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Abstract 

Background: Deep learning (DL) has set new standards in cancer diagnosis, sig-
nificantly enhancing the accuracy of automated classification of whole slide images 
(WSIs) derived from biopsied tissue samples. To enable DL models to process these 
large images, WSIs are typically divided into thousands of smaller tiles, each containing 
10–50 cells. Multiple Instance Learning (MIL) is a commonly used approach, where WSIs 
are treated as bags comprising numerous tiles (instances) and only bag-level labels are 
provided during training. The model learns from these broad labels to extract more 
detailed, instance-level insights. However, biopsied sections often exhibit high intra- 
and inter-phenotypic heterogeneity, presenting a significant challenge for classifica-
tion. To address this, many graph-based methods have been proposed, where each 
WSI is represented as a graph with tiles as nodes and edges defined by specific spatial 
relationships.

Results: In this study, we investigate how different graph configurations, varying 
in connectivity and neighborhood structure, affect the performance of MIL models. We 
developed a novel pipeline, K-MIL, to evaluate the impact of contextual information 
on cell classification performance. By incorporating neighboring tiles into the analysis, 
we examined whether contextual information improves or impairs the network’s ability 
to identify patterns and features critical for accurate classification. Our experiments 
were conducted on two datasets: COLON cancer and UCSB datasets.

Conclusions: Our results indicate that while incorporating more spatial context 
information generally improves model accuracy at both the bag and tile levels, 
the improvement at the tile level is not linear. In some instances, increasing spatial con-
text leads to misclassification, suggesting that more context is not always beneficial. 
This finding highlights the need for careful consideration when incorporating spatial 
context information in digital pathology classification tasks.
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Background
In recent years the advent of deep learning (DL) has paved the way for the establishment 
of digital pathology as a vital tool in modern pathology [1–10]. However, while histo-
pathological images are relatively easy to obtain, deliberately labelling each pixel in every 
mega-/giga-pixel Whole Slide Image (WSI) with expert-based ground-truth descriptions 
can be prohibitively time-consuming. The need to handle this partially or ambiguously 
labelled training data gave rise to a novel paradigm in machine learning, weakly super-
vised learning (WSL) [11].

Multiple Instance Learning (MIL) is a type of WSL where the training examples are 
arranged in sets of labelled bags, each containing unlabelled instances. In the case of of 
digital pathology, these instances are ’tiles’, or sub-regions of the WSI. Using this weakly 
labelled training data, MIL aims at learning a model capable of correctly classifying both 
new bags and new instances [12, 13]. MIL is particularly useful to image-based pathol-
ogy classification due to its ability to reason on subsets of data; a computational neces-
sity when analyzing very large images [14].

In the context of using MIL in cancer histopathology, the task is to determine if the 
tissue imaged in the WSI (‘bag’) can be considered to have cancerous sub-regions 
(tumour cells), or incidences - amongst expected incidences of non-cancerous regions 
(normal cells) [15–19]. Typically, learning is accomplished by identifying commonali-
ties between cancerous instances across WSIs. However, because of the high degree of 
inter-tumour heterogeneity, as well as the histologic overlap between cancer and other 
neoplasms, automatically learning common morphological signatures of cancerous tis-
sue in WSIs remains a challenging problem [20]. Additionally, because there is extensive 
intra-tumour heterogeneity in cancer cells, the instances within a positive bag can differ 
substantially and not all of them equally affect the final diagnosis i.e., cancer or not [21]. 
Therefore, the consideration of an instance’s location in a WSI is particularly relevant to 
using MIL in histopathology; where the cells are not distributed independently inside 
an image but there are underlying patterns governing their spatial arrangement. As an 
example, pieces of a jigsaw puzzle contain spatial information as to their position in the 
completed puzzle and the identity of their neighbours. Similarly, location and contextual 
information of cancerous tissues can be leveraged to learn whether an instance is can-
cerous because it neighbours another region with high probability of being cancerous.

In conventional MIL problems using context-based approaches, it’s common to con-
struct a graph using a fixed number of nodes [22–24]. Despite this common practice, 
there hasn’t been a specific study investigating the influence of the number of graph 
nodes on the overall performance of a MIL model. Recognizing the significance of how 
these graphs are constructed and the critical role of selecting which elements to include 
for the graph construction, here we developed a simple neural network architecture to 
investigate the impact of different graph configurations on the overall model perfor-
mance. Specifically, we represent each cell as a node of a graph, which is connected to 
other nodes in the image based on spatial proximity and feature similarity. Nodes that 
are spatially adjacent and morphologically close are linked by an edge. Based on those 
criteria, we construct an adjacency matrix which operates as a mask that enables us to 
attend over each tile and its surrounding nodes, calculate their attention coefficients, and 
produce an average attention score for each node of the graph. We then progressively 
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expand the pool of nodes that can be connected, examining how extending the range of 
connectivity affects the model’s effectiveness. The main goal of the proposed architec-
ture is to generate a flexible descriptor, capable of capturing the contextual information 
of each node, allowing for a thorough analysis of various graph configurations. Finally, 
we demonstrate the attention maps generated for different graph configurations and 
investigate how the choice of the number of nodes affects the produced visualisations.

Methods
Problem Definition:

We assume a training set consisting of WSIs: X = {X1,X2,X3, ...Xm} and their associ-
ated labels Y = {Y1,Y2,Y3, ...Ym} , where Yi ∈ {0, 1} . We further assume that for every 
bag we are given a set of instances Xi = {xi1 , xi2 , xi3 , ...xin} . Every instance is also asso-
ciated with a label yij ∈ Yi . However, these labels remain unknown during the training 
stage. According to the typical MIL definition, a bag is labeled negative if it contains only 
negative instances, while the presence of at least one positive instance is sufficient and 
necessary evidence to label it positive. Using the max operator this statement can be re-
formulated in the following form:

The lack of differentiablility of the maximum based objective makes it unsuitable for 
bag level classifiers. However, in their work ([25]) have proved that a MIL model can 
be trained instead by optimizing binary cross entropy which according to ([26]) can be 
expressed as:

where Ŷi refers to the score of the bag label.

K‑MIL model

To quantify the role of context on classification performance we first developed a pipe-
line for cell classification; K-MIL. While this is a new model, its primary purpose is to 
enable a systematic investigation of various graph configurations in the context of his-
topathology. To ensure a fair comparison with existing approaches, we designed our 
model to closely align with a standard attention pooling framework, with the inclusion 
of additional layers that provide context-specific information. Importantly, our model 
deliberately avoids the use of more sophisticated layers or mechanisms (e.g., multi-
head attention, deeper networks) that could introduce confounding factors, making 
it difficult to isolate the impact of context. The approach is described in Fig. 1. It can 
be decomposed into the following three components i) the feature extraction module, 
which consists of a stack of convolutional and max pooling layers as well as dense lay-
ers responsible for transforming the original patch input to a low dimensional feature 
representation, ii) an attention mechanism responsible for outputting an attention NxN 
matrix and iii) a neighbour layer which is a permutation invariant pooling operator 

(1)Yi = max(yij )

(2)L = −
1

N

N
∑

i=1

Yi log(Ŷi)+ (1− Yi) log(1− Ŷi)
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that enables the aggregation of the attention coefficients produced in the previous step 
through an NxN adjacency matrix.

Attention Matrix
Each instance of the bag is processed by a backbone network, to produce a set of hid-

den representations H = {h1, ..., hi, ....hn} , hi ∈ RF.
To calculate the attention weights among the instances, we propose to use a single 

attentional layer that implicitly specifies a different weight between any pair of instances 
in the bag connected or not. The aforementioned attention mechanism is parametrized 
by neural networks. Notably, the attentional setup follows closely the work of ([27]). The 
main difference between the two lies in: a) the activation function used, which in our 
case is tanh to ensure that the output values of the attention matrix will be constrained 
into a small value range and b) in our case the attention coefficients are used to compute 
a single average score across the different neighbours of a node, whereas in the work 
of ([27]) the attention coefficients used to compute a linear combination of the features 
corresponding to them.

Given the set of hidden representations for every instance obtained from the backbone 
model H = {h1, h2, h3, ....hn} , hi ∈ RF , the output of the attentional layer is an attention 
matrix An,n . Every element ai,j of the matrixAn,n corresponds to an attention coefficient 
which serves as an indicator of the influence of the instance i to instance j:

Adjacency Matrix
To formulate the neighbourhood prior and leverage the pairwise relations among the 

instances of a bag we resort to an adjacency matrix Mn,n which indicates the presence or 
not of a link between every instance in the bag and the rest. The attention coefficients 
should be computed only for the instances that belong to the neighbourhood of the tar-
get instance ni . That way the adjacency matrix operates as a mask, which when mul-
tiplied element-wise with the attention matrix computed in the previous step, ensures 
that only the neighbouring values of an instance will be preserved and the rest will be 
discarded.

(3)αij = tanh(�aT [W �hi||W �hj])

(4)A′ = M ⊙ A

Fig. 1 Components of K-MIL model: 1) a feature extraction module that receives a set of tiles xi as input 
and outputs a set of hidden representations  hi 2) a graph attentional layer responsible for outputting a 
graph attention NxN matrix and 3) a layer that enables the aggregation of the attention coefficients of the 
neighbourhood of each instance through an adjacency matrix



Page 5 of 18Fourkioti et al. BMC Bioinformatics            (2025) 26:9  

Computing the adjacency matrix

A naturally arising question is which criteria should be applied to best describe an 
instance’s neighbourhood. In our implementation, we take into account two different 
distance metrics to construct the adjacency matrix: one based on the euclidean dis-
tance and the other based on the siamese distance.

As the position of the instances in the bag is either known a priori or can be inferred 
in the case they are cropped, we can construct the adjacency matrix using the Euclid-
ean distance between the spatial locations of the instances to determine the existence 
of a connection between two instances xi and xj , such as:

where KNN refers to the K nearest neighbour to the patch i.
The Euclidean distance can capture the spatial relationships between neighbouring 

instances, but cannot model more complex relationships. Siamese nets on the other 
hand can be trained to discover dynamically and adaptively which instances are rel-
evant to each other ([28]).

Typically, they are trained in a supervised manner in a collection of positive and 
negative pairs ([28]) enabling the network to learn how similar two images are to one 
another. Features of similar image pairs are encouraged to be closer together in the 
feature space, and dissimilar ones far away from each other.

In situations where labeled training data is unavailable, siamese networks offer a 
solution by being trained in an unsupervised manner. This approach utilizes a train-
ing set constructed from naive nearest neighbour relations, as demonstrated in 
the work of ([29]). The concept behind these naive nearest neighbour relations is 
grounded in the idea that instances in close proximity tend to share more similar 
morphological characteristics. In our training process, positive pairs are formed by 
pairing each instance with its spatially closest counterparts within a manually defined 
radius (r), while negative pairs are created by randomly sampling an equal number 
of non-neighbouring instances. The network then learns these intricate neighbouring 
relations by optimizing the contrastive loss:

where zi, zj are the feature representations corresponding to the ith, jth images and m is 
a margin.

Once trained on this subset of images, the pre-trained siamese net is integrated to 
our model to output a distance metric d between every instance in a bag and its k 
closest neighbouring instances independently of any radius. The adjacency matrix is 
constructed as follows:

(5)Mij =

{

0, otherwise
1, if i ∈ KNN (j)

L(θ; zi.zj) =
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�zi − zj
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(zi, zj) is a positive pair;
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�zi − zj
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(zi, zj)is a negative pair .
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where KNN refers to the k nearest neighbour to the patch i and d to the distance learnt 
by the Siamese net.

Final attention score

After obtaining the attention coefficients that correspond to the neighbours of every 
instance, the last step is to aggregate the contextual information into a single attention 
weight for each instance. There are several operators that can be used to perform feature 
aggregation. In our experiments, we utilize the mean operator, followed by a softmax 
function to ensure that all weights sum up to one:

where N refers to the number of instances present in each bag, ni to the neighbours of 
every instance i and K to the number of nearest neighbours.

Lastly the updated weights are multiplied in an element-wise fashion with their cor-
responding bag embeddings H = h1, h2, ...., hn as follows:

Measuring the effect of context

By adjusting the number of nodes in the model, we investigate the effects of various 
graph configurations on the overall performance and the attention maps produced. Our 
model has two different variations: Euclidean and Siamese. The euclidean version uses 
spatial information to define contextual relationships, while the siamese version addi-
tionally considers feature similarity to establish connections between instances. To 
understand the impact of contextual information on cell classification tasks, we compare 
these two variations against non-context models that treat each instance independently.

Context models

Context models are divided into two distinct categories: the euclidean version and the 
siamese version.

• The euclidean version forms the adjacency matrix based purely on spatial criteria, 
using the coordinates of the tiles to establish contextual relationships. In this version, 
two nodes are connected if they are spatially adjacent, and the value in the adjacency 
matrix is set to 1.

• The siamese version apart from the spatial criteria introduces similarity-based con-
straints. This allows the model to establish edges in the graph not just based on how 
close the individual tiles (nodes) are in space, but also by considering how similar 
they are in terms of their features or patterns. In this version, the value in the adja-

(6)Mij =

{

0, otherwise
exp(−d), if i ∈ KNN (j)

(7)wi =
exp( 1

K

∑

j∈ni
αij)

∑N
k=1 exp(

1
K

∑

j∈nk
αkj)

(8)zi =

N
∑

i=1

wihi
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cency matrix is determined by the similarity between the feature representations of 
spatially adjacent nodes.

Furthermore, to showcase the ability of our model to efficiently leverage contextual 
information we also set one additional baseline: Random K-MIL which creates edges 
between different nodes randomly.

Non‑context models

Before performing a systematic investigation on how context can affect classification, 
we first compared our simple neighbour pooling strategy to other MIL pooling meth-
ods successfully deployed in the past. One of them is the embedding approach of ([30]) 
which implements attention as a function of the features of each instance alone. For clar-
ity of notation, we refer to this model as ABMIL and to the version of it that makes uses 
of the gated attention mechanism as gated ABMIL [31]. We also compare our model 
to the MI-NET model and its variants MI-NET with DS  (deep supervision), MI-NET 
with RC (residual connection) [25]. MI-NET aims at learning a direct bag representa-
tion by utilising a specialised MIL pooling layer to aggregate input instances into a sin-
gular feature vector instead of inferring instance probabilities. There are three different 
pooling operators proposed. Here, we are using the max pooling operator as it demon-
strates superior results. Additionally, Mi-NET which is the instance-based counterpart 
of the MI-NET is also taken into account.

Datasets

We have conducted experiments on two histopathology datasets: the COLON cancer 
dataset and the USCB datasets.

The COLON cancer data set first presented in [32] includes 100 H&E stained histology 
images (bags) of colorectal adenocarcinomas, that were cropped from non-overlapping 
areas of 10 whole-slide images from 9 patients, at a pixel resolution of 0.55 µm/pixel (20 
× optical magnification). Every bag is composed of 27 x 27 sized nuclei that were manu-
ally annotated and belong in four different classes, i.e. epithelial, inflammatory, fibroblast 
and miscellaneous. For this dataset, our main focus is the detection of epithelial/normal 
cells. From a MIL perspective, this problem is formulated as follows: A bag is considered 
positive if it contains one or more nuclei belonging to the epithelial class, otherwise it is 
considered negative. From a clinical perspective correctly identifying epithelial cells can 
be highly relevant, since COLON cancer originates from epithelial cells ([33]).

The USCB dataset [34] contains 58  H&E strained image excerpts (26 malignant, 32 
benign) from breast cancer patients. The initial size of the image is 896 x 768 pixels. 
Each image is represented as a collection of patches (32 × 32 pixels) and each patch con-
tains a nucleus in the center and its adjacent tissues. For this dataset the objective is the 
detection of cancer cells.

Results
Context Improves the Detection of Epithelial‑Cancer Cells

The WSI is represented as a graph where each cell is a node, and the edges between 
nodes are determined based on spatial criteria. Nodes are connected if the cells they 
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represent are within a specific radius of each other. The distance between the cells must 
be below a certain threshold to form a connection, ensuring that each node is only con-
nected to its neighbouring nodes within this predefined spatial range. By representing 
the WSI in this way, we can analyse the connectivity and relationships between cells, 
allowing for a detailed examination of the structure and behaviour of the WSI graph. For 
the rest of this section, we will refer the number of neighbours J=K-1, which provides a 
clearer and more intuitive description of the connectivity within each graph.

To evaluate the impact of contextual information on classification performance, we 
first analysed the accuracy of K-MIL models (euclidean and siamese) in the COLON 
cancer dataset, categorising WSIs as either ’epithelial-cancer containing’ or ’non-epithe-
lial-cancer containing.’ These results are contrasted with the performance of non-con-
textual models, including Random-Net, ABMIL, and MiNET. In Table 1 we report the 
results when we create graphs with J=2 nodes.

Amongst the non-context models, RANDOM K-MIL, which when constructing the 
adjacency matrix creates edges between different nodes randomly, fails to produce 
meaningful results across both datasets. The MI-net model and its variants perform 
worse compared to our model, suggesting that there may be limitations in their abil-
ity to capture and leverage the underlying image structure effectively. ABMIL and gated 
ABMIL which incorporate attention mechanisms perform sufficiently well on both data-
sets. Specifically, the ABMIL models demonstrate competitive performance on par with 
the siamese version of the context models. Thus the accuracy of models that label WSIs 
as epithelial/non-epithelial is mildly improved when decisions are made by considering 
the context of each tile.

Classification of Epithelial‑Cancer Cells

In Fig. 2, we provide three representative examples of the attention maps produced 
by our model for the COLON dataset when our model achieves optimal performance 
(J=2). To provide a more comprehensive view of our results, we first display the 
extracted 27× 27 pixel patches centered around nuclei (Fig. 2a), which are the input to 
our models and represent cells belonging to the four different classes of the COLON 
cancer dataset. The figure then highlights patches containing epithelial cells which 
are the cells that our models are trying to identify (ground truth) (Fig. 2b). It further 

Table 1 Performance comparison of K-MIL against various baselines on the COLON cancer dataset 
comprising of H&E stained images.

The experiments were run 5 times and the average (± standard error of the mean) is reported. [bold]: Highlights the best-
performing results in the respective metrics

METHOD ACC URA CY PRECISION RECALL F‑SCORE AUC 

5-Random net 0.781 ± 0.11 0.774 ± 0.16 0.799± 0.13 0.786±0.14 0.76±0.07

gated ABMIL net 0.905 ± 0.08 0.892 ± 0.15 0.911±0.10 0.898±0.18 0.985±0.03

ABMIL net 0.911 ± 0.08 0.921 ± 0.12 0.905±0.15 0.912±0.13 0.987 0.02
MI-NET 0.809 ± 0.129 0.841 ± 0.182 0.813±0.21 0.925± 0.02 0.925 ± 0.09

Mi-NET 0.842 ± 0.02 0.866 ± 0.01 0.816 ± 0.03 0.839 ± 0.02 0.914 ± 0.01

MI-NET with RC 0.879 ± 0.11 0.820±0.16 0.950±0.15 0.880±0.15 0.975±0.004

MI-NET with DS 0.853 ± 0.13 0.794 ± 0.27 0.853±0.28 0.822±0.27 0.959±0.07

Ours (euclidean) 0.909 ± 0.10 0.923 ± 0.12 0.925± 0.12 0.920±0.12 0.974±0.05

Ours (siamese) 0.934±0.08 0.946±0.09 0.930±0.13 0.937±0.09 0.987±0.07
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presents the patches, which have been identified as important by the ABMIL model 
(Fig.  2c). Patches with higher attention scores are made more prominent or visible, 
highlighting their significance or relevance according to the model. Finally, the salient 
patches detected by our model are presented in Fig.  2d. This layout enables a com-
parison between the different models, showcasing differences in how each model pri-
oritises and values specific regions for understanding epithelial cell characteristics. 
In accordance with our quantitative analysis, we notice that the attention maps pro-
duced by our model (2d) tend to demonstrate a bigger overlap with Fig. 2b compared 
to ABMIL in Fig. 2c. In scenarios lacking contextual information, the model’s speci-
ficity is compromised, leading to numerous non-epithelial cells being misclassified 
as epithelial. In particular, the informative instances are selected based only on each 
instance’s feature representation, which is why they tend to appear scattered at ran-
dom locations.

In Fig. 3, we present attention maps for different values of J. Notably, as the value of 
J increases, there is an increased overlap between the epithelial cells successfully rec-
ognised by our model and the ground truth. When J lies within the range of 2 to 6, the 
overlap between cells accurately identified by the model and the actual ground truth 
improves, indicating optimal performance in this range. However, a constant increase 
in the number of neighbours beyond this range leads to an increase in the number 
of false positives (cells that do not belong to the epithelial class but are recognised as 
such), yielding suboptimal results. Introducing more context into the analysis leads to 
an increase in the model’s sensitivity. However, beyond a certain point, this increase in 
sensitivity comes at the cost of decreased specificity, marked by a rise in false positives. 
This indicates a trade-off between sensitivity and specificity, where enhancing one can 
detrimentally affect the other. In addition to the qualitative evaluation, Fig. 4a displays 
the ROC curves for various graph configurations. The trend observed in the generated 

Fig. 2 An example on the COLON cancer dataset highlighting how our method boosts instance-level 
classification accuracy qualitatively and quantitatively: a 27×27 segmented cells, b Ground truth cells, c Every 
patch multiplied by its corresponding attention weight using prior work [30], d Every patch multiplied by its 
corresponding attention weight using our model
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attention maps is confirmed in Fig. 3, indicating that configurations in the range 2 to 5 
yield optimal results.

In Fig. 4b, the bag test error of our model with respect to the number of neighbours J 
is presented. Each point on the plot represents the mean test error for a specific num-
ber of nodes, while the shaded regions around the points indicate the 95% confidence 
intervals. Confidence intervals were computed using the normal approximation method 
based on the mean and standard deviation of the bag test error across multiple indepen-
dently trained models (across 5 cross-validation folds). The standard deviation of the test 
error was used to calculate the standard error, which accounts for variability across the 
models. The intervals were derived by subtracting and adding the margin of error to the 
mean test error for each value of k (number of neighbors). Our first observation is that 
in the absence of contextual information the test error is significantly increased verify-
ing once again the benefits from incorporating such information in our model. As the 
number of J increases, we observe a decline in test error, likely attributed to the supple-
mentary information provided by the surrounding instances. When J varies between 2 to 
5 we observe significant fluctuations in the test error likely attributed to the nature of the 
dataset. Specifically, the epithelial and non-epithelial cells form clusters that are tightly 
packed together. Therefore, small changes in J could change which clusters dominate the 
decision-making process for classifying a particular cell. Our second observation is that 
increasing the amount of context does not degrade the model’s performance at the bag 
level. However, as illustrated in Fig. 4a, adding more context negatively impacts the per-
formance on an instance level.

Classification of cancer cells

In Table 2 we report the results when we create graphs with J=5 neighbours for the 
UCSB dataset. In the UCSB dataset our model when compared to the other attention 
models improves classification accuracy by more than 10%, demonstrating the ben-
efits of incorporating contextual information. The siamese K-MIL model outperforms 

Fig. 3 Attention map for different K on the COLON dataset: a ground truth cells, b J=2, c J=4, d J=6, e J=8, 
f J=10. Small variations of K do not lead to drastically different results. However, as K keeps ncreasing, the 
performance drops
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Fig. 4 a ROC curve for the classification model performance. b Test error with respect to the number of 
nodes for the COLON cancer dataset. Each point on the plot represents the mean test error for a specific 
number of nodes, while the shaded regions around the points indicate the 95% confidence intervals

Table 2 Performance comparison of K-MIL against various baselines on the breast cancer dataset 
comprising of H&E stained images

The experiments were run 5 times and the average (± standard error of the mean) is reported. [bold]: Highlights the best-
performing results in the respective metrics

METHOD ACC URA CY PRECISION RECALL F‑SCORE AUC 

5-Random net 0.684 ± 0.19 0.690 ± 0.32 0.540 ± 0.470 0.658 ± 0.38 0.670 ± 0.23

gated ABMIL 0.745 ± 0.11 0.795 ± 0.20 0.673 ± 0.2 0.728 ± 0.20 0.845 ± 0.11

ABMIL 0.762 ± 0.10 0.777 ± 0.21 0.725 ± 0.21 0.75 ± 0.19 0.844 ± 0.11

Mi-NET 0.707 ± 0.64 0.707 ± 0.18 0.619 ± 0.27 0.839 ± 0.02 0.712 ± 0.003

MI-NET 0.724 ± 0.10 0.730 ± 0.10 0.763 ± 0.17 0.746 ± 0.12 0.888 ± 0.09

MI-NET with RC 0.755 ± 0.28 0.738±0.11 0.725 ± 0.21 0.731 ± 0.14 0.855 ± 0.12

MI-NET with DS 0.734 ± 0.12 0.736 ± 0.18 0.716 ± 0.18 0.728 ± 0.18 0.847 ± 0.10

Ours (euclidean) 0.890 ± 0.07 0.943 ± 0.08 0.821 ± 0.16 0.877 ± 0.11 0.970 ± 0.07

Ours (siamese) 0.910 ± 0.08 0.931 ± 0.12 0.869 ± 0.16 0.898±0.14 0.977 ± 0.13



Page 12 of 18Fourkioti et al. BMC Bioinformatics            (2025) 26:9 

its siamese counterpart, verifying the usefulness of the siamese network that manages 
to embed pattern similarities on top of the spatial ones.

In Fig. 6, we provide three representative examples of the attention maps produced 
by our model for the UCSB dataset. The layout of this Figure follows the same guide-
lines as that of Fig. 2 except it omits a column for displaying the ground truth cells, 
which are not available. One notable observation is that, despite the lack of ground 
truth labels and the predominance of cancer cells in malignant cases, ABMIL clas-
sifies all cells as important, showing no selectivity. On the contrary, the attention 
maps produced by K-MIL highlight cells that exhibit signs of atypia, such as irregular 
shapes and large, variable nuclei, which are indicative of their pathological nature as 
presented in Fig. 5.

Fig. 5 A WSI. B Cells segmented from the WSI. C Attention map generated by the context model. D 
Attention Map Generated by non-Context model. E Image highlighting atypical cells that the context model 
recognises as important. F Image of cells deemed important by the non-context model, likely reflecting 
normal or less relevant cell features (elongated cells)
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In Fig. 7 we showcase the attention maps produced for different variations of J for 
the UCSB dataset. In the case of the USCB dataset, ground truth labels are not avail-
able. A first notable observation is the increasing density of the attention maps when 
increasing the number of neighbours. Similarly to the colon cancer dataset, there is 
a risk that increasing J might lead the model to incorporate noise as a significant sig-
nal, compromising the model’s specificity.

In Fig. 8, we present the relationship between the test error of our model and the 
number of neighbours considered. Again an observable trend is the reduction in 
bag test error as the number of nodes increases. In contrast to the COLON can-
cer dataset, the increase in test error as J increases is more gradual, suggesting a 
less pronounced impact of additional nodes on model accuracy. A small J might lead 
the model to make decisions based on too local a neighbourhood, possibly catching 
noise rather than signal. A slightly larger J, but still within a sensitive range like 2 to 
5, might help the model to better generalize by considering a broader yet still rel-
evant context of cellular features.

Fig. 6 An example on the UCSB cancer dataset highlighting how our method improves instance-level 
classification accuracy qualitatively and quantitatively: a 32× 32 segmented cells, b Every patch multiplied 
by its corresponding attention weight using prior work [30], c Every patch multiplied by its corresponding 
attention weight using our model
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Discussion
Our analysis reveals several key findings regarding the performance and adaptability of 
MIL models in recognising Regions of Interest (ROIs) in complex datasets. Firstly, it’s 
evident that MIL models lacking attention mechanisms are less flexible, hindering their 
ability to accurately identify ROIs. This limitation points to the critical role of attention 
mechanisms in enhancing model adaptability and precision. Secondly, models incorpo-
rating contextual information significantly outperform those without such integration, 
suggesting a topological order within the instances. This insight underscores the impor-
tance of including topological knowledge in the model, as it contributes to a more accu-
rate representation and understanding of the data structure.

Fig. 7 Attention map for different K on the UCSB dataset: a J=2, b J=4, c J=6, d J=8, e J=10. Small variations 
of K do not lead to drastically different results. However, as K keeps increasing, the performance drops

Fig. 8 Test error with respect to the number of nodes for the UCSB cancer dataset. Each point on the plot 
represents the mean test error for a specific number of nodes, while the shaded regions around the points 
indicate the 95% confidence intervals
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The application of the siamese network architecture demonstrates the usefulness of 
embedding pattern similarities alongside spatial relationships. This dual focus not only 
enhances the model’s performance but also its ability to discern subtle variations within 
the data. Furthermore, it is noteworthy that the siamese network variant of our model 
achieves the highest recall rates on both datasets examined. Recall is of paramount 
importance in the context of histopathology image analysis, where the cost of falsely 
classifying a positive case as negative could have serious implications for patient treat-
ment and prognosis. This outcome highlights the siamese network’s utility in capturing 
critical features that contribute to more reliable and accurate classification performance.

Our neighbour analysis also reveals that there is an optimal range for the number of 
neighbours in graph construction that contributes to improved model performance and 
balances the benefits of contextual awareness against the risk of noisy inputs. Gradu-
ally increasing the number of nodes taken into account leads to enhanced model per-
formance, as evidenced in both our quantitative and qualitative analyses. Expanding 
the field-of-view of each cell, which is substantiated by increasing the number of nodes 
used in the graph construction, provides a richer contextual understanding of the cellu-
lar environment. However, as the number of K keeps increasing (K>8), the performance 
of our model eventually drops. This decline suggests the introduction of noise into the 
model’s inputs, which likely stems from the diminished relevance of distant neighbours. 
As the number of nodes increases past the optimal range, the probability that these addi-
tional cells contribute meaningful contextual information decreases, and they instead 
begin to clutter the model’s perception with irrelevant data.

Finally regarding the computational complexity of our model, it is primarily deter-
mined by the graph attention mechanism, which involves the linear transformation of 
the initial feature vector of dimension d into a new feature vector of dimension d′ for 
each node of the graph, resulting in O(N · d · d′) operations, where N  corresponds to the 
number of nodes in the graph.

In the Euclidean version of our model, neighbourhood connections are defined solely 
based on spatial proximity. After the initial linear transformation, attention scores are 
computed directly between spatial neighbors, without the need for additional feature-
based similarity calculations. The complexity of calculating attention scores among 
neighbours is therefore proportional to the number of neighbours k per node, leading to 
an overall complexity of O(N · d · d′)+ O(N · k · d′) . The first term corresponds to the 
initial feature transformation, while the second captures the complexity of calculating 
the attention scores among k neighbours of each node without considering feature simi-
larity. Increasing the number of neighbours k increases the number of attention scores 
that need to be computed, but it does not introduce additional quadratic terms. As a 
result, the complexity increases linearly with k.

In contrast, the Siamese version incorporates real-time feature similarity calculations 
among neighbors. After the initial linear transformation, the model computes cosine 
similarity scores between the feature vectors of neighboring nodes. If each node has, 
on average, k neighbors, then for each node, the pairwise similarity among neighbors 
involves k2 operations, resulting in a time complexity of O(N · d · d′)+ O(N · k2 · d′) . 
The first term corresponds to the initial feature transformation, and the second captures 
the complexity of calculating cosine similarity among k neighbors of each node. While 
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the linear transformation step has a complexity of O(N · d · d′) , the additional term 
O(N · k2 · d′) introduces a significant overhead as the number of neighbors k increases. 
This quadratic dependency on k makes it crucial to carefully choose the number of 
neighbors to balance between accuracy and computational efficiency. As k increases, the 
complexity of cosine similarity computation grows quadratically, i.e., O(k2) , because we 
need to compute similarities among all pairs of neighbors. For small values of k , this 
term O(N · k2 · d′) may be negligible compared to O(N · d · d′) . However, as k becomes 
larger, the O(N · k2 · d′) term can dominate, making the method computationally 
expensive.

Conclusions
Our findings highlight the pivotal role of attention mechanisms, contextual integra-
tion, and optimal graph construction in improving the performance of MIL models 
for identifying ROIs in histopathology datasets. Models lacking attention mechanisms 
demonstrate limited adaptability, as they struggle to accurately identify key features. 
The integration of contextual information and topological order enhances representa-
tion and understanding of cell structures. Additionally, our analysis of graph construc-
tion reveals an optimal range for the number of neighbors, balancing contextual richness 
against the risk of noise.
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