
Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

RESEARCH

Feng et al. BMC Bioinformatics (2025) 26:83
https://doi.org/10.1186/s12859-024-06011-1

BMC Bioinformatics

FPGA-based accelerator for adaptive banded
event alignment in nanopore sequencing data
analysis
Yilin Feng1*†, Zheyu Li1†, Gulsum Gudukbay Akbulut1, Vijaykrishnan Narayanan1, Mahmut Taylan Kandemir1 and
Chita R. Das1

Abstract

Background: Adaptive Banded Event Alignment (ABEA) stands as a critical algorith-
mic component in sequence polishing and DNA methylation detection, employing
dynamic programming to align raw Nanopore signal with reference reads. Motivated
by the observation that, compared to CPUs and GPUs, cutting-edge FPGAs demon-
strate—in certain cases—superior performance at a reduced cost and energy con-
sumption, this paper presents an efficient FPGA-based accelerator for ABEA, leveraging
the inherent high parallelism and sequential access pattern within ABEA.

Result: Our proposed FPGA-based ABEA accelerator significantly enhances ABEA
performance compared to the original CPU-based implementation in Nanopolish
as well as the state-of-art acceleration on GPU and FPGA platforms. Specifically, target-
ing Xilinx VU9P, our accelerator achieves an average throughput speedup of 10.05×
over the CPU-only implementation, an average 1.81× speedup over the state-of-art
GPU acceleration with only 7.2% of the energy, and a speedup of 10.11× compared
to an existing FPGA accelerator.

Conclusion: Our work demonstrates that intensive genome analysis can benefit
significantly from cutting-edge FPGAs, offering improvements in both performance
and energy consumption.

Keywords: Nanopore sequencing, Genome polishing, Signal-level alignment, FPGAs,
Hardware acceleration

Introduction
DNA sequencing is the process of determining the precise order of nucleotides (A, T,
C, G) within a DNA molecule. Among the emerging third-generation sequencing tech-
nologies, Nanopore sequencing stands out for its capabilities to produce long sequence
reads, ranging from thousands to tens of thousands of base pairs at a high speed. This
sequencing technology is valuable for a wide range of applications in genomics, epige-
netics, and transcriptomics.

†Y. Feng and Z. Li contributed
equally to this work.

*Correspondence:
ypf5071@psu.edu

1 Department of Computer
Science and Engineering, The
Pennsylvania State University,
201 Old Main, University Park, PA
16802, USA

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-06011-1&domain=pdf

Page 2 of 24Feng et al. BMC Bioinformatics (2025) 26:83

The nanopore sequencing detects individual DNA molecules as they pass through
a biological nanopore and generates continuous electrical signals or current traces.
Changes in these signals are measured to identify nucleotide bases [36] via a ‘basecall-
ing’ step. Long reads generated by nanopore sequencing facilitate the assembly of com-
plex genomes, the characterization of structural variations, and the analysis of repetitive
regions, which are challenging for short-read sequencing technologies.

However, nanopore sequencing technologies also come with their specific challenges.
For example, compared with second-generation sequencing, nanopore sequencing tech-
nologies exhibit higher error rates (up to 8%), due to probabilistic methods employed
in converting electrical signals to nucleotide strings [3, 26]. Consequently, a subse-
quent ‘polishing’ process is necessary to improve the accuracy and quality of nanopore
sequencing data. This polishing process aligns the raw signals to a biological reference
sequence to correct sequencing errors and detect the modified nucleotides. Given the
long length of the reads, these downstream processes for analyzing nanopore sequenc-
ing data are computationally intensive and require specialized optimization and accel-
eration strategies.

Adaptive Banded Event Alignment (ABEA), introduced by Nanopolish [31], is a key
algorithmic component of the genome polishing workflow, aligning the raw signals to
a reference sequence via a dynamic programming (DP) strategy. Our profiling results
show that ABEA takes approximately 70% of the total CPU processing time as imple-
mented in Nanopolish. Prior works have attempted to accelerate the ABEA algorithm
on various hardware architectures. For example, in CPUs, Nanopolish [31] and Multi-
Nanopolish [9] launch multiple threads to deal with batches of reads. In comparison,
f5c [8] optimizes ABEA on heterogeneous CPU-GPU architectures, processing most of
the reads on GPU and the remaining longer reads on CPU.1 f5c can perform 3–5× faster
than the CPU-only implementation of ABEA in Nanopolish. Samarasinghe et al. [28] use
OpenCL to accelerate ABEA targeting FPGAs with energy considerations. Their work
consumes only 43% of the energy required by the GPU-based acceleration in f5c with a
performance penalty of 4 × slower execution.

Recent work also utilizes deep learning to correct errors in nanopore sequencing.
HERRO [34] is proposed as a deep learning-based framework for correcting Simplex
nanopore reads, achieving a 100-fold improvement in accuracy. However, in the context
of telomere-to-telomere assemblies, HERRO targets nanopore reads longer than 10,000
base pairs, instead of all reads with varying length. Additionally, the training and infer-
ence of HERRO take up to several hours on 4 Nvidia A100 GPUs, making it quite time-
consuming and highly energy-inefficient. In comparison, ABEA achieves comparable
accuracy (>99%) for assembly with higher throughput and less energy consumption [10].

On the other hand, some other works skip the computation-intensive basecalling
step and analyze the raw signal directly to meet real-time processing needs. Such
works primarily involve subsequence dynamic time warping (sDTW) [6, 27, 29] to
align raw signal to reference genomes and eject uninterested reads directly. sDTW
has a similar dynamic programming pattern to ABEA and also works for raw signal

1 Specifically, the reads whose average events per base exceed 5 are processed on CPU.

Page 3 of 24Feng et al. BMC Bioinformatics (2025) 26:83

analysis. However, while sDTW mainly works as a pre-filter to reject untargeted reads
in real time, ABEA enhances the accuracy of the assembly after basecalling and read
mapping. Unlike ABEA, which does not have size limitations, sDTW is impractical
for reference genomes of gigabase size, such as the human genome, due to unaccepta-
ble latency. Additionally, ABEA delivers higher alignment accuracy based on precise
event-level alignment and adaptive bands to reduce noise.

Compared with CPUs and GPUs, modern FPGAs offer—in certain cases – high per-
formance at a lower cost and with reduced energy consumption [4] (the details of the
FPGA used in this study are given in Supplementary Materials: Section 2). Addition-
ally, FPGAs exhibit the inherent advantage of flexibility, allowing the programmers to
configure memory and power usage depending on the specific tasks required by the
application. However, the previous FPGA accelerator for ABEA [28] exhibits lack of
parallelism in cell calculation in DP table, and also does not optimize memory access
patterns to make full use of available memory bandwidth based on the specific char-
acteristics of ABEA.

Motivated by the observations above, this paper develops, implements, and evalu-
ates an efficient FPGA-based accelerator for ABEA using Xilinx Vivado High-Level
Synthesis (HLS) tool-set [18]. Despite the massive parallel calculation involved in the
DP table of ABEA, deploying ABEA on an FPGA presents several critical challenges.
Firstly, significant challenges arise from the ‘data dependencies’ among multiple
bands (rows in the DP table) and cells, rendering the parallelization of ABEA non-
trivial. Additionally, the varying processing times of different lengths of reads lead to
load imbalance, degrading the overall performance substantially. Thus, leveraging the
hardware architecture of FPGA, this paper addresses these challenges and makes the
following main contributions:

• It proposes an FPGA-based accelerator for ABEA, with the goal of exploiting both
intrinsic high parallelism and sequential data access pattern characteristics exhib-
ited by ABEA.

• The proposed ABEA accelerator allows multiple reads to perform alignment con-
currently in a pipelined fashion, benefiting from the data independence across the
bands. This new design enables us to achieve the throughput of one band per cycle
for each alignment pipeline.

• Our accelerator integrates two specialized types of Compute Units (CUs): the
Pipeline CU and the Ultra Long CU. The Pipeline CU is optimized for processing
buckets of regular reads in a fine-grained pipelining approach. On the other hand,
the Ultra Long CU is designed to handle the alignment of ultra-long reads indi-
vidually, ensuring a balanced load and an efficient alignment process.

• We perform a thorough empirical evaluation of ABEA under different types of
compute engines. Our evaluations indicate that the proposed FPGA-based ABEA
accelerator demonstrates a remarkable average throughput improvement of 10.05×
compared to a classical CPU-only implementation [31]. Further, in comparison
to a state-of-the-art GPU-based acceleration [8], it achieves an average speedup
of 1.81× while consuming only 7.2% of the energy. Additionally, it achieves a
throughput speedup of 10.11× compared to an existing FPGA accelerator [28].

Page 4 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Background
Adaptive banded event alignment (ABEA)

As a vital component of the genome polishing and methylation detection workflow
(genome sequencing and DNA methylation workflow are detailed in Supplementary
Materials: Section 1), the ABEA algorithm accounts for approximately 70% of the total
CPU processing time in Nanopolish, based on our profiling results. Given the substan-
tial volumes of data produced by the nanopore sequencing technology, there is a press-
ing need for efficient solutions to accelerate ABEA and enhance the performance of the
widely-used nanopore sequencing applications.

The ABEA algorithm performs signal-level alignment between events and k-mers to
obtain the true annotation. Specifically, events identified from raw signals are aligned
to a generic k-mer model signal, which encapsulates the frequency distribution of all
possible k-mers within a sequence. The generic k-mer model is constructed using the
base-called read and a pore-model table provided by Oxford Nanopore Technologies
(ONT). The pore-model table contains comprehensive information on all potential
k-mers, including their corresponding mean signal value and standard deviation. Con-
sequently, the k-mer model signal is generated by retrieving the appropriate entry in the
pore-model table for each k-mer in the read. By aligning events to k-mers, the ABEA
algorithm can determine which event corresponds to a specific k-mer in the reference
sequence (read mapping results to a reference genome) [30].

Sequence alignment typically utilizes the dynamic programming (DP) approach to
compute the alignment score at each pair of positions within a DP table [23, 33]. The pro-
cess consists of three steps: initialization, score calculation, and backtracking. Due to the
quadratic time and memory space complexity of traditional DP alignment, banded align-
ment techniques are utilized to restrict the search space. In banded alignment, bands of
fixed width, centered around the main diagonal, are defined as the DP table. During the
alignment process, only the cells within these bands are calculated. As depicted in Fig. 1,
only the cells intersecting with these bands are computed, and these cells are marked
with ‘*’. To ensure that the alignment falls within the bands, an appropriate bandwidth

Fig. 1 Alignment with a fixed bandwidth set to 3. Only cells within bands are calculated, marked with ‘*’.
Backtracking traces back to find the optimal alignment as the red arrows show

Page 5 of 24Feng et al. BMC Bioinformatics (2025) 26:83

needs to be set. In the backtracking step, the alignment traces back to find the optimal
alignment, as indicated by the red arrows shown in the figure.

Given the substantial length of reads with a high error rate produced by nanopore
sequencing, alignments frequently deviate significantly from the diagonal. This devia-
tion requires a wider bandwidth for alignment, posing substantial computational chal-
lenges. To address this issue, ABEA utilizes an adaptive band scheme instead of static
bands when aligning events to k-mers. In this adaptive approach, bands are dynamically
adjusted by moving either downward or to the right, determined by the Suzuki–Kasa-
hara heuristic rule [35], as depicted by the blue arrows in Fig. 2a. This dynamic adap-
tation ensures that the alignment result falls within these bands, facilitating efficient
alignment while maintaining accuracy.

Figure 2 provides a simple example illustrating ABEA with a bandwidth set at 3. Fig-
ure 2a depicts the score calculation step, featuring 12 bands aligning 8 events to 5 k-mers
of reads. These 12 bands are computed sequentially along the left diagonal, from top-left
to bottom-right. Each score calculation depends on three previously calculated scores
from the left, up, and previous diagonal cells. For example, as shown by the red arrows
in Fig. 2a, cell(4,2) depends on cell(4,1), cell(3,2), and cell(3,1). In this case, the calcula-
tion of the n-th band is dependent on the (n-1)-th band and (n−2)-th band. Following
the score computation, the backtracking step starts from the maximum cell score at the
last k-mer, tracing back along recorded directional flags. The resulting backtracking path
represents the ‘optimal’ alignment, as depicted by the red arrows in Fig. 2b.

Algorithm 1 provides the pseudo-code for ABEA. The input data includes k-mers of
the read, events, and pore-model table. The resulting alignment is represented as a list

Fig. 2 Alignment with adaptive bands a Score calculation step. Bands with a width set at 3 are dynamically
adjusted by moving downward or to the right, as depicted by blue arrows. Bands are computed from the
top-left to the bottom-right along the left diagonal. Each score calculation depends on three previously
calculated scores from the left, up, and previous diagonal cells, as bold red arrows show. b Backtracking step.
The optimal alignment is found by tracing back from the maximum score along the recorded directional
trace flags, as indicated by red arrows

Page 6 of 24Feng et al. BMC Bioinformatics (2025) 26:83

of event and k-mer pairs. Line 1 declares three intermediate arrays: band_score, trace_
table and band_lower_left. The band_score, trace_table store the scores and trace-back
direction flags in bands. The band_lower_left array holds the coordinates of the first cell
(event index, k-mer index) for each band. Lines 2–4 initiate scores and trace flags of the
first two bands. Lines 5–6 initiate the starting cell’s coordinates for the first two bands.
For example, band_lower_left[0]={1,−1} and band_lower_left[1]={1,0} in Fig. 2. Next, the
for-loop between lines 7–24 iterates over the remaining bands. The direction of band
movement is determined in line 8 and the starting cell’s coordinates are updated in lines
9–13. If the movement direction is to the right, the k-mer index increases by one while
the event index remains unchanged for the starting cell’s coordinates. Conversely, if the
movement direction is downward, the event index increases by one while the k-mer
index remains unchanged. Subsequently, the index bounds of each band are decided in
line 14, ensuring that only cells within the boundary of events or k-mers are considered.
The inner loop from lines 15 to 23 calculates scores within the index bound. Firstly, three
neighboring scores are obtained. Then, the value of lp_emission is calculated, represent-
ing the log probability value that signifies the likelihood of a specific event correspond-
ing to a particular k-mer. lp_emission is used along with some heuristically-determined
constants (lp_skip, lp_stay, and lp_step) to compute scores from the diagonal, upward,
and leftward directions. The maximum score is then determined, and both the maxi-
mum score and the direction from which it is obtained are stored in the band_score and
trace_table arrays, respectively. After iterating over all bands, ABEA traces back from
the maximum score at the last k-mer to obtain the alignment, represented as (event
index, k-mer index) pairs along the direction flags recorded in the trace table.

Page 7 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Algorithm 1 ABEA algorithm

Related works

Nanopore sequencing data analysis is usually performed by aligning genomic reads to
the reference genome. Based on the input types, the alignments can work on base space
or signal space. The conventional workflow translates raw signals generated from Nano-
pore sequencers to strings of nucleotide bases with basecallers [24, 38], and then maps
these strings to reference genome to get some mapping locations for downstream analy-
sis [5, 13]. Due to the high latency, high cost and low throughput of the basecalling step,
some methods analyze raw signals in real-time for selective sequencing [6, 27].

For the conventional nanopore data analysis workflow, basecalling primarily relies on
deep neural networks (DNN) for high accuracy, such as Guppy [39] and Dorado [37].
Due to the computational intensity of these methods, some hardware-specific designs

Page 8 of 24Feng et al. BMC Bioinformatics (2025) 26:83

were proposed for acceleration. RUBICALL [32] is the first hardware-optimized mixed-
precision basecaller evaluated on a GPU and spatial vector computing system that out-
performs the state-of-the-art basellers. GenPIP [16] is an in-memory genome analysis
accelerator by integrating basecalling and read mapping tightly. DeepNano-coral [25] is
an energy-efficient basecaller developed for Edge TPU, consuming only 10w of power.
After basecalling, traditional read mappers, such as minimap2 [13], follow Seed-Filter-
Align paradigm to align basecalled reads to a genome reference, identifying similarities
between sequences. Pre-alignment filtering based on specific architecture [1, 2, 11] is
also employed to eliminate highly dissimilar pairs and accelerate read mapping. Addi-
tionally, since errors are often introduced by nanopore basecalling from noisy raw signals,
especially in long reads, various methods have been proposed for error correction. ABEA
[31] aligns raw signals to the mapping results to recover the lost information in basecall-
ing. HERRO [34] corrects Simplex nanopore reads longer than 10,000 base pairs using
deep learning.

Due to the computational intensity of basecalling in conventional analysis workflows,
signal space-based analysis methods for selective sequencing without basecalling are
proposed to satisfy the real-time processing requirements. During selective sequencing,
classification is performed to eject non-target reads, saving significant time and cost.
Subsequent dynamic time warping (sDTW) [15] is commonly used by existing methods
to filter non-target reads by aligning signals to reference genomes. Due the quadratic
complexity of sDTW, several hardware-specific acceleration methods were proposed.
SquiggleFilter [6] is a hardware/software co-designed filter on an edge device for virus
detection based on a custom sDTW, which adaptively adjusts the length of read prefix
to improve accuracy. DTWax [27] adapts SquiggleFilter’s underlying sDTW algorithm
to suit GPU via floating point operations and Fused-Multiply-Add operations for high
throughput. HARU [29] targets low-cost and resource-constrained system-on-chip
devices and accelerates sDTW with on-chip FPGA using fine-grained parallelism. Addi-
tionally, indexing methods [41], hash tables [7] and Seed-Filter-Align mappers [14] are
also be employed for direct raw signals analysis.

While most analysis workflows utilize conventional CPU, GPU implementations,
there is a growing interest in accelerating these workflows using hardware implementa-
tions such as FPGAs. Many alignment workflows share a common computational pat-
tern - filling a 2D Dynamic Programming(DP) score matrix to compute the edit distance,
which can be efficiently mapped to a systolic style architecture consisting of multiple
Processing Elements(PE) on an FPGA. Early works, such as CELL [40], maps the Smith-
Waterman algorithm using the systolic approach on FPGA, accelerating the distance
computation stage between two genome strings. Another approach [17] also employs
systolic-style architecture on FPGA, performing both the forward distance computation
stage and traceback mapping stage. Gandafl [12] incorporats a dataflow architecture to
perform an end-to-end genome mapping flow, leveraging optimizations like reads inter-
leaving and software co-design to further enhance the efficiency and reduce host-FPGA
communication overhead. However, Gandafl only addresses short-read mapping without
considering variable lengths. While these previous works have shown promising results,
they mostly focus on genomic reads in string representations at the base level. Addition-
ally, they only address limited workloads (fixed-size or short reads). Furthermore, none

Page 9 of 24Feng et al. BMC Bioinformatics (2025) 26:83

of them optimize the heuristic move-up/move-down behavior of the ABEA algorithm.
One recent work [28] attempts to accelerate the signal-space ABEA on FPGA. However,
it lacks parallelism among cell calculations and multiple reads alignment, significantly
limiting its speedup. In contrast, our accelerator integrates two types of CUs (one for
regular reads and the other for ultra-long reads) and employs an ‘inter-read pipeline’
to enhance the parallelism across multiple reads, addressing the limitations of previous
approaches.

Methodology
Challenges in hardware optimization for ABEA

The core of ABEA lies in computing and storing the ‘band score table’ and ‘trace table’,
both updated from the top-left to the bottom-right. It is to be noted that no data depend-
ency exists in alignments among different reads or score calculations among multiple
cells of a band. Given this high degree of parallelism in score calculations of ABEA,
FPGA is positioned as a promising device for its acceleration. However, the paralleliza-
tion of ABEA for FPGA deployment poses at least two challenges. Firstly, there exist
‘data dependencies’ across different bands, with the movement direction of the current
band determined by the previous band using the Suzuki-Kasahara rule. Additionally,
each score calculation relies on scores from the left, diagonal, and up cells, which are
derived from the previous two bands. Secondly, the varying lengths of reads lead to sig-
nificant differences in processing times. Unfortunately, this load imbalance degrades the
performance, especially as the longest read dominates the total processing time.

To address these challenges, we propose the following solutions. Firstly, we employ
two-level parallelism for ‘inter-read alignment’ to address the data dependency issues.
This approach allows for parallel score calculations and pipelined processing of multiple
reads. Specifically, launching a sufficient number of new reads establishes a ‘full pipeline’,
resolving data dependence between consecutive bands within a read. Figure 3 depicts
the timeline of pipelined inter-read alignment, where input and output operations take
1 cycle separately and computation takes 3 cycles. In this scenario, launching at least 3

Fig. 3 Timeline of inter-read alignment in full pipeline. Each input and output takes 1 cycle and computation
takes 3 cycles. At least 3 reads enable a full pipeline

Page 10 of 24Feng et al. BMC Bioinformatics (2025) 26:83

reads working in a full pipeline adequately addresses the band dependency. For instance,
when band 1 of read 0 begins calculation on the 4th cycle, its preceding band would have
been already prepared. Our accelerator requires 8 cycles for one band calculation; hence,
a full pipeline would need at least 8 reads. Moreover, based on the observation that each
band only depends on the previous two bands, we retain only the three successive bands
for each iteration, thus reducing space complexity significantly. Finally, a ‘data partition-
ing’ approach based on the number of bands is utilized to achieve load balance.

High‑level accelerator architecture

Figure 4 shows the high-level diagram of the proposed accelerator. It is to be noted that,
multiple Compute Units (CUs) can be implemented on the FPGA platform, and each
CU can be called and controlled independently. in our design, we consider two types of
CUs, namely, Pipeline CU and Ultra Long CU. The Pipeline CU is optimized for through-
put, which allows fined-grained inter-read pipelining. In comparison, the Ultra Long CU
is optimized for latency and low hardware utilization, which only accepts one read at a
time. This CU targets scenarios where achieving inter-read pipelining becomes challeng-
ing, especially in the case of ultra-long reads. The forthcoming subsections will delve
into the specifics of these design decisions. The quantity of implementable CUs depends
on the specifications of the FPGA. Consequently, there exists a tradeoff in determining
the priority between these two types of CUs. Table 1 lists the essential parameters used
in our architecture design. All arithmetic operations are performed in standard fixed-
point representations. We have validated the results against a CPU-based C++ imple-
mentation, to ensure enough bits are reserved for all numerical values.

Initially, the C++ Methylation pipeline is running on the Host CPU. A bucket distribu-
tor partitions the incoming reads into different buckets based on their ‘length’ (number
of bands). Thus, reads with similar lengths are assigned to the same bucket. The details of
our bucket scheduling are described in Supplementary Materials: Section 4. Next, when-
ever a bucket has collected enough reads for a batch transfer, a Xilinx Runtime Library

Fig. 4 High-level architecture diagram of the proposed accelerator. C++ Methylation is running on Host CPU
and bucket distributor partitions reads into different buckets based on lengths. Once a bucket is full, Xilinx
Runtime Library (XRT) will be invoked for transferring data from Host DRAM to FPGA DRAM and launching
the specific CU

Page 11 of 24Feng et al. BMC Bioinformatics (2025) 26:83

(XRT) API is invoked to initiate a transfer from Host DRAM to FPGA DRAM through
the PCIe interface. Once the input data are available in FPGA DRAM, the launch of the
specific CU and output data transfer are also handled by XRT APIs.

Model reference initializer

The ABEA algorithm requires a pore-model table when aligning, which is essentially a
look-up table between text representation (ACTG) and electrical signals, as discussed in
the previous section. The pore-model table is universal and valid for the entire dataset,
thus only one initialization is required at the very beginning. As the FPGA side of Fig. 4
shows, each CU is accompanied by a Model Reference Initializer. For the Pipeline CU,
the pore-model table is maintained as N copies in Block RAMs, allowing independent
access for multiple reads. For the Ultra Long CU, only one copy is required since there is
no inter-read pipelining.

Dataflow kernel

Figure 5 shows components of the Dataflow Kernel in the Pipeline CU and the details of
each component are provided in the following subsections. The kernel is designed based
on a streaming dataflow architecture, where inputs and outputs are all connected via
stream FIFOs. This allows all stages and sub-functions to run concurrently based on the
availability of input data. More importantly, any external DRAM access latency is hidden
by the stream FIFO buffer.

Data loading stage

As depicted on the left side of Fig. 5, this stage is responsible for accessing input data,
specifically reads and events, for downstream stages. Note that external DRAM access is
very expensive and can easily reach hundreds of cycles without careful optimization. In
terms of the overall performance, the difference can be 1.5×−2× in our unit experiments.
To optimize the external DRAM bandwidth efficiency, we aggregate multiple consecu-
tive reads/events into a single vector access. While larger vector sizes do consume more
hardware to interface with DRAM channels, we enlarge the specific vector sizes (K and
J) through unit experiments until no noticeable benefits are observed.

Table 1 Architecture parameters, descriptions, and the implemented values in our work

1 B=100 is typically used in previous studies [8] and we adopted the same configuration here. N is determined by the Vitis
tool and discussed in Sect. 3.4.5. P is chosen to match the Port Width of FPGA DRAM channel. K and J are determined
experimentally and also discussed in Sect. 3.4.1. M and F are determined experimentally and we also report their impact on
accuracy in Sect. 4.2. Port Width is an FPGA device parameter and cannot be changed

Parameters Description Values

B Bandwidth; number of entries in each ABEA band 100

N Number of reads to enable full pipeline 8

P Number of bands processed in post analysis for backtracking in parallel 2

K Read vector size, number of consecutive read characters in one vector access 64

J Event vector size; number of consecutive event floats in one vector access 16

M Number of bits to represent integer part in standard fixed point representation 30

F Number of bits to represent the fractional part in standard fixed point representation 10

Port width Width of FPGA DRAM interface 64 bytes

Page 12 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Event vector distributor & read vector distributor

Once data are loaded, the vectors containing the consecutive reads/events are received
and then decomposed into individual events (represented as float types) or read bases
(represented as char types) by the Distributors. Each read alignment requires its own
event FIFO and read FIFO, due to its unique access pattern. As a result, a total of N
stream FIFOs (buffering float event) and a total of N stream FIFOs (buffering char
read) are implemented. Each distributor is responsible for distributing the decomposed
vectors into N/2 stream FIFOs–emitting one float event or one char read to one
stream FIFO every cycle. Thus, two instantiations of the Event Vector Distributor and
the Read Vector Distributor are implemented to ensure that we have no I/O bottleneck
for downstream stages.

Event generator

As shown in the middle of Fig. 5, the Event Generator receives the decomposed events
from the Event Vector Distributor and then converts the float event into a standard
fixed-point representation, allowing efficient computation in the following stages.
Depending on the current kernel status, the Event Generator sends the converted events
to either the Compute Stage or the Post Stage. Similarly, as discussed above, N inde-
pendent instantiations of the Event Generator are implemented to support inter-read
pipelining.

Kmer generator

We utilize a k-mer size of 6 in this work as 6-mer affects the current of ONT nanopore
signal. As the input data streams in, a shift register converts every 6 consecutive bases
represented in text (ACTG) into a k-mer index. Then, the k-mer index is used to retrieve
the corresponding k-mer represented in the electrical signals using the Model Reference.
As discussed above, N independent instantiations are required.

Fig. 5 Details of Dataflow Kernel in the Pipeline CU. The Data Loading Stage loads reads and events from
DRAM using vector access. Events/reads are decomposed into individual events as float type or bases as
char type by the Event Vector Distributor and the Read Vector Distributor, respectively. The float event
is converted into a fixed-point representation and sent to the Compute Stage or the Post Stage by Event
Generator. the Kmer Generator converts consecutive bases into k-mers. The Compute Stage performs
alignment and generates score and trace tables. The max score collected by the Max Stage and the reverse
trace table produced by the Trace Out Stage are transferred to the Post Stage for performing backtracking. All
inputs and outputs are connected via stream FIFOs, allowing all stages and sub-functions to run concurrently

Page 13 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Compute stage

The Compute Stage receives k-mers/events from previous stages and performs the
alignment. The details of the Compute Stage are shown in Fig. 6. The score computa-
tion within one band requires the most recent B events, B k-mers, and the previous
two band scores, as reflected on lines 16–21 of Algorithm 1. As shown in Fig. 6, the
events (orange blocks) and k-mers (green blocks) are stored in separate shift register
structures, each with B entries. As the band moves right or down, the Event Move
Control/K-mer Move Control shifts in one new event/k-mer and places it at the top
of the shift register. The oldest event/k-mer automatically gets pushed out. This shift
behavior naturally addresses the Suzuki Kasahara rule described in lines 8–13 Algo-
rithm 1. Two previous band scores are also stored and updated whenever a new band
score is produced. Every event, k-mer, and band scores have N instantiations which
keep track of N reads in the Compute Stage. At each cycle, the Pipeline Control guides
the Parallel Band Aligner to select from the next ready inputs and perform alignment,
achieving inter-read pipelining. Intra-read parallelism is achieved by performing B
parallel score calculations, as captured in lines 15–23 Algorithm 1. The filtered scores
and trace tables are sent to the downstream stages. It can be observed that the Parallel
Band Aligner requires 6 cycles of latency to produce the result. Also, adding the Pipe-
line Control increases the latency from 6 cycles to 8 cycles when implemented in Vitis
HLS 2021.2. Thus, an N value of 8 is required to enable a full pipeline, with 1 cycle ini-
tiation interval. When fully pipelined, the Compute Stage can align and produce one
band of the score/trace table every cycle.

Fig. 6 Details of the Compute Stage in the Dataflow Kernel. N instantiations of the most recent B events/
k-mers and the previous two bands’ scores are required. Events/k-mers are stored in a shift register structure
with B entries. As the band moves right or down, the Event Move Control/Kmer Move Control shifts in one
new event/k-mer and pushes out the oldest ones. Whenever a new band score is produced, the previous two
band scores get updated. The Pipeline Control guides the Parallel Band Aligner to select from the next ready
inputs and perform alignment in each circle, achieving inter-read pipelining. B parallel score calculations are
achieved for intra-read parallelism. One band throughput is achieved if fully pipelined

Page 14 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Max stage

As shown in the middle right of Fig. 5, the Max Stage is responsible for collecting all
max scores for all N reads, as well as forwarding them to the downstream stages for
backtracking.

Trace out stage

The aligned trace tables produced by the Compute Stage are streamed into the Trace
Out Stage at one band/cycle rate. It is impossible to store all trace tables on local Block
RAMs due to the unpredictable length; so, all trace tables are required to be written back
into FPGA DRAM. Each entry in the trace table is a 2-bit flag. To avoid the underutiliza-
tion of the DRAM bandwidth, all B entries within one band arriving at the Trace Out-
put Stage are encoded into a single customized vector with 256 bits. Similar to the Data
Loading Stage, an external DRAM access is not initiated until 32 bands are accumulated
at the Trace Out Stage. Once all N reads finish the alignment, the Output Stage starts
to read the trace table back in reverse order (i.e., from the last band to the first band)
and sends it to the Post Stage for post-analysis. Similarly, the trace tables are transferred
through burst accesses and then reordered. Considering a maximum DRAM bandwidth
of 64 bytes (512 bits) per cycle, two bands are streamed out every cycle for post-analysis.

Post stage

The last stage on the right side of Fig. 5 is responsible for backtracking to find the opti-
mal alignment—line 25 in Algorithm 1. In our implementation, P reads perform align-
ment in a fully pipelined fashion at the Post Stage. Unlike the alignment, the Post Stage
does not include complicated score calculation steps and can be pipelined and paral-
lelized easily using pragma unroll.2 Two bands are fetched from streams at every
cycle in reverse order, and processed in parallel. The aligned positions are sent to the
output streams. Details of the Post Stage algorithm are given in Supplementary Material:
Section 3.

Ultra‑long reads alignment

Due to the varying lengths, in the worst case when there is only one remaining align-
ment in the pipeline, the throughput decreases to 1 band in every N cycle from 1 band
in every 1 cycle. To address this potential problem, we divide the alignments into differ-
ent ‘buckets’ according to their number of bands so that the alignments with a similar
number of bands can be processed in a pipelined fashion. Besides, despite the ultra-long
reads constituting under 5% of the overall dataset, their alignment on CPU was identi-
fied as a bottleneck in previous work [8], slowing the overall running time by up to 2 × .
If we were to follow the same approach as in the previous work [8], aligning these ultra-
long reads on the CPU alone, it would disproportionately dominate our accelerator’s
running time too. These alignments take much longer execution time, and it is difficult
to construct a bucket with a similar length due to large variances in lengths. As a result,
they are processed one by one instead of in a pipelined fashion with other alignments.

2 This directive instructs the compiler to unroll a given loop by a factor of n so that the loop’s body is replicated to create
n copies, reducing the number of iterations by a factor of 1/n.

Page 15 of 24Feng et al. BMC Bioinformatics (2025) 26:83

We designed a specific CU, namely, the Ultra Long CU that is optimized for single-read
alignment. The Ultra Long CU removes all pipeline-related logic and memory structures
in the Compute Stage, reducing the latency from 8 to 6 cycles. Similarly, only one instan-
tiation of all other stages is required, which also leads to lower hardware resource utili-
zation. We evaluate the effectiveness of our Ultra Long CU in the following section.

Implementation and results
FPGA implementation

As shown in the previous section, our FPGA accelerator consists of multiple independ-
ent CUs, instead of a single monolithic CU. This design strategy is motivated by two key
factors. First, it allows us to prioritize resources for specific types of CUs, optimizing
their performance. And, second, implementing a large monolithic CU on FPGA often
presents various challenges, including routing congestion and timing violations.

In this work, we target Xilinx VU9P offered by Amazon AWS F1 instance. As shown
in Fig. 7, three Super Logic Regions (SLR) are available in Xilinx VU9P. We fit one Pipe-
line CU into a single SLR region, avoiding cross-SLR routing. For SLR1, around 30% of
resources are reserved for device control (Static Region), which makes it suitable for fit-
ting into a smaller ‘Ultra Long CU’. It is worth noting that each Pipeline CU has access to
two independent DRAM channels while the Ultra Long CU shares one DRAM Channel
with each Pipeline CU. Clearly, more CUs can be implemented if a larger FPGA is avail-
able, such as Xilinx U250.

The resource utilization of the proposed accelerator deployed on Xilinx VU9P is
detailed in Table 2 with the frequency set to 100 MHz. Our implementation comprises 2
Pipeline CUs and 1 Ultra Long CU.

Fig. 7 Device map of Xilinx VU9P FPGA. Each Pipeline CU fits in a single Super Logic Region (SLR) and an
Ultra Long CU fits in the smaller SLR1 with a reserved Static Region. Ultra Long CU shares one DRAM channel
with each Pipeline CU

Table 2 FPGA SLR resource utilization for each CU type after full placement

CU type BRAM DSP FF LUT

Pipeline CU 0.37k(50%) 0.66k(25%) 174k(25%) 275k(70%)

Ultra Long CU 0.26k(35%) 0.66k(25%) 125k(18%) 228K(58%)

Page 16 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Experimental design

In our evaluations, we compare the performance of our ABEA accelerator against differ-
ent prior works on CPU, GPU, and FPGA platforms in terms of i) throughput, ii) power
consumption, and iii) execution time. The CPU-only multi-threaded implementation in
Nanopolish [31] is tested on an AMD EPYC processor with 12 CPU threads. f5c [8] is
the acceleration of ABEA on heterogeneous CPU-GPU architectures and is tested on an
NVIDIA GeForce RTX 3070 GPU with 8 G GDDR6X RAM and an Nvidia Tesla V100
GPU with 16GB HBM, respectively. The evaluation results of the acceleration [28] using
OpenCL framework on Altera Stratix V FPGA with 4GB RAM, are obtained directly
from their works. Additionally, we analyze the breakdown of execution time across dif-
ferent stages, evaluate the effect of bucket size and bucket range on the performance,
and validate the efficiency of the designed Ultra Long CU.

The ‘Nanopore WGS Consortium’ sequencing dataset [10] is used for our experi-
ments. This dataset is available in the project under accession PRJEB23027 from Euro-
pean Nucleotide Archive (ENA).3 Reads of the human genome (cell line NA12878) from
53 individual flow cells are publicly available under the project. We selected reads from
five individual flow cells under accession ERR2184700, ERR2184710, ERR2184719,
ERR2184733 and ERR2184734, and labeled them as D1 , D2 , D3 , D4 and D5 , respectively.
Additionally, Dexample is a small subset of the NA12878 WGS Consortium data. Note
that these datasets were also used in recent studies (e.g., [8, 28, 31]). The relevant char-
acteristics of these datasets are listed in Table 3, including the total number of reads,
number of ultra-long reads, and total read bases. Ultra-long reads are defined as the
number of events that exceed 120,000 or read lengths that exceed 60,000. We perform
alignment for ultra-long reads on the Ultra Long CU, instead of the Pipeline CU. It is to
be emphasized that our accelerator does not perform any alignment on the CPU, unlike
the conventional GPU-based methods (e.g., f5c), which rely on the CPU to perform the
ultra-long reads.

We have verified the accuracy of our ABEA accelerator by comparing the aligned pairs
generated by Nanopolish with those produced by our accelerator. The observed differ-
ences in positions of aligned pairs, attributed to floating-point arithmetic across differ-
ent architectures, were found to be less than 0.03%.

In the following sections, we first demonstrate the performance gain achieved due to the
architectural difference in comparison with GPU/CPU in Sects. 4.3 and 4.5. Next, we high-
light the effectiveness of our bucketing strategy in leveraging multiple CUs on the FPGA

Table 3 Relevant statistics on our datasets

Datasets D1 D2 D3 D4 D5 Dexample

No. of reads 668016 451020 270189 117140 38335 19275

No. of ultra-long reads 4631 6417 9321 19 58 103

Total bases (Mbases) 3203 3620 2730 696 190 158

3 https://www.ebi.ac.uk/ena/browser/home.

Page 17 of 24Feng et al. BMC Bioinformatics (2025) 26:83

accelerator in Sect. 4.4. Finally, we present the performance improvements across various
datasets and average throughput/power consumption in real-world workloads.

Quantitative comparison between GPU and FPGA

In this section, we analyze the performance benefit caused by pure hardware architectural
difference, that is, excluding all other effects such as software scheduling and length vari-
ances. We created an artificial dataset with 128 identical reads of 82k bases. This allows
GPU and FPGA to generate the maximum achievable throughput.

Our FPGA accelerator has two Pipeline CUs running at 100Mhz, as shown in Fig. 7. At
maximum pipeline utilization(i.e. zero pipeline stall caused by any reasons such as DRAM
latency or length variances), each Pipeline CU can achieve 1 band/cycle score calculation
rate and 2 bands/cycle post backtracing rate as discussed in Sects. 3.4.5 and 3.4.8. Thus, the
theoretical computation time on the FPGA accelerator with 2 Pipeline CUs on the artificial
dataset should be (128/2 ∗ 82k + 128/2 ∗ 82k/2)/100Mhz = 78ms . We ran the artificial
dataset on the real FPGA instance and measured 85ms, which is in line with the theoreti-
cal computation time. Several millisecond differences could be attributed to device driver
overhead.

Similarly, we ran the GPU-based f5c acceleration on the artificial dataset using an
NVIDIA GeForce RTX 3070 GPU and measured a total running time of three CUDA ker-
nel 266ms (align-core, align-core and align-post kernels), making it 3.1× slower than the
FPGA accelerator(85ms). A key to GPU acceleration is achieving high warp issue efficiency,
allowing for high warp parallelism to hide latency. However, f5c experiences significant
warp stall due to branch divergence (e.g., determining if a cell is the first one of the band),
leading to an average stall of 7 cycles per warp in their align-core kernel, which is responsi-
ble for band scores calculation.

Effect of bucket size and bucket range

While our proposed FPGA accelerator has demonstrated strong performance on the artifi-
cial dataset (achieving 3.1× speedup over the GPU), effective scheduling is crucial to extend
this performance to the real-word datasets consisting of reads with various lengths. To
maximize the utilization of the FPGA accelerator, we implemented a bucket scheduler that
essentially groups reads with similar lengths into the same bucket. The Total Cycles spent
on Pipeline CUs majorly can be divided into two parts: 1) Effective Cycles, which compute
useful band scores, and 2) Wasted Cycles, caused by length variations in the pipeline where
no useful band scores are computed. Here we define pipeline utilization as:

Pipeline utilization statistics for varying bucket ranges on D1 are shown in Table 4,
with bucket size set to 128. The bucket range is the length range of reads in one bucket,
where the length of one read is the sum of its read length and the number of events.
The maximum utilization is achieved with a bucket range of 10K. This observation can
be explained by (1) if the bucket range is too large, pipeline utilization decreases due to
greater variation in length among reads, thus shorter reads in the pipeline have to wait
for longer reads to finish. (2) if the bucket range is too small, it would be difficult to col-
lect enough reads within the specified range, leading to many small fragmented batches

PipelineUtilization = EffectiveCycles/TotalCycles

Page 18 of 24Feng et al. BMC Bioinformatics (2025) 26:83

(< N reads), which cannot satisfy fully pipelined execution. As shown in Table 4, with
a bucket range of 5K, a significant amount of waste cycles are attributed to small frag-
mented batches.

The Pipeline CU running time with varying bucket range and bucket size collected
from the actual FPGA instance is shown in Fig. 8a. The result is in line with the utili-
zation statistics, as a bucket range of 10K yields the best performance in most cases.
It is worth noting that for a bucket range of 5K, fragmented batches cause more per-
formance penalties than the utilization statistics indicated. This could be attributed
to driver overhead, as too many inefficient small batches and frequent data synchro-
nizations with the FPGA accelerator introduce latency. Regarding bucket size, ideally,
large sizes are more advantageous since every CU call and DRAM transfer through
the XRT API incur a latency penalty. Therefore, batching as many reads as possible
is ideal. However, the benefits plateau beyond a certain threshold. In our case, we
observe no significant improvement once the bucket size reaches 256.

However, the GPU-based f5c groups reads into batches based on the order of read-
ing data from the disk for thread parallelism processing, without considering the vari-
ation in read lengths. The load imbalance workload across warps and blocks leads
to low achieved occupancy. Specifically, both align-pre kernel and align-post kernel
achieve around 20% out of their theoretical occupancy 100% and 67%, respectively.

Efficiency of ultra long CU

One out of the three SLRs on the FPGA is dedicated to the Ultra Long CU, as shown
in Fig. 7. This design choice is motivated by two primary factors. First, ultra-long reads

Table 4 Pipeline Utilization

Range 5K 10K 15K 20K 25K

Waste Cycles Due to Fragmenta-
tion (%)

0.09 0.03 0.01 0.01 0.01

Pipeline Utilization (%) 0.69 0.70 0.67 0.63 0.59

Fig. 8 a The effect of bucket size and bucket range on Pipeline CU running time on D1 . Bucket Size is the
number of reads in one bucket, and Bucket Range is the range of the sum of read length and number of
events per bucket. b Ultra-long reads ABEA execution time in different methods: multi-threads on CPU;
Pipeline CU with one ultra-long read in each pipeline; Ultra Long CU

Page 19 of 24Feng et al. BMC Bioinformatics (2025) 26:83

processed on the CPU disproportionately dominate the total running time on large data-
sets, making acceleration critical, as discussed in Sect. 3.5. Second, SLR 1, being smaller,
is not well-suited for a Pipeline CU, however, it can comfortably accommodate a smaller
Ultra Long CU without pipeline control, as discussed in Sect. 4.1

The efficiency of the Ultra Long CU is verified here by performance comparison among
the CPU, the Pipeline CU, and the Ultra Long CU. Firstly, we launch multiple threads to
perform ABEA for ultra-long reads on the CPU. Secondly, we launch one Pipeline CU to
perform ABEA for ultra-long reads, where there is only one valid ultra-long read in each
pipeline. Lastly, the Ultra Long CU is used for ultra-long reads as in our accelerator. As
Fig. 8b clearly shows, the Ultra Long CU performs better than the other two methods for
ultra-long reads. Compared to the CPU implementation, the Ultra Long CU enhances
the parallelism through cell score calculation. While one read in the Pipeline CU com-
putes one band every 8 cycles, the Ultra Long CU achieves a faster computation rate of
one band every 6 cycles by removing the pipeline.

We show the benefit of incorporating both types of CUs when running on various
datasets in the following section.

Execution time comparison

Figure 9 shows the ABEA execution time comparison across CPU, CPU/GPU-3070, and
VU9P FPGA. The proposed accelerator on VU9P achieves an average 11.1× speedup
over the CPU implementation across the five datasets tested. It is noteworthy that our
accelerator can achieve over 11× speedup with the CPU on all datasets, except D3 . In
D3 , the high percentage of ultra-long reads causes the Ultra Long CU to dominate the
total execution latency. Due to resource limitations, handling only one ultra-long read
at a time restricts the achievable parallelism compared to the Pipeline CU. Notably, our
accelerator displays significantly higher effectiveness on large datasets with more than
1 G bases, specifically D1 , D2 , and D3 , showcasing over a 4.5× speedup compared to
CPU/GPU-3070.

Figure 9 also provides a detailed breakdown of ABEA execution. For the CPU/GPU-
3070 implementation of f5c, the execution time is broken down into stages: flattening
data structures on CPU, CUDA memory allocation, data transfer between CPU and

Fig. 9 ABEA execution time comparison among CPU, CPU/GPU-3070 and VU9P FPGA

Page 20 of 24Feng et al. BMC Bioinformatics (2025) 26:83

GPU, CUDA kernel and additional ultra-long reads processing on CPU. For the pro-
posed FPGA accelerator, the execution time is broken down into filling buckets on CPU
and Pipeline/Ultra Long CU(including data synchronization and CU execution which
overlap with each other). These breakdowns demonstrate that the proposed FPGA accel-
erator’s speedup is achieved through faster data preparation, improved throughput for
read alignments, and the elimination of extra CPU processing. Starting with the data
preparation, the CPU/GPU-3070 implementation incurs significant overhead due to the
expensive CPU_flatten required to compute the index. By contrast, our proposed FPGA
accelerator leverages a dataflow architecture that only requires lightweight fill_bucket.
Then, in terms of accelerator performance, FPGA’s Pipeline/Ultra Long CU time is sig-
nificantly faster than GPU running time(CUDA_malloc, CUDA_transfer and CUDA_
kernel). The higher throughput of our CUs has been verified by the unit test in Sect. 4.3.
Furthermore, unlike the GPU implementation, our FPGA accelerator does not require
any CPU extra processing time for ultra-long reads, as this task is entirely handled by the
Ultra Long CU on the FPGA.

Breakdown of execution time into different stages

The breakdown of execution time into various stages in CU execution is depicted in
Fig. 10a, encompassing the filling buckets stage on the CPU, overlap stage of both Pipe-
line CU and Ultra Long CU, and extra kernel stage of either the Pipeline CU or the Ultra
Long CU. it can be seen from these results that, across most datasets, ABEA is domi-
nated by the Pipeline CU, except for D3 , where a large percentage of ultra-long reads
causes the domination of the Ultra Long CU.

Throughput and power consumption comparison

We compare the throughput on individual datasets Dexample , D2 and D3 , as well as
the average throughput and power consumption of our approach against other state-
of-the-art approaches on CPU, GPU, and FPGA platforms. Dexample is a small subset

Fig. 10 a Percentage of running time for various stages in our ABEA accelerator. All CUs operate
independently and are invoked by different threads in an overlapped fashion. The period during which all
CUs operate concurrently is recorded as Pipeline and Ultra Long overlap. Any CU activity occurring beyond
this overlap period is also tracked, with the additional running times labeled as extra Pipeline or extra
Ultra Long. b Methylation Detection workflow end-to-end execution time comparison among CPU, CPU/
GPU-3070 and VU9P FPGA

Page 21 of 24Feng et al. BMC Bioinformatics (2025) 26:83

containing 158 Mbases. Detailed platform configurations are listed in the notes of
Table 5. Statistics are obtained by running multiple datasets of various sizes across
these platforms. For DE5-net [28], only the result of the small Dexample dataset is
reported. Since the VU9P FPGA has approximately 4 × the logic resource of Altera
Stratix FPGA [20, 21], we project the performance by scaling the best-reported imple-
mentation from the DE5-net work by 4 × . Additionally, we re-scale the power con-
sumption of the DE5-net work to compensate for technology node differences(28nm
to 16nm) using industry reports [22]. For the CPU/GPU-V100 [8], results from two
large datasets (3620 Mbases and 2730 Mbases, namely labeled as D2 and D3 in our
experimental design) and Dexample are reported. For power evaluations, we collect the
results directly from the AWS-provided ‘FPGA-describe-image’ commands, an aver-
age power of 14w and maximum power of 24w are reported by the commands. Since
these commands do not contain power consumed by off-chip DRAM, we assume all 4
off-chip DRAM channels are active and collect the power numbers from Xilinx Power
Estimator(2023.1.2) [19]. The CPU and GPU power figures are collected using the
‘lm-sensor’ commands and ‘nvidia-smi’ commands respectively. The proposed accel-
erator on VU9P achieves outstanding results, delivering a 10.05× speedup over the
CPU and a 5 × speedup over the CPU/GPU-3070 in terms of throughput (Mbases/s).
Additionally, the energy efficiency is 32.1× better than the CPU and 13.83× better than
the CPU/GPU-3070. The proposed accelerator also demonstrates a 10.11× through-
put improvement over DE5-net equipped with the Altera Stratix V FPGA. Compared
to the CPU/GPU-V100 setup equipped with the NVIDIA Tesla V100, our solution is
1.81× better in terms of throughput while only consuming 7.2% of the energy. Impor-
tantly, these results achieved on the VU9P utilize only 4 available DRAM channels
with a theoretical aggregated memory bandwidth of 77GB/s, while the NVIDIA Tesla
V100 utilizes 32 HBM channels with a theoretical aggregated memory bandwidth of
896GB/s.

Methylation workflow execution time comparison

The total end-to-end methylation detection workflow execution time (including disk
I/O) comparison across CPU, GPU, and FPGA is shown in Fig. 10b. In our evaluation, we

Table 5 Compute throughput (Mbases/s) on separate datasets, and average throughput (Mbases/s)
/ power consumption (kbases/watt): comparison among ABEA on CPU-only implementation, GPU/
CPU acceleration, and FPGA-based acceleration

1 CPU: AMD EPYC with 12 CPU threads
2 CPU/GPU-3070: AMD EPYC + NVIDIA GeForce RTX 3070 GPU with 8 G HBM
3 DE5-net: Intel E5-1630V3 + Altera Stratix V FPGA with 4GB RAM. Performance is projected by assuming 4 FPGA devices are
available to match the resource of a single VU9P FPGA. Power(28nm) is scaled to match the same technology node(16nm)
as VU9P FPGA
4 CPU/GPU-V100: Intel Xeon Silver4114 + Nvidia Tesla V100 GPU with 16GB HBM

Platform Dexample D2 D3 Avg Thrpt Avg Pwr Cons

VU9P 21.9 20.8 13.4 16.9 771.54

CPU 2.03 1.79 1.54 1.68 24.07

CPU/GPU-3070 7.67 3.79 2.87 3.38 55.78

DE5-net (projected) 1.67 – – 1.67 135.1

CPU/GPU-V100 9.26 10.43 8.19 9.33 46.53

Page 22 of 24Feng et al. BMC Bioinformatics (2025) 26:83

launched 64 multiple I/O processes to optimize the I/O performance, ensuring the disk
I/O is no longer a bottleneck. The comparison results demonstrate that the proposed
accelerator achieves an average 2.9× speedup over the CPU implementation and an aver-
age 1.5× speedup over GPU acceleration. Notably, our accelerator performs significantly
better on larger datasets (> 1 G bases), highlighting that ABEA introduces increasingly
severe delays as the input size increases, a problem our accelerator effectively addresses
with its high throughput.

Conclusions and further work
In this paper, we presented and experimentally evaluated an FPGA-based accelerator for
ABEA. The key idea of the accelerator is to design two distinct CUs, namely, the Pipeline
CU and the Ultra Long CU, to improve throughput and reduce energy. Implemented
on the Xilinx VU9P platform, our accelerator achieves i) a remarkable 10.05× through-
put improvement over a classical CPU-based implementation, ii) a 1.81× speedup over a
state-of-art GPU acceleration while consuming only 7.2% the energy, and iii) a speedup
of 10.11× compared to a previously-published FPGA accelerator. In this work, our opti-
mization efforts have primarily focused on fine-grained pipelined inter-reads alignments
for regular reads. Given the significant increase in ultra-long reads from third-gener-
ation sequencing technologies, our future work will mainly concentrate on improving
the pipelining alignment without limiting read lengths, targeting specifically ultra-long
reads.

Appendix A
Supplementary Information

Background of genome sequencing, FPGA programming and pseudocode of Post
Stage are detailed in supplementary material.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 024- 06011-1.

Supplementary file 1.

Acknowledgements
We thank our colleague Sijie Lan at Pennsylvania State University for providing valuable writing suggestions for this
manuscript.

Author Contributions
Y.F. and Z.L. conceived the study and designed the FPGA accelerator. Y.F, Z.L. and G.G.A. wrote and revised the
manuscript. V.N., M.K. and C.D. supervised the study and revised the manuscript. All author(s) read and approved the
manuscript.

Funding
 This work is supported in part by NSF Grant 1931531, DOE Grant DE-SC0023186 and PRISM (Processing with Intelligent
Storage and Memory).

Availability of data and materials
The HLS code, FPGA configuration file and raw test results are publicly available in the GitHub repository, https://
github. com/ fengy ilin1 18/ ABEA- HLS. The sequencing dataset used for the experiments, provided by the Nanopore WGS
Consortium, is accessible under project accession PRJEB23027 in the European Nucleotide Archive (ENA) and can be
downloaded from https:// github. com/ nanop ore- wgs- conso rtium/ NA128 78.

https://doi.org/10.1186/s12859-024-06011-1
https://github.com/fengyilin118/ABEA-HLS
https://github.com/fengyilin118/ABEA-HLS
https://github.com/nanopore-wgs-consortium/NA12878

Page 23 of 24Feng et al. BMC Bioinformatics (2025) 26:83

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interest
The authors declare that they have no conflict of interest.

Received: 9 June 2024 Accepted: 9 December 2024

References
 1. Alser M, Hassan H, Kumar A, Mutlu O, Alkan C. Shouji: a fast and efficient pre-alignment filter for sequence align-

ment. Bioinformatics. 2019;35(21):4255–63.
 2. Alser M, Shahroodi T, Gómez-Luna J, Alkan C, Mutlu O. Sneakysnake: a fast and accurate universal genome pre-

alignment filter for CPUs, GPUs, and FPGAs. Bioinformatics. 2020;36(22–23):5282–90.
 3. Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive

refinement (blasr): application and theory. BMC Bioinformatics. 2012;13:1–18.
 4. Cong J, Fang Z, Lo M, Wang H, Xu J, Zhang S. Understanding performance differences of FPGAs and gpus. In: 2018

IEEE 26th annual international symposium on field-programmable custom computing machines (FCCM), 2018; pp
93–96.

 5. Dong J, Liu X, Sadasivan H, Sitaraman S, Narayanasamy S (2004) mm2-gb: Gpu accelerated minimap2 for long read
DNA mapping. bioRxiv

 6. Dunn T, Sadasivan H, Wadden J, Goliya K, Chen K-Y, Blaauw D, Das R, Narayanasamy S. Squigglefilter: An accelerator
for portable virus detection. In MICRO-54: 54th annual IEEE/ACM international symposium on microarchitecture,
2021; p. 535-549.

 7. Firtina C, Soysal M, Lindegger J, Mutlu O. Rawhash2: Mapping raw nanopore signals using hash-based seeding and
adaptive quantization. Bioinformatics, btae 2024;478.

 8. Gamaarachchi H, Lam CW, Jayatilaka G, Samarakoon H, Simpson JT, Smith MA, Parameswaran S. Gpu acceler-
ated adaptive banded event alignment for rapid comparative nanopore signal analysis. BMC Bioinformatics.
2020;21(1):343.

 9. Hu K, Huang N, Zou Y, Liao X, Wang J. MultiNanopolish: refined grouping method for reducing redundant calcula-
tions in Nanopolish. Bioinformatics. 2021;37(17):2757–60.

 10. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, et al. Nanopore
sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338–45.

 11. Kim JS, Senol Cali D, Xin H, Lee D, Ghose S, Alser M, Hassan H, Ergin O, Alkan C, Mutlu O. Grim-filter: fast seed location
filtering in DNA read mapping using processing-in-memory technologies. BMC Genomics. 2018;19:23–40.

 12. Koliogeorgi K, Xydis S, Gaydadjiev G, Soudris D. Gandafl: dataflow acceleration for short read alignment on NGS
data. IEEE Trans Comput. 2022;71(11):3018–31.

 13. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100, 05.
 14. Lindegger J, Firtina C, Ghiasi NM, Sadrosadati M, Alser M, Mutlu O (2023) Rawalign: Accurate, fast, and scalable raw

nanopore signal mapping via combining seeding and alignment. arXiv preprint arXiv: 2310. 05037.
 15. Loose M, Malla S, Stout M. Real-time selective sequencing using nanopore technology. Nat Methods.

2016;13(9):751–4.
 16. Mao H, Alser M, Sadrosadati M, Firtina C, Baranwal A, Cali D, Manglik A, Alserr N, Mutlu O. Genpip: In-memory

acceleration of genome analysis via tight integration of basecalling and read mapping. In 2022 55th IEEE/ACM
international symposium on microarchitecture (MICRO), IEEE Computer Society, 2022; p. 710–726.

 17. Marmolejo-Tejada JM, Trujillo-Olaya V, Rentería-Mejía CP, Velasco-Medina J. Hardware implementation of the
smith-waterman algorithm using a systolic architecture. In 2014 IEEE 5th Latin American symposium on circuits and
systems, IEEE, 2014; p. 1–4.

 18. AMD. Vivado Design Suite User Guide: High-Level Synthesis. https:// docs. amd. com/v/ u/ en- US/ ug902- vivado- high-
level- synth esis, 2021.

 19. AMD. Xilinx Power Estimator (XPE). https:// www. xilinx. com/ produ cts/ techn ology/ power/ xpe. html, 2023.
 20. AMD. AMD Virtex UltraScale+ FPGAs - Resources. https:// docs. amd. com/v/ u/ en- US/ ultra scale- plus- fpga- produ ct-

selec tion- guide, 2024.
 21. Intel. Stratix V GX FPGA Development Board Reference Manual. https:// www. intel. com/ conte nt/ www/ us/ en/ conte

nt- detai ls/ 654294/ strat ix-v- gx- fpga- devel opment- board- refer ence- manual. html, 2024.
 22. TSMC. Logic Technology. https:// www. tsmc. com/ engli sh/ dedic atedF oundry/ techn ology/ logic/l_ 16_ 12nm, 2024.
 23. Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence

of two proteins. J Mol Biol. 1970;48(3):443–53.
 24. Pagès-Gallego M, de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for

nanopore sequencing basecalling. Genome Biol. 2023;24(1):71.
 25. Perešíni P, Boža V, Brejová B, Vinař T. Nanopore base calling on the edge. Bioinformatics. 2021;37(24):4661–7.
 26. Quick J, Quinlan AR, Loman NJ. A reference bacterial genome dataset generated on the minionTM portable single-

molecule nanopore sequencer. Gigascience. 2014;3(1):2047-217X.

http://arxiv.org/abs/2310.05037
https://docs.amd.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.amd.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://www.xilinx.com/products/technology/power/xpe.html
https://docs.amd.com/v/u/en-US/ultrascale-plus-fpga-product-selection-guide
https://docs.amd.com/v/u/en-US/ultrascale-plus-fpga-product-selection-guide
https://www.intel.com/content/www/us/en/content-details/654294/stratix-v-gx-fpga-development-board-reference-manual.html
https://www.intel.com/content/www/us/en/content-details/654294/stratix-v-gx-fpga-development-board-reference-manual.html
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_16_12nm

Page 24 of 24Feng et al. BMC Bioinformatics (2025) 26:83

 27. Sadasivan H, Stiffler D, Tirumala A, Israeli J, Narayanasamy S. Accelerated dynamic time warping on GPU for selective
nanopore sequencing. J Biotechnol Biomed. 2024;7:137–48.

 28. Samarasinghe S, Premathilaka P, Herath W, Gamaarachchi H, Ragel R. Energy efficient adaptive banded event align-
ment using opencl on FPGA. In 2021 10th international conference on information and automation for sustainabil-
ity (ICIAfS), 2021; p. 369–374.

 29. Shih PJ, Saadat H, Parameswaran S, Gamaarachchi H. Efficient real-time selective genome sequencing on resource-
constrained devices. GigaScience. 2023;12:1–16.

 30. Simpson J. Aligning nanopore events to a reference. http:// simps onlab. github. io/ 2015/ 04/ 08/ event align/, 2015.
 31. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanop-

ore sequencing. Nat Methods. 2017;14(4):407–10.
 32. Singh G, Alser M, Denolf K, Firtina C, Khodamoradi A, Cavlak MB, Corporaal H, Mutlu O. Rubicon: a framework for

designing efficient deep learning-based genomic basecallers. Genome Biol. 2024;25(1):49.
 33. Smith T, Waterman M. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–7.
 34. Stanojević D, Lin D, Florez de Sessions P, Šikić M. Telomere-to-telomere phased genome assembly using error-

corrected simplex nanopore reads. bioRxiv, 2024.
 35. Suzuki H, Kasahara M. Introducing difference recurrence relations for faster semi-global alignment of long

sequences. BMC Bioinformatics. 2018;19(1):33–47.
 36. O. N. Technologies. Oxford Nanopore Technologies. https:// nanop orete ch. com, 2023.
 37. O. N. Technologies. Dorado. https:// github. com/ nanop orete ch/ dorado, 2024.
 38. O. N. Technologies. How basecalling works. https:// nanop orete ch. com/ platf orm/ techn ology/ basec alling, 2024.
 39. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for oxford nanopore sequencing.

Genome Biol. 2019;20:1–10.
 40. Yu CW, Kwong K, Lee K-H, Leong PHW. A smith-waterman systolic cell. In Field Programmable Logic and Application:

13th International Conference, FPL 2003, Lisbon, Portugal, September 1-3, 2003 Proceedings 13, Springer, 2003;p.
375–384.

 41. Zhang H, Li H, Jain C, Cheng H, Au KF, Li H, Aluru S. Real-time mapping of nanopore raw signals. Bioinformatics.
2021;37:i477–83.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://simpsonlab.github.io/2015/04/08/eventalign/
https://nanoporetech.com
https://github.com/nanoporetech/dorado
https://nanoporetech.com/platform/technology/basecalling

	FPGA-based accelerator for adaptive banded event alignment in nanopore sequencing data analysis
	Abstract
	Background:
	Result:
	Conclusion:

	Introduction
	Background
	Adaptive banded event alignment (ABEA)
	Related works

	Methodology
	Challenges in hardware optimization for ABEA
	High-level accelerator architecture
	Model reference initializer
	Dataflow kernel
	Data loading stage
	Event vector distributor & read vector distributor
	Event generator
	Kmer generator
	Compute stage
	Max stage
	Trace out stage
	Post stage

	Ultra-long reads alignment

	Implementation and results
	FPGA implementation
	Experimental design
	Quantitative comparison between GPU and FPGA
	Effect of bucket size and bucket range
	Efficiency of ultra long CU
	Execution time comparison
	Breakdown of execution time into different stages
	Throughput and power consumption comparison
	Methylation workflow execution time comparison

	Conclusions and further work
	Appendix A
	Acknowledgements
	References

