins calculation on the 4th cycle, its preceding band would have 
been already prepared. Our accelerator requires 8 cycles for one band calculation; hence, 
a full pipeline would need at least 8 reads. Moreover, based on the observation that each 
band only depends on the previous two bands, we retain only the three successive bands 
for each iteration, thus reducing space complexity significantly. Finally, a ‘data partition-
ing’ approach based on the number of bands is utilized to achieve load balance.

High‑level accelerator architecture

Figure 4 shows the high-level diagram of the proposed accelerator. It is to be noted that, 
multiple Compute Units (CUs) can be implemented on the FPGA platform, and each 
CU can be called and controlled independently. in our design, we consider two types of 
CUs, namely, Pipeline CU and Ultra Long CU. The Pipeline CU is optimized for through-
put, which allows fined-grained inter-read pipelining. In comparison, the Ultra Long CU 
is optimized for latency and low hardware utilization, which only accepts one read at a 
time. This CU targets scenarios where achieving inter-read pipelining becomes challeng-
ing, especially in the case of ultra-long reads. The forthcoming subsections will delve 
into the specifics of these design decisions. The quantity of implementable CUs depends 
on the specifications of the FPGA. Consequently, there exists a tradeoff in determining 
the priority between these two types of CUs. Table 1 lists the essential parameters used 
in our architecture design. All arithmetic operations are performed in standard fixed-
point representations. We have validated the results against a CPU-based C++ imple-
mentation, to ensure enough bits are reserved for all numerical values.

Initially, the C++ Methylation pipeline is running on the Host CPU. A bucket distribu-
tor partitions the incoming reads into different buckets based on their ‘length’ (number 
of bands). Thus, reads with similar lengths are assigned to the same bucket. The details of 
our bucket scheduling are described in Supplementary Materials: Section 4. Next, when-
ever a bucket has collected enough reads for a batch transfer, a Xilinx Runtime Library 

Fig. 4  High-level architecture diagram of the proposed accelerator. C++ Methylation is running on Host CPU 
and bucket distributor partitions reads into different buckets based on lengths. Once a bucket is full, Xilinx 
Runtime Library (XRT) will be invoked for transferring data from Host DRAM to FPGA DRAM and launching 
the specific CU
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(XRT) API is invoked to initiate a transfer from Host DRAM to FPGA DRAM through 
the PCIe interface. Once the input data are available in FPGA DRAM, the launch of the 
specific CU and output data transfer are also handled by XRT APIs.

Model reference initializer

The ABEA algorithm requires a pore-model table when aligning, which is essentially a 
look-up table between text representation (ACTG) and electrical signals, as discussed in 
the previous section. The pore-model table is universal and valid for the entire dataset, 
thus only one initialization is required at the very beginning. As the FPGA side of Fig. 4 
shows, each CU is accompanied by a Model Reference Initializer. For the Pipeline CU, 
the pore-model table is maintained as N copies in Block RAMs, allowing independent 
access for multiple reads. For the Ultra Long CU, only one copy is required since there is 
no inter-read pipelining.

Dataflow kernel

Figure 5 shows components of the Dataflow Kernel in the Pipeline CU and the details of 
each component are provided in the following subsections. The kernel is designed based 
on a streaming dataflow architecture, where inputs and outputs are all connected via 
stream FIFOs. This allows all stages and sub-functions to run concurrently based on the 
availability of input data. More importantly, any external DRAM access latency is hidden 
by the stream FIFO buffer.

Data loading stage

As depicted on the left side of Fig. 5, this stage is responsible for accessing input data, 
specifically reads and events, for downstream stages. Note that external DRAM access is 
very expensive and can easily reach hundreds of cycles without careful optimization. In 
terms of the overall performance, the difference can be 1.5×−2× in our unit experiments. 
To optimize the external DRAM bandwidth efficiency, we aggregate multiple consecu-
tive reads/events into a single vector access. While larger vector sizes do consume more 
hardware to interface with DRAM channels, we enlarge the specific vector sizes (K and 
J) through unit experiments until no noticeable benefits are observed.

Table 1  Architecture parameters, descriptions, and the implemented values in our work

1 B=100 is typically used in previous studies [8] and we adopted the same configuration here. N is determined by the Vitis 
tool and discussed in Sect. 3.4.5. P is chosen to match the Port Width of FPGA DRAM channel. K and J are determined 
experimentally and also discussed in Sect. 3.4.1. M and F are determined experimentally and we also report their impact on 
accuracy in Sect. 4.2. Port Width is an FPGA device parameter and cannot be changed 

Parameters Description Values

B Bandwidth; number of entries in each ABEA band 100

N Number of reads to enable full pipeline 8

P Number of bands processed in post analysis for backtracking in parallel 2

K Read vector size, number of consecutive read characters in one vector access 64

J Event vector size; number of consecutive event floats in one vector access 16

M Number of bits to represent integer part in standard fixed point representation 30

F Number of bits to represent the fractional part in standard fixed point representation 10

Port width Width of FPGA DRAM interface 64 bytes
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Event vector distributor & read vector distributor

Once data are loaded, the vectors containing the consecutive reads/events are received 
and then decomposed into individual events (represented as float types) or read bases 
(represented as char types) by the Distributors. Each read alignment requires its own 
event FIFO and read FIFO, due to its unique access pattern. As a result, a total of N 
stream FIFOs (buffering float event) and a total of N stream FIFOs (buffering char 
read) are implemented. Each distributor is responsible for distributing the decomposed 
vectors into N/2 stream FIFOs–emitting one float event or one char read to one 
stream FIFO every cycle. Thus, two instantiations of the Event Vector Distributor and 
the Read Vector Distributor are implemented to ensure that we have no I/O bottleneck 
for downstream stages.

Event generator

As shown in the middle of Fig. 5, the Event Generator receives the decomposed events 
from the Event Vector Distributor and then converts the float event into a standard 
fixed-point representation, allowing efficient computation in the following stages. 
Depending on the current kernel status, the Event Generator sends the converted events 
to either the Compute Stage or the Post Stage. Similarly, as discussed above, N inde-
pendent instantiations of the Event Generator are implemented to support inter-read 
pipelining.

Kmer generator

We utilize a k-mer size of 6 in this work as 6-mer affects the current of ONT nanopore 
signal. As the input data streams in, a shift register converts every 6 consecutive bases 
represented in text (ACTG) into a k-mer index. Then, the k-mer index is used to retrieve 
the corresponding k-mer represented in the electrical signals using the Model Reference. 
As discussed above, N independent instantiations are required.

Fig. 5  Details of Dataflow Kernel in the Pipeline CU. The Data Loading Stage loads reads and events from 
DRAM using vector access. Events/reads are decomposed into individual events as float type or bases as 
char type by the Event Vector Distributor and the Read Vector Distributor, respectively. The float event 
is converted into a fixed-point representation and sent to the Compute Stage or the Post Stage by Event 
Generator. the Kmer Generator converts consecutive bases into k-mers. The Compute Stage performs 
alignment and generates score and trace tables. The max score collected by the Max Stage and the reverse 
trace table produced by the Trace Out Stage are transferred to the Post Stage for performing backtracking. All 
inputs and outputs are connected via stream FIFOs, allowing all stages and sub-functions to run concurrently
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Compute stage

The Compute Stage receives k-mers/events from previous stages and performs the 
alignment. The details of the Compute Stage are shown in Fig. 6. The score computa-
tion within one band requires the most recent B events, B k-mers, and the previous 
two band scores, as reflected on lines 16–21 of Algorithm 1. As shown in Fig. 6, the 
events (orange blocks) and k-mers (green blocks) are stored in separate shift register 
structures, each with B entries. As the band moves right or down, the Event Move 
Control/K-mer Move Control shifts in one new event/k-mer and places it at the top 
of the shift register. The oldest event/k-mer automatically gets pushed out. This shift 
behavior naturally addresses the Suzuki Kasahara rule described in lines 8–13 Algo-
rithm 1. Two previous band scores are also stored and updated whenever a new band 
score is produced. Every event, k-mer, and band scores have N instantiations which 
keep track of N reads in the Compute Stage. At each cycle, the Pipeline Control guides 
the Parallel Band Aligner to select from the next ready inputs and perform alignment, 
achieving inter-read pipelining. Intra-read parallelism is achieved by performing B 
parallel score calculations, as captured in lines 15–23 Algorithm 1. The filtered scores 
and trace tables are sent to the downstream stages. It can be observed that the Parallel 
Band Aligner requires 6 cycles of latency to produce the result. Also, adding the Pipe-
line Control increases the latency from 6 cycles to 8 cycles when implemented in Vitis 
HLS 2021.2. Thus, an N value of 8 is required to enable a full pipeline, with 1 cycle ini-
tiation interval. When fully pipelined, the Compute Stage can align and produce one 
band of the score/trace table every cycle.

Fig. 6  Details of the Compute Stage in the Dataflow Kernel. N instantiations of the most recent B events/
k-mers and the previous two bands’ scores are required. Events/k-mers are stored in a shift register structure 
with B entries. As the band moves right or down, the Event Move Control/Kmer Move Control shifts in one 
new event/k-mer and pushes out the oldest ones. Whenever a new band score is produced, the previous two 
band scores get updated. The Pipeline Control guides the Parallel Band Aligner to select from the next ready 
inputs and perform alignment in each circle, achieving inter-read pipelining. B parallel score calculations are 
achieved for intra-read parallelism. One band throughput is achieved if fully pipelined
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Max stage

As shown in the middle right of Fig. 5, the Max Stage is responsible for collecting all 
max scores for all N reads, as well as forwarding them to the downstream stages for 
backtracking.

Trace out stage

The aligned trace tables produced by the Compute Stage are streamed into the Trace 
Out Stage at one band/cycle rate. It is impossible to store all trace tables on local Block 
RAMs due to the unpredictable length; so, all trace tables are required to be written back 
into FPGA DRAM. Each entry in the trace table is a 2-bit flag. To avoid the underutiliza-
tion of the DRAM bandwidth, all B entries within one band arriving at the Trace Out-
put Stage are encoded into a single customized vector with 256 bits. Similar to the Data 
Loading Stage, an external DRAM access is not initiated until 32 bands are accumulated 
at the Trace Out Stage. Once all N reads finish the alignment, the Output Stage starts 
to read the trace table back in reverse order (i.e., from the last band to the first band) 
and sends it to the Post Stage for post-analysis. Similarly, the trace tables are transferred 
through burst accesses and then reordered. Considering a maximum DRAM bandwidth 
of 64 bytes (512 bits) per cycle, two bands are streamed out every cycle for post-analysis.

Post stage

The last stage on the right side of Fig. 5 is responsible for backtracking to find the opti-
mal alignment—line 25 in Algorithm 1. In our implementation, P reads perform align-
ment in a fully pipelined fashion at the Post Stage. Unlike the alignment, the Post Stage 
does not include complicated score calculation steps and can be pipelined and paral-
lelized easily using pragma unroll.2 Two bands are fetched from streams at every 
cycle in reverse order, and processed in parallel. The aligned positions are sent to the 
output streams. Details of the Post Stage algorithm are given in Supplementary Material: 
Section 3.

Ultra‑long reads alignment

Due to the varying lengths, in the worst case when there is only one remaining align-
ment in the pipeline, the throughput decreases to 1 band in every N cycle from 1 band 
in every 1 cycle. To address this potential problem, we divide the alignments into differ-
ent ‘buckets’ according to their number of bands so that the alignments with a similar 
number of bands can be processed in a pipelined fashion. Besides, despite the ultra-long 
reads constituting under 5% of the overall dataset, their alignment on CPU was identi-
fied as a bottleneck in previous work [8], slowing the overall running time by up to 2 × . 
If we were to follow the same approach as in the previous work [8], aligning these ultra-
long reads on the CPU alone, it would disproportionately dominate our accelerator’s 
running time too. These alignments take much longer execution time, and it is difficult 
to construct a bucket with a similar length due to large variances in lengths. As a result, 
they are processed one by one instead of in a pipelined fashion with other alignments. 

2  This directive instructs the compiler to unroll a given loop by a factor of n so that the loop’s body is replicated to create 
n copies, reducing the number of iterations by a factor of 1/n.
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We designed a specific CU, namely, the Ultra Long CU that is optimized for single-read 
alignment. The Ultra Long CU removes all pipeline-related logic and memory structures 
in the Compute Stage, reducing the latency from 8 to 6 cycles. Similarly, only one instan-
tiation of all other stages is required, which also leads to lower hardware resource utili-
zation. We evaluate the effectiveness of our Ultra Long CU in the following section.

Implementation and results
FPGA implementation

As shown in the previous section, our FPGA accelerator consists of multiple independ-
ent CUs, instead of a single monolithic CU. This design strategy is motivated by two key 
factors. First, it allows us to prioritize resources for specific types of CUs, optimizing 
their performance. And, second, implementing a large monolithic CU on FPGA often 
presents various challenges, including routing congestion and timing violations.

In this work, we target Xilinx VU9P offered by Amazon AWS F1 instance. As shown 
in Fig. 7, three Super Logic Regions (SLR) are available in Xilinx VU9P. We fit one Pipe-
line CU into a single SLR region, avoiding cross-SLR routing. For SLR1, around 30% of 
resources are reserved for device control (Static Region), which makes it suitable for fit-
ting into a smaller ‘Ultra Long CU’. It is worth noting that each Pipeline CU has access to 
two independent DRAM channels while the Ultra Long CU shares one DRAM Channel 
with each Pipeline CU. Clearly, more CUs can be implemented if a larger FPGA is avail-
able, such as Xilinx U250.

The resource utilization of the proposed accelerator deployed on Xilinx VU9P is 
detailed in Table 2 with the frequency set to 100 MHz. Our implementation comprises 2 
Pipeline CUs and 1 Ultra Long CU.

Fig. 7  Device map of Xilinx VU9P FPGA. Each Pipeline CU fits in a single Super Logic Region (SLR) and an 
Ultra Long CU fits in the smaller SLR1 with a reserved Static Region. Ultra Long CU shares one DRAM channel 
with each Pipeline CU

Table 2  FPGA SLR resource utilization for each CU type after full placement

CU type BRAM DSP FF LUT

Pipeline CU 0.37k(50%) 0.66k(25%) 174k(25%) 275k(70%)

Ultra Long CU 0.26k(35%) 0.66k(25%) 125k(18%) 228K(58%)
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Experimental design

In our evaluations, we compare the performance of our ABEA accelerator against differ-
ent prior works on CPU, GPU, and FPGA platforms in terms of i) throughput, ii) power 
consumption, and iii) execution time. The CPU-only multi-threaded implementation in 
Nanopolish  [31] is tested on an AMD EPYC processor with 12 CPU threads. f5c  [8] is 
the acceleration of ABEA on heterogeneous CPU-GPU architectures and is tested on an 
NVIDIA GeForce RTX 3070 GPU with 8 G GDDR6X RAM and an Nvidia Tesla V100 
GPU with 16GB HBM, respectively. The evaluation results of the acceleration [28] using 
OpenCL framework on Altera Stratix V FPGA with 4GB RAM, are obtained directly 
from their works. Additionally, we analyze the breakdown of execution time across dif-
ferent stages, evaluate the effect of bucket size and bucket range on the performance, 
and validate the efficiency of the designed Ultra Long CU.

The ‘Nanopore WGS Consortium’ sequencing dataset  [10] is used for our experi-
ments. This dataset is available in the project under accession PRJEB23027 from Euro-
pean Nucleotide Archive (ENA).3 Reads of the human genome (cell line NA12878) from 
53 individual flow cells are publicly available under the project. We selected reads from 
five individual flow cells under accession ERR2184700, ERR2184710, ERR2184719, 
ERR2184733 and ERR2184734, and labeled them as D1 , D2 , D3 , D4 and D5 , respectively. 
Additionally, Dexample is a small subset of the NA12878 WGS Consortium data. Note 
that these datasets were also used in recent studies (e.g., [8, 28, 31]). The relevant char-
acteristics of these datasets are listed in Table  3, including the total number of reads, 
number of ultra-long reads, and total read bases. Ultra-long reads are defined as the 
number of events that exceed 120,000 or read lengths that exceed 60,000. We perform 
alignment for ultra-long reads on the Ultra Long CU, instead of the Pipeline CU. It is to 
be emphasized that our accelerator does not perform any alignment on the CPU, unlike 
the conventional GPU-based methods (e.g., f5c), which rely on the CPU to perform the 
ultra-long reads.

We have verified the accuracy of our ABEA accelerator by comparing the aligned pairs 
generated by Nanopolish with those produced by our accelerator. The observed differ-
ences in positions of aligned pairs, attributed to floating-point arithmetic across differ-
ent architectures, were found to be less than 0.03%.

In the following sections, we first demonstrate the performance gain achieved due to the 
architectural difference in comparison with GPU/CPU in Sects. 4.3 and 4.5. Next, we high-
light the effectiveness of our bucketing strategy in leveraging multiple CUs on the FPGA 

Table 3  Relevant statistics on our datasets

Datasets D1 D2 D3 D4 D5 Dexample 

No. of reads 668016 451020 270189 117140 38335 19275

No. of ultra-long reads 4631 6417 9321 19 58 103

Total bases (Mbases) 3203 3620 2730 696 190 158

3  https://www.ebi.ac.uk/ena/browser/home.
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accelerator in Sect. 4.4. Finally, we present the performance improvements across various 
datasets and average throughput/power consumption in real-world workloads.

Quantitative comparison between GPU and FPGA

In this section, we analyze the performance benefit caused by pure hardware architectural 
difference, that is, excluding all other effects such as software scheduling and length vari-
ances. We created an artificial dataset with 128 identical reads of 82k bases. This allows 
GPU and FPGA to generate the maximum achievable throughput.

Our FPGA accelerator has two Pipeline CUs running at 100Mhz, as shown in Fig. 7. At 
maximum pipeline utilization(i.e. zero pipeline stall caused by any reasons such as DRAM 
latency or length variances), each Pipeline CU can achieve 1 band/cycle score calculation 
rate and 2 bands/cycle post backtracing rate as discussed in Sects. 3.4.5 and 3.4.8. Thus, the 
theoretical computation time on the FPGA accelerator with 2 Pipeline CUs on the artificial 
dataset should be (128/2 ∗ 82k + 128/2 ∗ 82k/2)/100Mhz = 78ms . We ran the artificial 
dataset on the real FPGA instance and measured 85ms, which is in line with the theoreti-
cal computation time. Several millisecond differences could be attributed to device driver 
overhead.

Similarly, we ran the GPU-based f5c acceleration on the artificial dataset using an 
NVIDIA GeForce RTX 3070 GPU and measured a total running time of three CUDA ker-
nel 266ms (align-core, align-core and align-post kernels), making it 3.1× slower than the 
FPGA accelerator(85ms). A key to GPU acceleration is achieving high warp issue efficiency, 
allowing for high warp parallelism to hide latency. However, f5c experiences significant 
warp stall due to branch divergence (e.g., determining if a cell is the first one of the band), 
leading to an average stall of 7 cycles per warp in their align-core kernel, which is responsi-
ble for band scores calculation.

Effect of bucket size and bucket range

While our proposed FPGA accelerator has demonstrated strong performance on the artifi-
cial dataset (achieving 3.1× speedup over the GPU), effective scheduling is crucial to extend 
this performance to the real-word datasets consisting of reads with various lengths. To 
maximize the utilization of the FPGA accelerator, we implemented a bucket scheduler that 
essentially groups reads with similar lengths into the same bucket. The Total Cycles spent 
on Pipeline CUs majorly can be divided into two parts: 1) Effective Cycles, which compute 
useful band scores, and 2) Wasted Cycles, caused by length variations in the pipeline where 
no useful band scores are computed. Here we define pipeline utilization as:

Pipeline utilization statistics for varying bucket ranges on D1 are shown in Table  4, 
with bucket size set to 128. The bucket range is the length range of reads in one bucket, 
where the length of one read is the sum of its read length and the number of events. 
The maximum utilization is achieved with a bucket range of 10K. This observation can 
be explained by (1) if the bucket range is too large, pipeline utilization decreases due to 
greater variation in length among reads, thus shorter reads in the pipeline have to wait 
for longer reads to finish. (2) if the bucket range is too small, it would be difficult to col-
lect enough reads within the specified range, leading to many small fragmented batches 

PipelineUtilization = EffectiveCycles/TotalCycles
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(< N reads), which cannot satisfy fully pipelined execution. As shown in Table 4, with 
a bucket range of 5K, a significant amount of waste cycles are attributed to small frag-
mented batches.

The Pipeline CU running time with varying bucket range and bucket size collected 
from the actual FPGA instance is shown in Fig. 8a. The result is in line with the utili-
zation statistics, as a bucket range of 10K yields the best performance in most cases. 
It is worth noting that for a bucket range of 5K, fragmented batches cause more per-
formance penalties than the utilization statistics indicated. This could be attributed 
to driver overhead, as too many inefficient small batches and frequent data synchro-
nizations with the FPGA accelerator introduce latency. Regarding bucket size, ideally, 
large sizes are more advantageous since every CU call and DRAM transfer through 
the XRT API incur a latency penalty. Therefore, batching as many reads as possible 
is ideal. However, the benefits plateau beyond a certain threshold. In our case, we 
observe no significant improvement once the bucket size reaches 256.

However, the GPU-based f5c groups reads into batches based on the order of read-
ing data from the disk for thread parallelism processing, without considering the vari-
ation in read lengths. The load imbalance workload across warps and blocks leads 
to low achieved occupancy. Specifically, both align-pre kernel and align-post kernel 
achieve around 20% out of their theoretical occupancy 100% and 67%, respectively.

Efficiency of ultra long CU

One out of the three SLRs on the FPGA is dedicated to the Ultra Long CU, as shown 
in Fig. 7. This design choice is motivated by two primary factors. First, ultra-long reads 

Table 4  Pipeline Utilization

Range 5K 10K 15K 20K 25K

Waste Cycles Due to Fragmenta-
tion (%)

0.09 0.03 0.01 0.01 0.01

Pipeline Utilization (%) 0.69 0.70 0.67 0.63 0.59

Fig. 8  a The effect of bucket size and bucket range on Pipeline CU running time on D1 . Bucket Size is the 
number of reads in one bucket, and Bucket Range is the range of the sum of read length and number of 
events per bucket. b Ultra-long reads ABEA execution time in different methods: multi-threads on CPU; 
Pipeline CU with one ultra-long read in each pipeline; Ultra Long CU
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processed on the CPU disproportionately dominate the total running time on large data-
sets, making acceleration critical, as discussed in Sect. 3.5. Second, SLR 1, being smaller, 
is not well-suited for a Pipeline CU, however, it can comfortably accommodate a smaller 
Ultra Long CU without pipeline control, as discussed in Sect. 4.1

The efficiency of the Ultra Long CU is verified here by performance comparison among 
the CPU, the Pipeline CU, and the Ultra Long CU. Firstly, we launch multiple threads to 
perform ABEA for ultra-long reads on the CPU. Secondly, we launch one Pipeline CU to 
perform ABEA for ultra-long reads, where there is only one valid ultra-long read in each 
pipeline. Lastly, the Ultra Long CU is used for ultra-long reads as in our accelerator. As 
Fig. 8b clearly shows, the Ultra Long CU performs better than the other two methods for 
ultra-long reads. Compared to the CPU implementation, the Ultra Long CU enhances 
the parallelism through cell score calculation. While one read in the Pipeline CU com-
putes one band every 8 cycles, the Ultra Long CU achieves a faster computation rate of 
one band every 6 cycles by removing the pipeline.

We show the benefit of incorporating both types of CUs when running on various 
datasets in the following section.

Execution time comparison

Figure 9 shows the ABEA execution time comparison across CPU, CPU/GPU-3070, and 
VU9P FPGA. The proposed accelerator on VU9P achieves an average 11.1× speedup 
over the CPU implementation across the five datasets tested. It is noteworthy that our 
accelerator can achieve over 11× speedup with the CPU on all datasets, except D3 . In 
D3 , the high percentage of ultra-long reads causes the Ultra Long CU to dominate the 
total execution latency. Due to resource limitations, handling only one ultra-long read 
at a time restricts the achievable parallelism compared to the Pipeline CU. Notably, our 
accelerator displays significantly higher effectiveness on large datasets with more than 
1  G bases, specifically D1 , D2 , and D3 , showcasing over a 4.5× speedup compared to 
CPU/GPU-3070.

Figure 9 also provides a detailed breakdown of ABEA execution. For the CPU/GPU-
3070 implementation of f5c, the execution time is broken down into stages: flattening 
data structures on CPU, CUDA memory allocation, data transfer between CPU and 

Fig. 9  ABEA execution time comparison among CPU, CPU/GPU-3070 and VU9P FPGA
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GPU, CUDA kernel and additional ultra-long reads processing on CPU. For the pro-
posed FPGA accelerator, the execution time is broken down into filling buckets on CPU 
and Pipeline/Ultra Long CU(including data synchronization and CU execution which 
overlap with each other). These breakdowns demonstrate that the proposed FPGA accel-
erator’s speedup is achieved through faster data preparation, improved throughput for 
read alignments, and the elimination of extra CPU processing. Starting with the data 
preparation, the CPU/GPU-3070 implementation incurs significant overhead due to the 
expensive CPU_flatten required to compute the index. By contrast, our proposed FPGA 
accelerator leverages a dataflow architecture that only requires lightweight fill_bucket. 
Then, in terms of accelerator performance, FPGA’s Pipeline/Ultra Long CU time is sig-
nificantly faster than GPU running time(CUDA_malloc, CUDA_transfer and CUDA_
kernel). The higher throughput of our CUs has been verified by the unit test in Sect. 4.3. 
Furthermore, unlike the GPU implementation, our FPGA accelerator does not require 
any CPU extra processing time for ultra-long reads, as this task is entirely handled by the 
Ultra Long CU on the FPGA.

Breakdown of execution time into different stages

The breakdown of execution time into various stages in CU execution is depicted in 
Fig. 10a, encompassing the filling buckets stage on the CPU, overlap stage of both Pipe-
line CU and Ultra Long CU, and extra kernel stage of either the Pipeline CU or the Ultra 
Long CU. it can be seen from these results that, across most datasets, ABEA is domi-
nated by the Pipeline CU, except for D3 , where a large percentage of ultra-long reads 
causes the domination of the Ultra Long CU.

Throughput and power consumption comparison

We compare the throughput on individual datasets Dexample , D2 and D3 , as well as 
the average throughput and power consumption of our approach against other state-
of-the-art approaches on CPU, GPU, and FPGA platforms. Dexample is a small subset 

Fig. 10  a Percentage of running time for various stages in our ABEA accelerator. All CUs operate 
independently and are invoked by different threads in an overlapped fashion. The period during which all 
CUs operate concurrently is recorded as Pipeline and Ultra Long overlap. Any CU activity occurring beyond 
this overlap period is also tracked, with the additional running times labeled as extra Pipeline or extra 
Ultra Long. b Methylation Detection workflow end-to-end execution time comparison among CPU, CPU/
GPU-3070 and VU9P FPGA
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containing 158 Mbases. Detailed platform configurations are listed in the notes of 
Table  5. Statistics are obtained by running multiple datasets of various sizes across 
these platforms. For DE5-net  [28], only the result of the small Dexample dataset is 
reported. Since the VU9P FPGA has approximately 4 × the logic resource of Altera 
Stratix FPGA [20, 21], we project the performance by scaling the best-reported imple-
mentation from the DE5-net work by 4 × . Additionally, we re-scale the power con-
sumption of the DE5-net work to compensate for technology node differences(28nm 
to 16nm) using industry reports  [22]. For the CPU/GPU-V100 [8], results from two 
large datasets (3620 Mbases and 2730 Mbases, namely labeled as D2 and D3 in our 
experimental design) and Dexample are reported. For power evaluations, we collect the 
results directly from the AWS-provided ‘FPGA-describe-image’ commands, an aver-
age power of 14w and maximum power of 24w are reported by the commands. Since 
these commands do not contain power consumed by off-chip DRAM, we assume all 4 
off-chip DRAM channels are active and collect the power numbers from Xilinx Power 
Estimator(2023.1.2)  [19]. The CPU and GPU power figures are collected using the 
‘lm-sensor’ commands and ‘nvidia-smi’ commands respectively. The proposed accel-
erator on VU9P achieves outstanding results, delivering a 10.05× speedup over the 
CPU and a 5 × speedup over the CPU/GPU-3070 in terms of throughput (Mbases/s). 
Additionally, the energy efficiency is 32.1× better than the CPU and 13.83× better than 
the CPU/GPU-3070. The proposed accelerator also demonstrates a 10.11× through-
put improvement over DE5-net equipped with the Altera Stratix V FPGA. Compared 
to the CPU/GPU-V100 setup equipped with the NVIDIA Tesla V100, our solution is 
1.81× better in terms of throughput while only consuming 7.2% of the energy. Impor-
tantly, these results achieved on the VU9P utilize only 4 available DRAM channels 
with a theoretical aggregated memory bandwidth of 77GB/s, while the NVIDIA Tesla 
V100 utilizes 32 HBM channels with a theoretical aggregated memory bandwidth of 
896GB/s.

Methylation workflow execution time comparison

The total end-to-end methylation detection workflow execution time (including disk 
I/O) comparison across CPU, GPU, and FPGA is shown in Fig. 10b. In our evaluation, we 

Table 5  Compute throughput (Mbases/s) on separate datasets, and average throughput (Mbases/s) 
/ power consumption (kbases/watt): comparison among ABEA on CPU-only implementation, GPU/
CPU acceleration, and FPGA-based acceleration

1 CPU: AMD EPYC with 12 CPU threads 
2 CPU/GPU-3070: AMD EPYC + NVIDIA GeForce RTX 3070 GPU with 8 G HBM 
3 DE5-net: Intel E5-1630V3 + Altera Stratix V FPGA with 4GB RAM. Performance is projected by assuming 4 FPGA devices are 
available to match the resource of a single VU9P FPGA. Power(28nm) is scaled to match the same technology node(16nm) 
as VU9P FPGA 
4 CPU/GPU-V100: Intel Xeon Silver4114 + Nvidia Tesla V100 GPU with 16GB HBM 

Platform Dexample D2 D3 Avg Thrpt Avg Pwr Cons

VU9P 21.9 20.8 13.4 16.9 771.54

CPU 2.03 1.79 1.54 1.68 24.07

CPU/GPU-3070 7.67 3.79 2.87 3.38 55.78

DE5-net (projected) 1.67 – – 1.67 135.1

CPU/GPU-V100 9.26 10.43 8.19 9.33 46.53
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launched 64 multiple I/O processes to optimize the I/O performance, ensuring the disk 
I/O is no longer a bottleneck. The comparison results demonstrate that the proposed 
accelerator achieves an average 2.9× speedup over the CPU implementation and an aver-
age 1.5× speedup over GPU acceleration. Notably, our accelerator performs significantly 
better on larger datasets (> 1 G bases), highlighting that ABEA introduces increasingly 
severe delays as the input size increases, a problem our accelerator effectively addresses 
with its high throughput.

Conclusions and further work
In this paper, we presented and experimentally evaluated an FPGA-based accelerator for 
ABEA. The key idea of the accelerator is to design two distinct CUs, namely, the Pipeline 
CU and the Ultra Long CU, to improve throughput and reduce energy. Implemented 
on the Xilinx VU9P platform, our accelerator achieves i) a remarkable 10.05× through-
put improvement over a classical CPU-based implementation, ii) a 1.81× speedup over a 
state-of-art GPU acceleration while consuming only 7.2% the energy, and iii) a speedup 
of 10.11× compared to a previously-published FPGA accelerator. In this work, our opti-
mization efforts have primarily focused on fine-grained pipelined inter-reads alignments 
for regular reads. Given the significant increase in ultra-long reads from third-gener-
ation sequencing technologies, our future work will mainly concentrate on improving 
the pipelining alignment without limiting read lengths, targeting specifically ultra-long 
reads.

Appendix A
Supplementary Information

Background of genome sequencing, FPGA programming and pseudocode of Post 
Stage are detailed in supplementary material.
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