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Abstract 

Background:  Vaccines development in this millennium started by the milestone 
work on Neisseriameningitidis B, reporting the invention of Reverse Vaccinology (RV), 
which allows to identify vaccine candidates (VCs) by screening bacterial pathogens 
genome or proteome through computational analyses. When NERVE (New Enhanced 
RV Environment), the first RV software integrating tools to perform the selection of VCs, 
was released, it prompted further development in the field. However, the problem-
solving potential of most, if not all, RV programs is still largely unexploited by experi-
mental vaccinologists that impaired by somehow difficult interfaces, requiring bioinfor-
matic skills. 

Results:  We report here on the development and release of NERVE 2.0 (available at: 
https://​nerve-​bio.​org) which keeps the original integrative and modular approach 
of NERVE, while showing higher predictive performance than its previous version 
and other web-RV programs (Vaxign and Vaxijen). We renewed some of its modules 
and added innovative ones, such as Loop-Razor, to recover fragments of promising 
vaccine candidates or Epitope Prediction for the epitope prediction binding affini-
ties and population coverage. Along with two newly built AI (Artificial Intelligence)-
based models: ESPAAN and Virulent. To improve user-friendliness, NERVE was shifted 
to a tutored, web-based interface, with a noSQL-database to consent the user to sub-
mit, obtain and retrieve analysis results at any moment.

Conclusions:  With its redesigned and updated environment, NERVE 2.0 allows cus-
tomisable and refinable bacterial protein vaccine analyses to all different kinds of users.

Keywords:  Reverse vaccinology, Vaccine candidates, Modular software, User-friendly 
website, Machine learning, Artificial intelligence

Background
In the early 2000s, the growing availability of genomic data and the development of more 
performing bioinformatics tools led to a revolution in vaccinology, i.e., to the birth of 
Reverse Vaccinology (RV) [1]. Starting with the work on Neisseria meningitidis group B 
by Rino Rappuoli’s team [2], RV has enhanced the capacity to identify VCs by replacing 
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several experimental tasks. This is possible via in-silico prediction steps on the genome 
and/or proteome of the pathogen of interest, with consequent time and cost benefits. 
Afterwards, RV has been applied to other pathogenic bacterial species. However, the 
first bioinformatics-driven approaches were pathogen-tailored and poorly generaliz-
able [3]. To tackle the need to standardise VCs search process, the first published open-
source RV platform was NERVE (New Enhanced Reverse Vaccinology Environment) [4], 
only for Linux users. It is based on a modular structure, and it extracts relevant infor-
mation from a given pathogen proteome through six analytical steps, comprehending 
different bioinformatic tools (see Additional Fig. 1). These data, saved in a MySQL table, 
are then used to infer the presence of protein vaccine candidates (PVCs), which are col-
lected in an HTML table.

Inspired by NERVE, further RV applications have been developed, including new and 
updated tools to improve VCs identification [3]. According to their working structure, 
RV programs can be classified into these two categories [5]: filter-based and machine 
learning (ML)-based. In the first ones, protein sequences are analysed by different tools 
to obtain useful information, such as their probability of being an adhesin or their sub-
cellular localization. Then, this is passed to a decision tree that uses a priori cut-offs 
to select PVCs. NERVE [4], Jenner-predict [6], VacSol [7] and Vaxign [8] fall into this 
category.

In the second category, some specific protein sequence features are extracted and 
directly fed to a ML model. These features may include physicochemical descriptors, 
such as amino acid composition or hydrophobicity propensity. Next, an artificial neural 
network (ANN) is often adopted to classify input proteins in PVCs and not-PVCs, solv-
ing a common binary classification task. Examples of these programs are VaxiJen [9] and 
Bowman–Heinson [10, 11].

Differently from the cited ones, ReVac [12] uses a scoring system that ranks all PVCs 
from the most to the least likely one. It accepts bacterial proteomes and genomes as 
inputs, which are analysed by several bio-tools integrated in the Ergatis platform [13] 
and grouped according to the analysed feature, enabling parallel computations. This 
redundancy, as the authors specify, leads to more confident predictions. Nevertheless, 
the complex structure of ReVac represents a drawback because it requires unclear soft-
ware dependency installation and scarce documentation, representing a major disadvan-
tage for most of the users.

Despite recent and remarkable improvements in RV applications, such as the evalu-
ation of virulence factors as PVCs [7] or population coverage predictions of pathogen 
input proteins [8], one of their main limitations remains the difficulty of installation and 
use. Most of the cited programs are not readily accessible because their installation pro-
cedures are often challenging due to unclear instructions or little support by the devel-
opers. Instead, accessibility to a broad plethora of users should be an essential goal of 
RV applications [5]. NERVE 1.0 installation was rather arduous as well because of the 
multiple dependencies which required manual downloading and configuration, and it is 
no longer supported as most of its Perl libraries are now obsolete.

We upgraded NERVE to tackle the usability and accessibility pitfalls common to many 
RV programs. We renewed most modules (also named components) and included 
new AI (Artificial Intelligence) ones. In the realm of vaccine development, advanced 
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computational pipelines are now utilising AI systems, which provide great improve-
ments in terms of accuracy and speed allowing also a better comprehensive analysis of 
entire proteomes, compared to non-AI methods [14].

Implementation
NERVE 1.0 was meant to be an environment, gathering different tools and making them 
collaborate to obtain a final PVCs ranking. The same approach is maintained in version 
2.0.

The first major difference, compared to the original version, is the programming lan-
guage: Perl was replaced by Python, especially for libraries availability, e.g. TensorFlow 
[15] for the modules using deep learning models. Regarding the input, FASTA files can 
be automatically retrieved from UniProt [16], in addition to manual uploading. They are 
also subject to a quality check to exclude sequences presenting anomalous characters or 
non-conventional amino acids.

The results are saved in a .csv table, which is easier to visualise and download. They are 
also permanently stored on the server-side and can be accessed at any moment by the 
user. The output is then available in three formats:.csv, .xls, and .json.

Part of NERVE 2.0 modules were substituted with new packages created ad hoc. 
Python-TMHMM, a protein topology predictor [17] was adapted to fit the new NERVE 
pipeline. The adhesin predictor SPAAN [18] was completely renewed adopting a differ-
ent ML architecture and using a new training dataset. The same model was also trained 
on different datasets to obtain Virulent, a module for the prediction of virulent factors. 
In addition, ML was considered for protein function prediction, performed by DeepFri 
[19]. Four new components have been added to NERVE 2.0, namely Loop-Razor, Viru-
lent, Mouse Immunity and Epitope prediction. A brief description of each component is 
provided hereafter, while Fig. 1 summarises NERVE 2.0 overall structure.

Users interacting with the web interface or using NERVE 2.0 stand-alone version (see 
Availability of data and materials) can decide to optionally activate only some of these 
components and modify specific parameters allowing customisable PVCs search.

Subcelloc module

Subcelloc predicts input protein subcellular localizations and aims at finding surface-
exposed proteins, which are ideal vaccine targets [18]. For this purpose, this module uses 
PSORTb 3.0 [20], which shows improved precision and recall with respect to the version 
2.0, required for the original NERVE. PSORTb 3.0 predicts the subcellular localization 

Fig. 1  NERVE 2.0 working structure. Bacterial protein sequences are provided as an input FASTA proteome 
and undergo eight analytical steps: A Subcelloc predicts protein subcellular localization, B Adhesin returns 
the probability of a protein to be an adhesin, C Tmhelices predicts protein topology, D Loop Razor rescues 
membrane proteins reduced to their extracellular fragments, E Autoimmunity and Mouse Immunity which find 
respectively matches between the pathogen under analysis and human or mice proteomes F Conservation 
which detects conserved proteins between two input bacterial strains, G Virulent to infer presence of 
virulence factors and H Annotation to predict protein function. Then, the Select module I filters out PVCs, which 
meet specific requirements. Output results can be downloaded in .json, .csv, or.xlsx format. Epitope prediction 
J is performed after the Select module. Created with BioRender.com

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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given the bacterial Gram type, which is a classification based on bacterial membrane 
staining [20]. Predictions equal or above the threshold of 7.5 are considered valid in 
accordance with the PSORTb 3.0 documentation [20].

ESPAAN, adhesin prediction module

Bacterial adhesins are surface-associated virulence factors that play a crucial role dur-
ing the first steps of infection, mediating attachment to host cells [21]. Because they are 
surface bound and required for the infection to occur, they can be readily targeted by the 
immune system thus representing valid PVCs [21]. A list of known adhesive domains 
derived from the literature [22] was used to construct a dataset via jackhammer search 
on reference eubacteria proteomes using the HMMER web server (HMMER 3.3.2) [23]. 
A set of putative non-adhesin proteins was derived from a search on the SwissProt sec-
tion (manually reviewed and curated proteins) of Uniprot [16] considering bacterial pro-
teins with non-adhesin related keywords. Redundant sequences (25% identity threshold) 
were removed from both datasets with CD-hit [24] obtaining 2700 adhesin proteins. A 
subset of non-adhesin proteins was randomly selected to match the size of the adhesin 
dataset. Proteins with local similarity above 25% with proteins used to tune the Select 
module (see Sect.  “Tuning and benchmarking tests”), as measured with BLASTp [25], 
have also been removed.

A neural network based on a 10-unit Dense layer was implemented for adhesins iden-
tification. The network takes some protein features as input, and it is trained to cor-
rectly classify if a protein is an adhesin or not. Cross-entropy loss is used. The features 
considered are computed with the Python package iFeature [26] and consist of amino 
acid composition (AAC), dipeptide composition (DPC), composition (CTDC), transi-
tion (CTDT), and distribution (CTDD), as similarly done in PathoFact, a tool for the 
prediction of virulence factors and antimicrobial genes [27]. Since every sequence has 
a (20 + 400 + 39 + 39 + 195 = 693)-dimensional feature vector, we performed Principal 
Component Analysis (PCA) to reduce the dimensionality. We found 400 features to be 
sufficient to explain the variation observed in the dataset, which was split into 50% train-
ing, 25% validation and 25% test set. The training was performed for 120 epochs. To test 
ESPAAN performance, the main evaluation metrics (shown in Fig. 2 and Table 1) were 
calculated on its test set.

ESPAAN shows very good performances. Precision and recall both have high values 
(> 0.9), and therefore F1-score is high, too (0.932). Additionally, probabilities of find-
ing false positives and negatives are quite low (0.052 and 0.084 respectively). The 0.932 
recorded accuracy demonstrates that ESPAAN makes overall correct predictions with 
few exceptions. In addition, ESPAAN was also benchmarked against its predecessor, 
SPAAN,1 demonstrating a notable superiority (Table 1).

To better assess ESPAAN performances and to avoid overfitting, a threefold cross 
validation was performed with TensorFlow. As evidenced by data presented in Table 2, 
ESPAAN also shows very high mean validation metrics (> 0.9) with very low related 
standard deviations. This reconfirms the results of the previous demonstration.

1  https://​github.​com/​kitam​ura-​felipe/​adhes​in_​finder.

https://github.com/kitamura-felipe/adhesin_finder
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See Additional file 1 in Supplementary Material and Availability of data and materials 
for an overall comprehension of ESPAAN tests data.

TMhelices module

The third step is the protein topology prediction, which consists in finding cytosolic, 
transmembrane, and extracellular regions. To this aim, we used an ameliorated version 
of Python-TMHMM, which is based on a hidden-Markov model [17]. We implemented 
the source code available at https://​github.​com/​danso​nderg​aard/​tmhmm.​py adapting it 
to work with thousands of FASTA protein sequences. TMhelices predicts, for each pro-
tein, the number of transmembrane helices domains (TMDn), as well as”Tmhmm seq”, a 
reduced-alphabet protein sequence containing all different topologies detected, which is 

Fig. 2  ESPAAN confusion matrix. A 2 × 2 matrix has been considered for this binary classification problem 
(adhesin/non-adhesin), setting PAD (probability of being adhesin) = 0.5 as threshold

Table 1  Evaluation metrics of ESPAAN and SPAAN, calculated on ESPAAN test set using a dedicated 
python script with TensorFlow

The test set consists of 692 positive and 658 negative sequences. 5 sequences from the positive set and 25 from the 
negative sets were filtered out by SPAAN and therefore not considered to calculate its metrics

Metric ESPAAN SPAAN

Accuracy 0.932 0.669

Sensitivity (recall) 0.916 0.566

Precision 0.949 0.737

F1-score 0.932 0.640

False positive rate (FPR) 0.052 0.220

False negative rate (FNR) 0.084 0.434

True negative rate (TNR) 0.948 0.780

False discovery rate (FDR) 0.051 0.263

Negative predictive value (NPV) 0.915 0.624

https://github.com/dansondergaard/tmhmm.py


Page 7 of 20Conte et al. BMC Bioinformatics          (2024) 25:378 	

crucial for Loop-Razor. The substitution of HMMTOP [28], the topology predictor used 
in NERVE 1.0, simplified the installation procedure.

Loop‑Razor module

Loop-Razor allows the user to retrieve peptides of PVCs, which have TMDn ≥ 3. It has 
been introduced because most of the filtration—RV programs, such as NERVE 1.0, dis-
cards proteins with TMDn ≥ 3. Such cut-off has been applied so far to avoid impaired 
expression of the recombinant protein, a very frequent outcome when dealing with 
membrane proteins, despite several, recently improved protocols [29, 30]. In the pio-
neering work of Pizza et al. [2], 250 out of the 600 surface proteins of Neisseria Men-
ingitidis Group B—endowed with multiple transmembrane domains—were excluded 
from subsequent characterization steps for unsuccessful cloning. Nevertheless, trans-
membrane proteins very often turned out to be PVCs because they belong to the surface 
sub-proteome and hence have more exposed epitopes. To avoid discarding such poten-
tially useful epitopes, as suggested by Olaya-Abril et al. [31], protein fragments that are 
not embedded in the membrane can be selected for cloning and vaccine testing. To this 
purpose, when Loop-Razor is active, only the outside loops (o-loops) of transmembrane 
proteins are considered for all proteins with TMDn ≥ 3. With outer membrane proteins 
(OMPs), the internal loops (i-loops) facing the periplasmic space, are also examined, 
because they belong to the surface proteome too. In these selected loops, if the longest 
of a minimum 50 amino acids—continuous sequence (default value, user-modifiable) is 
detected, it will replace the entire original protein sequence and will then be analysed 
by the subsequent modules. Considering o-loops, or OMPs-i-loops, is made possible by 
TMhelices, as stated. Reducing the excessive filtration, Loop-Razor recovers promising 
VCs.

Autoimmunity module

This module compares bacterial proteins with human ones to identify similar regions 
to prevent low immune responses, tolerance issues or autoimmune reactions in vaccine 
recipients. To achieve this, it retains the two-step structure from the original NERVE:

1.	 Comparison to the human proteome via BLASTp [25]
2.	 Analysis of found shared peptides (SPs) to look for Major Histocompatibility Com-

plexes (MHC)-I II human ligands.

MHC class I epitopes stimulate T-lymphocytes cytotoxic activity while MHC class II 
epitopes promote helper T-cell response which is essential for antibody production [32]. 

Table 2  Three-fold cross validation of ESPAAN with related obtained metrics

Metric Value Std. deviation

Mean validation accuracy 0.929 0.002

Mean validation recall 0.932 0.005

Mean validation precision 0.914 0.002
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Presence of such ligands could induce strong autoimmune reactions. The SPs parame-
ters (minimum length, substitution, and mismatch) have been maintained with the same 
default values and are still modifiable. A new tunable parameter is the e-value, intro-
duced to regulate the number of hits found with BLASTp [25].

The outdated MHCPEP database [33] was replaced with a file containing human 
MHC ligands retrieved from the IEDB database [34] consisting of 7473 bacterial linear 
epitopes. In the “Assay” section of the IEDB.org homepage (Fig. 3), all types of experi-
ments with positive outcomes have been considered. No filters have been applied to the 
“Disease” section, instead. To quantify the similarities between microbial and human 
proteins, we used the same formula adopted in NERVE 1.0 (see Select module).

Fig. 3  Snapshot taken from the IEDB.org home page. All settings applied to create mhcpep-sapiens are 
shown. “MHC Restriction” is for MHC class I and II
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Mouse immunity module

This facultative step was added to ease possible vaccine manufacturing—pre-clinical 
studies. Comparison of input protein queries to the mouse proteome is once again 
performed by BLASTp. Found SPs are scanned to eventually find matches with mouse 
MHC ligands. To this purpose, a database of 2060 mouse ligands (mhcpep-mouse) was 
retrieved from IEDB.org. The applied filters on the IEDB webpage are the same used for 
Autoimmunity, except for the “Host”, which is Mouse in this case. The SPs parameters 
are also modifiable in this module.

Conservation module

Conservation has maintained the same features as in NERVE 1.0. It compares a selected 
bacterial proteome with another one from the same strain/serogroup using BLASTp. 
The assumption on which this comparison is based, taken from the original article, is: 
“the more a PVC is conserved, the more protective the vaccine produced” [4]. Ranking of 
PVCs in descending order of conservation is possible with the formula adopted in Auto-
immunity and Mouse immunity modules.

Virulent module

This newly developed optional component predicts the probability of being a viru-
lence factor (PVR). This overcomes a main limitation of NERVE 1.0, which only con-
siders adhesins and adhesin-like proteins as PVCs [3]. Indeed, even though these two 
latter categories often represent relevant vaccine targets, other protein classes should be 
examined as well. An example are invasins and toxins, which are both pathogenic and 
antigenic proteins, therefore promising targets for vaccine development [7].

It is therefore necessary to consider all protein classes that allow microorganisms to: 
(1) colonise host tissues, have immunomodulatory and/or suppressive properties, or (2) 
deprive the host of essential nutrients which fall under the definition of virulence fac-
tors. Since these factors can lack, or have poor, adhesive properties, Virulent solves the 
gaps left by the search of adhesins alone.

To achieve this purpose, we designed a ML model with the same architecture of 
ESPAAN. Both training and validation datasets were retrieved from the Virulence Factor 
Database (VFDB) [35] (specifically, the protein core dataset) and from the SwissProt sec-
tion of UniProt, using keyword search [16]. The following keywords were excluded from 
the search: virulent, pathogen, lethal, adhesin, adherence, biofilm, toxin, endotoxin, exo-
toxin, enterotoxin, invasin, antiphagocytic, motility, flagella, pilus, multidrug, subtilisin, 
immunoevasion, immunomodulation, lipopolysaccharide, lipoprotein, spore, antibiotic. 
After redundancy removal with CD-Hit (25% identity threshold) [24], 1820 virulent fac-
tors and 1808 non-virulent factor proteins were left. Then, sequences matching proteins 
used to tune Select have been discarded.

A PCA was applied to perform data reduction, selecting only 400 features. Virulent 
was trained for 110 epochs and its evaluation metrics are reported in the following Fig. 4 
and Table 3.

Differently from ESPAAN, Virulent shows reasonable, but not outstanding, perfor-
mances. Precision and recall have values greater than 0.7. False positive and negative 
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rates are not exactly negligible as the ESPAAN ones, in particular FDR, which is 0.276. 
Virulent overall accuracy is fairly valid (0.751).

A three-fold cross validation was performed for Virulent as well (Table 4). This con-
firmed the quality of the model.

For a comprehensive analysis of Virulent tests, see Additional file 1 in Supplementary 
Material and Availability of data and materials sections.

Annotation module

This optional module uses the DeepFRI model to infer protein function [19]. The pre-
dictor returns Gene Ontology (GO) terms [36] associated with each protein above 
the confidence threshold of 0.5, in agreement with DeepFRI documentation. The 

Fig. 4  Virulent confusion matrix. Similarly to ESPAAN, here is a 2 × 2 matrix considering PVR (probability of 
being a virulence factor) = 0.50 as threshold

Table 3  Evaluation metrics of Virulent calculated on its test set, using a dedicated python script 
with TensorFlow

Metric Value

Accuracy 0.751

Sensitivity (recall) 0.724

Precision 0.768

F1-score 0.745

False positive rate (FPR) 0.222

False negative rate (FNR) 0.276

True negative rate (TNR) 0.778

False discovery rate (FDR) 0.232

Negative predictive value (NPV) 0.735
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information obtained is not used by Select but can be considered to facilitate the 
manual screening of VCs.

Select module

The PVCs filtration is accomplished by Select, following these rules:

–	 Being not predicted as cytoplasmic;
–	 Having a PAD value > padlimit*;
–	 Having a TMDn ≤ 2 if Loop-Razor is off;
–	  Having sum of SP with host** database)/protein length < 0.15;
–	  No match with host ligands database;
–	  PVR > virlimit*, if Virulent module is active***.

*padlimit and virlimit values are user-modifiable;
**the host is human and/or mouse if the related module is on;
***If Virulent is on, proteins with either PVR > virlimit or PAD > padlimit are selected.
We decided to make the activation of Select optional. So, when it is not active, all 

protein information collected is viewable.
A composite score ranging from 0 to 1 is associated with each antigen as it is meant 

to prioritise the best PVCs by combining the normalised scores of each predictor. The 
configuration of Select and its parameters is detailed in paragraph 2.12.

Epitope prediction module

The Epitope prediction module identifies epitopes that can potentially bind to MHC-I/
II complexes. These molecules, which are codified by the HLAs (Human Leukocyte 
Antigens) genes, bind and present to T cells the epitopes generated from the intracel-
lular processing of exogenous pathogenic proteins during infections [37]. Given the vast 
diversity in HLA alleles along with epitopes tridimensional structure and combinations 
[14, 37], this module considers only linear epitopes and strategically employs the HLA 
supertypes. This, as defined by Sette and Sidney [38], simplifies the analysis by consid-
ering a set of representative HLA alleles to ensure a good coverage of MHC complexes 
within the world’s population. Indeed, the MHC-HLA polymorphism allows to cluster 
them into sets of molecules that bind largely overlapping peptide repertoires [37]. Spe-
cifically, the selected HLA alleles encompass HLA-B*44:03, 07:02, HLA-A24:02, *03:01, 
*02:01, 01:01, and HLA-DRB115:01, *13:01, *11:01, *08:01, *07:01, *04:01, *03:01, *01:01.

Table 4  Three-fold cross validation of Virulent with related obtained metrics

Metric Value Std. deviation

Mean validation accuracy 0.767 0.019

Mean validation recall 0.751 0.042

Mean validation precision 0.779 0.012
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The Python package epitopepredict [39] was used for epitopes prediction considering 
the frequency distribution of most common HLA alleles derived from the Allele Fre-
quency Net Database [40]. The user, guided by epitope percentile values, determines 
the threshold for considering the best-ranked proteins, identified by Select. Notably, this 
component also identifies promiscuous epitopes, which binds to multiple alleles simul-
taneously. This strategy aims to maximise vaccine effectiveness in the single immunised 
individual and by increasing population coverage. Moreover, the user is free to personal-
ise predicted epitopes length through specific parameters, including the overlap.

Tuning and benchmarking tests

To tune Select and benchmark NERVE 2.0 with state-of-the-art web-RV tools, a data-
set containing 615 known bacterial protective antigens (BPAs) was derived from the 
literature [5, 8, 41–43]. Proteins were mapped to Uniprot [16] accession codes and 
sequence redundancy was removed (90% identity threshold) with CD-Hit [24]. Intra-
cellular proteins are not considered as VCs. Therefore, antigens annotated in Uniprot 
(version 2023-01) as cytosolic or of unknown localization were excluded. Moreover, 
since PSORTb 3.0 is a NERVE 2.0 workflow—component, BPAs with local identity 
above 25%, as measured using Blast [25] with proteins from the PSORTb 3.0 training 
dataset were also excluded to prevent data leakage during these procedures. 153 BPAs 
were obtained, and the dataset was split into 108 antigens for tuning and 45 for test-
ing and benchmarking. Proteomes and organisms of origin associated with each pro-
tein were retrieved from Uniprot. Where no proteome was available, antigens were 
manually added to the reference proteome of the species. To evaluate Select perfor-
mance during the tuning, the fold enrichment was defined as follows:

where:

additionally, the recall was calculated as follows:

High fold-enrichment values indicate good performances. A hypergeometric test 
from the python module Scipy (https://​scipy.​org) was applied to verify statistical sig-
nificance, as a standard procedure already adopted to test RV programs [5].

It was not possible to obtain a running version of NERVE 1.0 due to its unavail-
able Perl libraries. NERVE 2.0 was therefore benchmarked against its previous version 
using the original NERVE 1.0 test dataset, containing 29 BPAs [4]. This dataset was 
used only for this purpose because it contains several proteins with high similarities 
with other ones from the PSORTb 3.0 training dataset.

Fold− enrichment = BPAs extracted/expected bacterial protective antigens (BPAs)

Expected BPAs =(protective vaccine candidates (PVCs)

∗extracted BPAs)/total number

of proteins submitted

Recall = True Positives/
(

True Positives+ False Negatives
)

https://scipy.org
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Website building methods

NERVE Web is an open access software with a web interface and distributed comput-
ing mechanism on top of NERVE. The server software is written in Node.js and runs 
on an Express.js server connected to a Redis database and S3 compliant object stor-
age. Docker is used for container virtualisation. The front-end development is written 
using the Angular framework.

When a processing job is started, an available cluster node starts to run NERVE 
with input provided. When a job is finished, the user is notified by email and it can 
view the PVCs filtered with all their analysed features and download the output file.

Created jobs and related IDs are stored locally in the browser, so there’s no need to 
create an account.

Results and discussion
In this section, a focus on the website structure, with the site’s pages descriptions, is pro-
vided. A detailed analysis on NERVE benchmarking tests is reported afterwards.

Website interface

To validate our design choices, both the interface and available functions were tested by 
volunteers not involved in the project (see Acknowledgements) and improved based on 
their feedback. Hereafter we report on individual sections and the functionality of the 
web application.

Fig. 5  Snapshot from the NERVE 2.0 homepage, with menu header, main benefits, and the dedicated tutorial 
video
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Overview and home page

By clicking on: https://​nerve-​bio.​org/, a user enters the NERVE website homepage 
(Fig. 5).

In the menu header, there are the links to the seven pages of the site: Home, My jobs, 
Create job, Statistics, FAQ, Glossary and Team. In My jobs, all analyses launched by the 

Fig. 6  Snapshot from NERVE 2.0 website (Create new job section)

Fig. 7  Snapshot from NERVE 2.0 website. Results with PVCs filtered from the proteome of Neisseria 
meningitidis group B (MC58)

https://nerve-bio.org/
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user are shown, with the possibility to check their status or to look at the results. Click-
ing on Create job, the user can start a new analysis. The Statistics section shows the 
numbers of user-completed, failed, or delayed jobs. In FAQ, NERVE features and work-
ing are described along with a tutorial. In Glossary, a list of bioinformatics related words, 
with their definitions, are reported to guide the beginners through their first vaccine 
analyses. Finally, in Team, there are the profiles of people who are contributing to the 
NERVE project.

Fig. 8  A detail of Epitope prediction results and TMHMM sequence (at the bottom) of UniprotKB: Q9K0K9 
extracted from the proteome of Neisseria meningitidis group B (MC58)

Fig. 9  Epitope prediction results for UniprotKB: P17739 from the proteome of Borrelia burgdorferi (strain ATCC 
35210). Here are highlighted the MHC-I and II binders for multiple alleles to identify promiscuous linear 
epitopes
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Create job

In this section the user uploads its input and sets all the options and parameters for its 
analysis (Fig. 6).

Results visualisation and download

An example of how job results are visualised is shown in Figs. 7, 8 and 9.
A summary of all settings and components activated is provided at the top of the 

webpage. In the Protein vaccine candidates’ section (Fig. 7), the user can see all data 
collected for each filtered protein by clicking on its related View entry details. Here, 
there is also the Tmhmm seq and the Epitope prediction results, with MHC-I and II 
binders (Fig. 8 and 9).

Benchmarking

To find the best Select configuration, we tested three different settings on the tuning 
dataset described in Sect.  “Tuning and benchmarking tests”: (1) without Loop-Razor, 
Mouse immunity and Virulent, (2) with Loop-Razor only, (3) with Loop-Razor + Mouse 
immunity and (4) with Loop-Razor + Mouse immunity + Virulent combination. For each 
configuration, the best padlimit and virlimit thresholds were obtained by performing 
a four-fold cross validation procedure resulting in 0.5 for both, which were thus set as 
default values. The immunogenic and TMDn thresholds were not changed from NERVE 
1.0 (see Sect. “Select module”).

We evaluated each configuration of Select on the test dataset by measuring the fold-
enrichment and applying the hypergeometric test.

As shown in Table 5, the best performance was (1) Loop-Razor, Mouse immunity and 
Virulent deactivation, (fold enrichment = 16.57). The activation of Loop-Razor and both 
Loop-Razor and Mouse immunity produced the same results consisting in a fold-enrich-
ment reduction (10.13), while the additional activation of Virulent further decreased the 
fold-enrichment (2.97).

Performances were benchmarked against existing web-based RV tools on the same 
test set: Vaxign2 (https://​violi​net.​org/​vaxig​n2) [8] and Vaxijen (http://​www.​ddg-​
pharm​fac.​net/​vaxij​en/​VaxiJ​en/​VaxiJ​en.​html) [9]. Vaxign2 results were retrieved with a 

Table 5  Tests and benchmark results of NERVE 2.0: highest fold-enrichment values indicate the best 
performance

45 known BPAs from 21 proteomes were used and 52,752 proteins derived from the respective proteomes, 36 of which 
were discarded by NERVE2 after failing quality control analysis. The same dataset was tested on Vaxign2, which failed on 
performing the computation on 607 proteins, and on Vaxijen. p-values have been calculated with a hypergeometric test

Online 
RV tools

Modules/methods used PVCs Observed 
BPAs

Recall 
(%)

Expected 
BPAs

Fold-
enrichment

p-value

Razor Mouse Virulent

NERVE 
2.0

No No No 796 11 25.00 0.66 16.57 4.21e − 11

Yes No No 828 7 15.91 0.69 10.13 5.29e − 6

Yes Yes No 828 7 15.91 0.69 10.13 5.29e − 6

Yes Yes Yes 4441 11 25.00 3.70 2.97 8.34e − 4

Vaxign2 ML-based 27,227 36 81.82 22.71 1.58 3.10e − 5

Filter-based 1059 8 18.18 0.88 9.06 2.40e − 6

Vaxijen ML-based 10,905 31 70.45 9.10 3.41 1.67e − 12

https://violinet.org/vaxign2
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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customised Python script for web scraping while Vaxijen results were provided by the 
authors. We used a web scraping approach for Vaxign2 as its command line version was 
failing the process for some proteomes with cryptic errors, preventing us from running 
the computation on 607 proteins. Tests were performed on the remaining set. Vaxign2 
was tested using either the score obtained with VaxignML (0.9 threshold), a ML model 
based on eXtreme Gradient Boosting trained to predict BPAs [44] and, with the filtering 
method (adhesin probability > 0.51, number of transmembrane segments < 2 and extra-
cellular localization as suggested by the website default parameters). Vaxign-ML showed 
poor performance, predicting a consistent protein amount as BPAs in the dataset (fold-
enrichment: 1.58) while the filtering method performed significantly better (fold-enrich-
ment: 9.06). Vaxijen is also based on a ML method and provides a score associated with 
each protein. Proteins with a score > 0.4 were considered BPAs according to Vaxijen 
website. Its performance is better than ML-based Vaxign2 but worse than filter-based 
Vaxign2 (fold-enrichment: 3.41).

NERVE 2.0 also outperformed its previous version, showing a 38.5-fold enrichment 
(p-value = 1.89e − 41) compared to 8.14 of NERVE 1.0 (p-value = 8.85e − 29) when tested 
on the NERVE 1.0 test set.

Overall, NERVE 2.0 demonstrated its superior performances compared to both web-
based state-of-the-art predictors and to its previous version.

Conclusions
NERVE 2.0 is now available in a new guise, with a simple and clear web interface to be 
easily and readily usable. So, user-friendliness represents one of the most relevant fea-
tures of this significant update. Moreover, new components, with related AI models and 
adjustable parameters guarantee respectively an improved and a customisable computa-
tional vaccine analysis, meeting the demands of all kinds of users.

NERVE 2.0 showed better performances compared to its predecessor and to other 
web-based RV programs (Vaxign2 and Vaxijen). Even if the activation of some compo-
nents may result in lower fold-enrichment values, this is compensated by evidence that 
these values are still high, while providing the users with new functionalities and mini-
mising the stringency in selection. The user can narrow the extraction of VCs by set-
ting high stringency. Alternatively, it is possible to choose between more candidates that 
would have been otherwise discarded, as discussed for the Loop-Razor module, which 
recovers antigens fragments, or for Virulent, which selects further possible VCs when 
activated.

Together with the web application, the NERVE 2.0 stand-alone version allows the 
users to perform high-throughput analyses, not being limited to server requests or bad 
Internet connection. For its installation, it requires: a Linux-operating system, Docker 
and a few instructions to follow.

Concerning future perspectives, we will further support NERVE with steady improve-
ments and additions. Thus, progressively optimised AI models for protein analyses will 
be implemented to provide the users with all the necessary tools to refine their vaccine 
research.
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