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Abstract 

Background: While protein-protein docking is fundamental to our understanding 
of how proteins interact, scoring protein-protein complex conformations is a critical 
component of successful docking programs. Without accurate and efficient scoring 
functions to differentiate between native and non-native binding complexes, the accu-
racy of current docking tools cannot be guaranteed. Although many innovative scoring 
functions have been proposed, a good scoring function for docking remains elusive. 
Deep learning models offer alternatives to using explicit empirical or mathematical 
functions for scoring protein-protein complexes.

Results: In this study, we perform a comprehensive survey of the state-of-the-art 
scoring functions by considering the most popular and highly performant approaches, 
both classical and deep learning-based, for scoring protein-protein complexes. The 
methods were also compared based on their runtime as it directly impacts their use 
in large-scale docking applications.

Conclusions: We evaluate the strengths and weaknesses of classical and deep 
learning-based approaches across seven public and popular datasets to aid researchers 
in understanding the progress made in this field.

Keywords: Computational structural biology, Protein-protein interactions, Scoring 
functions, Molecular docking, Deep learning, Protein surface properties

Introduction
Protein-protein docking is key to understanding how proteins interact. Accurate and 
efficient scoring functions that differentiate between native and non-native binding com-
plexes is critical for the accurate docking computations. The scoring task is highlighted 
in the challenge contest called CAPRI: Critical Assessment of PRediction of Interac-
tions. The goal of this paper is to provide a practical comparison of the state-of-the-art 
scoring tools.

The field of structural biology has been advancing rapidly for the past few decades, and 
experimental approaches (such as nuclear magnetic resonance (NMR), X-ray crystallog-
raphy, and cryogenic electron microscopy) have enabled biologists to determine the 3D 
structures of many proteins that have been published in Protein Data Bank [1]. However, 
almost all biological functions in living organisms depend on the interactions between 
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proteins, and determining the structure of complexes resulting from these interactions 
is essential for drug discovery and therapeutic development. As with individual pro-
teins, experimental approaches to determine the structures of complexes do exist but 
are costly and time-consuming, thus motivating the need for fast and accurate computa-
tional methods [2].

Computational docking methods predict the 3D structure of a complex using the 3D 
structures of individual proteins. These methods typically involve two steps. The first 
step is sampling, during which numerous candidate conformations are generated. Fol-
lowing this, a scoring step is performed to identify the conformations closest to the native 
structure. A good scoring function should correctly and efficiently score the near-native 
models highly, and assign low scores to the non-native conformations. Advances in com-
puting hardware have greatly improved the first step of docking and have been surveyed 
by Vakser et al. [3]. However, as mentioned above, accurate scoring functions remain a 
challenge and consequently, the accuracy of docking tools cannot be guaranteed. Appli-
cations of scoring and docking include drug and vaccine design, where it helps virtually 
predict if and how proteins may react to other molecules, thus saving time and resources 
that would otherwise be spent on experimental screening. As a result, the reliability of 
scoring functions directly affects the success rate of therapeutics. Consequently, scor-
ing functions are crucial in improving computational docking tools and accelerating 
the development of new pharmaceuticals and vaccines. This comprehensive survey will 
review the literature on scoring functions for protein-protein docking.

Note that this survey will not cover docking methods since they have been adequately 
discussed elsewhere. Assessment of the strengths and weaknesses of various docking 
methods and their range of applications are discussed in [4–6]. Additionally, several 
authors have examined the challenges and limitations of molecular docking methods, 
and have surveyed the shortcomings and unanswered questions within the field of 
molecular docking [2, 7–10]. Many surveys of docking tools for drug discovery exist 
in the literature [11–13], reviewing protein-ligand docking tools. This survey will not 
review methods for docking or protein-ligand docking, but will focus on scoring func-
tions for protein-protein docking.

Scoring functions can be divided into four categories: (1) physics-based, (2) empiri-
cal-based, (3) knowledge-based, and 4) those based on machine learning (ML) or 
deep learning (DL) [14]. The introduction of physics-based scoring functions began 
with classical force field methods that calculated binding energy by summing the Van 
der Waals and electrostatic interactions between two proteins [14]. Scoring functions 
were further improved by introducing solvent effects, polarization, and charge features 
[14]. However, the bottom line is that all physics-based models have high computation 
costs [14]. Empirical-based methods estimate the binding affinity of a complex, which 
is the difference of free energy upon complex formation. This is done by summing up 
a series of weighted energy terms before and after bonding. As these binding affinities 
are simulated using data from already known 3D structures, their scoring functions 
are simpler and more straightforward to compute compared to those in physics-based 
methods [15], making empirical-based methods faster than physics-based methods. 
The knowledge-based, or statistical-potential scoring functions use the pairwise dis-
tances between atoms or residues in the two proteins and convert them into potentials 
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through Boltzmann inversion [16]. Knowledge-based scoring functions offer a good bal-
ance between accuracy and speed [17]. Hybrid approaches for scoring have also been 
proposed [18–22]. With major advances in ML and DL, it is not surprising that many 
learning models exist for estimating scoring functions. ML and DL approaches can learn 
complex transfer functions that map a combination of interface features, energy, and 
accessible surface area terms to predict scoring functions [23]. Of the four categories of 
scoring functions, the first three are called classical methods. Figure 1 illustrates these 
categories and some of the publications in each.

A categorization of ML- and DL-based scoring functions was presented by Li et  al. 
[14] and reviewed by Huang et al., and Wang et al. [17, 56]. In [57], authors compared 
the performance of scoring functions on different types of complexes such as antibody-
antigen, enzyme-inhibitor, etc. [58, 59] provide a comprehensive comparison of ML-
based scoring functions for virtual screening.

Moal et al. [60] evaluated 115 different scoring functions, and Su et al. [61] provided 
a comparative assessment of scoring functions. However, these studies did not include 
ML-based efforts in molecular modeling. Moreover, advancements in ML and DL for 
protein-protein interaction analysis and molecular docking were reviewed recently, but 
without comparing them with non-ML methods [62, 63]. It is essential to compare and 
evaluate classical and modern efforts together, not separately. Furthermore, all scoring 
functions were benchmarked on different datasets and have not undergone a consistent, 
head-to-head comparison. This raises troubling questions about whether these tools are 
fine-tuned and tested on specific “in-distributions” and whether they would perform as 
well with other “out-of-distributions” datasets [64]. Our study bridges these two gaps by 
conducting a comprehensive comparison across seven public and popular datasets.

Fig. 1 Categories of scoring functions for protein-protein docking models and relevant publications
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The following is the organization of this paper. Section  Methods summarizes all 
methods being compared. In Sect. Datasets, we introduce the different datasets used in 
this work. The results of the experiments in Sect. Results are followed by a discussion 
section.

Methods
This study compares the performance of eight commonly used classical methods (or 
their hybrids) with four cutting-edge DL-based methods. Below, we briefly summarize 
these methods and their properties.

Classical methods

We start with a brief description of the classical methods for scoring complexes. 

FireDock  [31] Calculates the free energy change of the residues at the interface of 
a complex, uses an SVM [65] to calibrate the weights, and calculates the 
linear weighted sum of some energy terms as the binding score. After 
the refinement step, refined conformations are scored by calculating 
free energy contributions from desolvation, electrostatics, internal ener-
gies (bond stretch, angle, and torsion), hydrogen and disulfide bonds, 
and van der Waals interactions.

PyDock  Uses a scoring function that balances the electrostatic and desolvation 
energies [66]. It uses electrostatic energies with a distance-dependent 
dielectric constant and weighted desolvation energies for the score.

RosettaDock  Scores the final refined complexes by minimizing an energy func-
tion that sums up contributions from van der Waals forces, hydrogen 
bonds, electrostatics, solvation, and side chain rotamer energies [28]. 
Our experiments were conducted with PyRosetta [67], a Python-based 
implementation of Rosetta v3.1.

ZRANK2  [18], An extension of ZRANK [27], calculates a linear weighted sum of 
energy terms representing van der Waals energy, electrostatics (attrac-
tive, repulsive, short-range, and long-range), and desolvation (using 
pairwise Atomic Contact Energy (ACE)). It employs RosettaDock to 
refine each model to generate 300 structures per predicted complex.

AP-PISA  [36] Uses a distance-dependent pairwise atomic potential in combina-
tion with a residue potential to rescore the refined complexes. The two 
potentials have different signals, thus increasing the chance of generat-
ing correct solutions.

CP-PIE  [40] Finds the overlap and solvent-accessible surface areas at the com-
plex interface. They argue that the total overlap area for correct com-
plexes is less than that for incorrect complexes and use it as a filter to 
eliminate candidate complexes. The binding score also uses the number 
of residue contacts.

SIPPER  [37] Uses a combination of residue-residue interface propensities for 
each possible residue pair and a residue desolvation energy based on 
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solvent-exposed area for scoring predicted complexes.
HADDOCK  [68] Scores the docking models using several energetic and empirical 

criteria. It includes terms for Van der Waals forces, electrostatic inter-
actions, and desolvation energy. In addition to these energetic consid-
erations, HADDOCK’s scoring function also takes into account the 
degree to which a docking model adheres to or violates the experimen-
tal data that were used to guide the docking process, such as residues 
on the interface, solvent accessibility, intermolecular distance between 
atoms of both proteins that participate in the interaction. Our experi-
ments were conducted with HADDOCK v3 [69].

Among these methods, FireDock, RosettaDock, and ZRANK2 are empirical-based 
methods. AP-PISA, CP-PIE, and SIPPER are knowledge-based methods, while PyDock 
and HADDOCK are hybrid methods that combine elements from the categories 
described in Introduction section. The different docking tools and strategies used by 
each method are summarized in Table S1.

In this survey, our focus is to evaluate the scoring methods only, without taking into 
account the docking process. Therefore, we utilized the CCharPPI server [70], which 
allows us to assess only the scoring functions independent of docking and other compo-
nents that some of the tools may have.

Ten other classical methods that are primarily focused on docking include HDOCK 
[71], ClusPro [72], ZDOCK [73], PatchDock [74], SWARMDOCK [75], ATT RAC 
T [76], GRAMM-X [77], 3D-Garden [41], InterEvDock [78], and HEX [79]. They were 
not included in our comparison because they package the docking and scoring steps 
together, with no provision for a separate module for scoring. Consequently, we are not 
aware of a way to score pre-docked models with these tools, making it impossible for us 
to isolate their performance on scoring.

Deep learning‑based methods

Deep learning (DL) has been successfully applied across a wide range of applications and 
data modalities, including text [80, 81], images [82–84], graphs [85, 86], and time series 
data [87–90]. DL has also been applied to various problems in the field of protein sci-
ence. Here, we survey four DL-based approaches for scoring functions. 

GNN-DOVE  Stands for Graph Neural Network (GNN)-based DOcking decoy 
eValuation scorE [50], and is an extension of DOVE [53]. It defines 
two subgraphs to represent the interface of the complex. Phys-
icochemical features, such as the type of the atom, the number of 
connections, and the number of attached Hydrogen atoms, are 
incorporated as node features in the graph using one-hot encod-
ings. Edges represent covalent and non-covalent bonds. A gate-aug-
mented attention mechanism is used to learn the pattern of atomic 
interactions at the interface and to assess the importance of each 
interaction.

DeepRank-GNN  [45] Is also a GNN-based approach that learns “embeddings” of a 
complex. It is an extension of DeepRank [49] and represents the 
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interface of the complex as a graph using residue-level features like 
type, charge, and buried surface area (BSA), for each node. Residue-
level features are represented as node features. The graph represen-
tation has two subgraphs, one for the connections between residues 
within each protein and the other showing the connections between 
residues of the two interacting proteins. The subgraphs are then 
passed separately to two convolution layers, one for a graph atten-
tion network (GAT) [91] and the other for edge aggregated graph 
attention network (EGRAT) [92]. Using these layers, the contribu-
tions of the neighbors to each node in subgraphs are calculated and 
weighted. The weighted sum of the neighbors’ feature representa-
tion as an aggregator helps the network to distinguish native com-
plexes from non-native complexes.

dMaSIF  (Differentiable Molecular Surface Interaction Finger-printing) [48], 
unlike its predecessor, MaSIF [52], represents the protein surface 
as a point cloud and determines the interactions between all atoms 
of the complex without using precomputed interface features. For 
each point of the complex interface, it calculates ten geometric fea-
tures and six chemical features. These features are then passed to a 
sequence of (quasi-)geodesic convolutional layers for learning. The 
resulting binding score from dMaSIF is fast and accurate.

PIsToN  (Protein Interfaces with Transformer Network) [44] is the most 
recent of the DL-based tools. PIsToN crops and isolates pairs of 
patches from the interface, one for each interacting protein. The 
information from each patch is then converted into multichannel 
images, with each channel representing one of the features of the 
interaction, including Relative Accessible Surface Area (RASA), 
curvature, charge, electrostatics, and hydrophobicity. PIsToN has 
three components. The use of a Vision Transformer (ViT) [93] dif-
ferentiates it from the other methods. The embedding produced 
by the ViT is then combined with “hybrid” empirical energy terms, 
including Van der Waals, electrostatics, and desolvation, allowing 
it to learn the characteristics of complex binding energies. Finally, 
a multi-attention model groups energy terms and interface fea-
tures into five groups, each containing an independent transformer 
network. These independent networks are aggregated into a trans-
former encoder to score the complexes as native or non-native 
decoys.

It is important to note that the aforementioned DL-based methods have predecessor ver-
sions, which were not included in our study because their performance was shown to be 
lower than their corresponding successors. Therefore, MaSIF [52], DOVE [53], and Deep-
Rank [49] were excluded from our comparisons. Additionally, all DL-based scoring func-
tions for protein-ligand complexes were deemed to be outside the scope of the current 
study and excluded as well.
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Datasets
Seven different datasets were used in this work to evaluate the methods. Links to access 
to these datasets are provided in the Data Availability section. Since each data set may 
represent widely different protein complexes and significantly different distributions, the 
use of these multiple data sets is particularly important to shed light on the generaliz-
ability of the DL-based methods, which may be prone to training set biases. 

CAPRI Score v2022  Refers to the dataset used for the Critical Assessment of Pre-
dicted Interactions (CAPRI) competition that invites submis-
sions of computational methods to compete based on a set 
of protein complexes [94]. Since 2005, CAPRI has provided 
improved datasets for independent testing of new scoring 
functions apart from docking [95]. Unlike the other datasets in 
this section, the CAPRI Score v2022 dataset was generated by 
a variety of different docking tools resulting in a diverse range 
of models, making it an excellent dataset for the evaluation of 
scoring functions. This dataset contains all published CAPRI 
complexes (up to CAPRI Round 50 and joint CAPRI/CASP 
Rounds). It contains 96 complexes and 148 interfaces with a 
total of 170,310 docking models of varying complexities. After 
discarding multi-protein [96] complexes and the complexes 
for which there is no correct solution, we had 44 difficult and 
39 easy complexes with a total of 80,321 docking models. The 
level of difficulty for a complex is determined based on the 
similarity of its sequence and structure to other proteins with 
known experimental structures [97]. In our experiments, we 
treated the difficult complexes and easy complexes as sepa-
rate datasets to more precisely compare the performance of 
the methods. Henceforth, we will refer to the two data sets 
as CAPRI Score v2022 Difficult (44 complexes with 39,130 
docking models) and CAPRI Score v2022 Easy (39 complexes 
with 41,191 models). These complexes, with all their models 
and levels of difficulties, are available on Zenodo at https:// 
zenodo. org/ recor ds/ 12681 335.

CAPRI Score Refined  Refers to another dataset called CAPRI Score [95] (not v2022) 
containing 13 complexes used in CAPRI rounds 13 [98] 
through 26 [99] with roughly 500 to 2,000 docking models per 
target for a total of 16,666 docking models of varying complex-
ity, which were refined using the HADDOCK docking tool 
[68]. This dataset was introduced in the DeepRank [49] paper.

Dockground  Dataset 1.0 was generated using Gramm-X [100] and contains 
61 complexes. Each complex has 100 non-native and at least 
one near-native docking model (on average, 9.83 near-native 
docking models per complex). There are a total of 6,725 dock-
ing models in the dataset.

https://zenodo.org/records/12681335
https://zenodo.org/records/12681335
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BM4  Benchmark 4.0 [101] contains 176 unbound complexes. Each 
protein is available in a bound and an unbound conformation. 
Each complex has 54,000 docking models. For each complex, 
we subsampled the 400 top predictions (each complex has at 
least one near-native docking model). The GNN-DOVE [50] 
study used this dataset as its training set and left 19 complexes 
as a test set. To make the comparison fair, we used the 19 com-
plexes as a test set in our experiments, which provided a total 
of 7,600 docking models. These chosen complexes are available 
on Zenodo at https:// zenodo. org/ recor ds/ 12681 335.

BM5  Dataset contains 231 high-quality complexes. For each com-
plex, the bonded and unbound conformations of the proteins 
involved in the complex are available [102]. BM5 augments 
BM4, which had 55 complexes. The DeepRank-GNN [45] 
study generated 25,300 docking models for each complex using 
the HADDOCK software [68]. We randomly subsampled 500 
docking models for each of the 15 complexes that were not 
used in training or validating DeepRank-GNN, resulting in 
7,500 docking models in total. These chosen complexes are 
available on Zenodo at https:// zenodo. org/ recor ds/ 12681 335.

PDB-2023  Was used in the PIsToN paper [44] and contains complexes 
that are deposited in the RCSB Protein Data Bank (PDB) [1] 
in the year 2023. All docking models were generated using 
HDOCK [71]. This dataset contains models for 53 heterodi-
mers, with 126 near-native and 5174 non-native models in 
total.

MaSIF dataset  Was used for training and testing the MaSIF-search tool [52]. 
Later, the PIsToN work used 678 complexes from this data-
set as a testing set, and for each complex, randomly used one 
non-native and one near-native conformation [44]. We used 
exactly this test dataset for our experiments here.

Results
In this section, we discuss the performance of all 12 methods on all seven datasets. As 
mentioned in Datasets section, we divided the CAPRI Score v2022 dataset into two sub-
sets: difficult complexes and easy complexes. Consequently, in this section, we have the 
results of each method on eight datasets.

For DL-based methods, we used the best pretrained model, which had the best per-
formance according to the authors’ recommendations in their corresponding paper or 
GitHub page. Also, we followed the settings mentioned below for each method. For 
GNN-DOVE, we chose fold model 5 which had the best performance. For DeepRank-
GNN, we used the PSSMGen [103] tool to compute Position-Specific Scoring Matrices 
(PSSM) features. For PIsToN, we chose a patch size of 16 Å, since the authors mentioned 
in their paper that this patch size provides the best performance. We calculated the aver-
age, minimum, and maximum scores for all potential contacts in dMaSIF. As the average 

https://zenodo.org/records/12681335
https://zenodo.org/records/12681335
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scores had the highest AUC on all datasets, we reported them in the results. For the clas-
sical methods, we used the CCharPPI server [70], which computes the values simultane-
ously. No pre-calculated features and setting parameters are needed to use this server.

Labeling the data: The CAPRI-Q tool [104] is used to assess the quality of the docking 
models and categorize them based on the CAPRI criteria [105]. The CAPRI-Q classifies 
docking models into four categories: incorrect, acceptable, medium, or high, according 
to their quality. So, a docking model is considered incorrect if:

Otherwise, the quality can be acceptable, as defined below:
Acceptable quality:

or medium quality, as defined below:

or high quality, as defined below:

where fnat is the fraction of native contacts recovered, iRMSD is the Root Mean Square 
Deviation (RMSD) between the Cα atoms of the docked model and the native structure 
at the interface, and lRMSD is the global RMSD between the Cα atoms of the two struc-
tures. We labeled all acceptable, medium, and high categories as correct docking models.

Comparing the AUC ROC measures

To evaluate the performance of the methods, the area under the curve of the receiver 
operating characteristic (AUC ROC) was calculated (see Fig. 2). The ROC curve plots 
the fraction of true positives (TP) versus false positives (FP) while navigating the rank-
ings provided by the scoring function. An ideal AUC ROC value is equal to 1, and a ran-
dom 2-class classifier achieves 0.5. Additionally, various standard classification metrics 
are calculated, including the F1 score, precision, average precision (AP), recall, and bal-
anced accuracy (BA) (see Supplemental Table S2).

Table 1 summarizes the AUC ROC of all the scoring functions on the eight datasets. 
In two out of eight datasets, the classical methods outperformed the DL-based methods. 
For the CAPRI score refined dataset, AP-PISA has the highest AUC value at 84.87. For 
the BM5 dataset, CP-PIE performed best with an AUC value of 97.16, and DeepRank-
GNN is the second best with an AUC value of 95.97. It is worth noting that DeepRank-
GNN used this dataset for training and validation, but only those not in training and 
validation sets were used in this comparison (see Datasets) section. It is worth mention-
ing that among classical tools, AP-PISA and CP-PIE were the best, with the highest AUC 
values for five out of eight datasets. HADDOCK performed better than other classical 
methods for the BM4 and MaSIF-test datasets, with AUC values of 67.59 and 81.85, 
respectively. For the remaining datasets, ZRANK2 was the best for the CAPRI score 
v2022 Difficult dataset, and SIPPER was the best for the Dockground dataset.

(fnat < 0.1) OR (lRMSD > 10Å and iRMSD > 4 Å).

(fnat ≥ 0.1 and lRMSD ≤ 10Å) OR (fnat ≥ 0.1 and iRMSD ≤ 4Å),

(fnat ≥ 0.3 and lRMSD ≤ 5Å) OR (fnat ≥ 0.3 and iRMSD ≤ 2Å),

(fnat ≥ 0.5 and lRMSD ≤ 1Å) OR (fnat ≥ 0.5 and iRMSD ≤ 1Å),
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DL methods performed significantly better than classical methods for the remaining 
six datasets, namely, CAPRI Scoreset v2022 (both difficult and easy complexes), BM4, 
Dockground, PDB-2023, and MaSIF-test. PIsToN had the highest AUC value for four 
of the six datasets, while GNN-DOVE outperformed its competitors for Dockground. 
We note that GNN-DOVE applied 4-fold cross-validation on this dataset for its training, 

Fig. 2 AUC ROC graphs of all twelve scoring functions on eight different datasets. The first four methods are 
DL-based, and the rest are classical methods (details are provided in Methods section)
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validation, and test parts. Scores obtained from each of the four test sets were used for a 
fair comparison. For CAPRI Scoreset v2022 difficult complexes, dMaSIF outperformed 
other tools with an AUC value of 71.84. For PDB-2023 and MaSIF-test dataset, PIsToN 
had significantly better performance than its closest competitor, dMaSIF, with AUC val-
ues of 93.86 and 91.83 for PDB-2023 and 93.55 and 89.90 for MaSIF-test dataset, respec-
tively. We conclude that DL-based methods outperformed classical methods on six of 
the eight datasets.

Comparing success rate measures

The second metric for evaluating tools is success rate, which measures how often a dock-
ing method provides at least one model of acceptable quality within its top 1, top 10, top 
25, top 100, and top 200 predicted docking models. A higher success rate can impact the 
success of drug discovery efforts. The percentage of success rates of all twelve scoring 
functions on all datasets are shown in Table 2. As the MaSIF-test dataset has a unique 
property where each protein complex has only one correct and one incorrect docking 
model, the success rate metric could not be calculated for this dataset.

For almost all datasets, the DL-based methods outperformed the competing classical 
methods. For the CAPRI Score Refined dataset, BM4, and PDB-2023 datasets, PIsToN 
had the most number of top ranking performances for top 1, top 10, top 25, top 100, and 
top 200 predictions, with the exception of one value where HADDOCK outperformed 
other methods with 94% hits for top 25 prediction with only the BM4 dataset.

For the Easy and Difficult versions of the CAPRI Score v2022 datasets, DL-based 
methods demonstrated superior or equal performance compared to other methods 
for both difficult and easy complexes. PIsToN and dMaSIF achieved the best results 
for the top 1, with success rates of 17 and 51% for difficult and easy complexes, 

Table 1 AUC ROC of all twelve scoring functions on eight different datasets

Bold values indicate the best value for that column

Approach Method CAPRI 
Score
v2022 
Difficult

CAPRI 
Score
v2022 
Easy

CAPRI 
Score
Refined

BM4 BM5 Dockground PDB‑
2023

MaSIF‑
test

Deep
Learning

Deep-
Rank-
GNN

69.54 74.75 76.01 55.26 95.97 59.76 62.65 69.24

GNN-
DOVE

55.13 58.30 70.99 59.25 60.76 83.87 53.23 55.71

dMaSIF 71.84 76.65 78.53 62.53 87.89 79.94 91.83 89.90

PIsToN 64.77 80.15 81.25 70.84 91.84 68.42 93.86 93.55
Classical FireDock 59.47 75.06 72.79 56.73 95.41 56.08 87.98 77.82

AP-PISA 58.08 79.41 84.87 56.94 91.62 79.19 89.19 76.43

CP-PIE 59.91 78.14 81.29 62.52 97.16 72.26 88.81 76.98

PyDock 62.68 75.17 75.28 64.10 88.98 77.17 87.64 74.73

ZRANK2 63.83 72.32 74.09 54.31 90.37 64.18 73.22 74.66

Rosetta-
Dock

55.33 70.13 63.95 57.02 72.26 61.62 65.04 71.17

SIPPER 56.72 61.80 53.03 63.67 87.70 79.60 76.25 66.17

HAD-
DOCK

53.05 66.59 70.34 67.59 90.85 53.15 84.36 81.85
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Table 2 Success rates of all twelve scoring functions on eight different datasets. The first four 
methods are DL-based, and the rest are classical methods (details in Methods) section

Dataset Method Top1 Top10 Top25 Top100 Top200

CAPRI Score
v2022 Difficult
(39,130 models)

DeepRank-GNN 14 35 33 65 78

GNN-DOVE 0 7 28 42 57

dMaSIF 14 32 46 78 85
PIsToN 17 28 46 71 78

FireDock 0 0 3 28 46

AP-PISA 0 24 17 46 57

CP-PIE 7 25 39 60 85
PyDock 0 7 7 35 46

ZRANK2 0 14 17 46 53

RosettaDock 3 10 25 46 60

SIPPER 3 14 35 53 60

HADDOCK 3 14 21 46 60

CAPRI Score
v2022 Easy
(41,191 models)

DeepRank-GNN 35 79 82 92 100
GNN-DOVE 15 48 56 76 84

dMaSIF 51 71 89 97 100
PIsToN 41 82 87 94 97

FireDock 5 23 35 53 69

AP-PISA 15 33 51 79 87

CP-PIE 35 64 74 97 97

PyDock 5 17 25 58 76

ZRANK2 20 41 61 87 97

RosettaDock 23 43 64 87 97

SIPPER 25 58 74 92 100
HADDOCK 15 69 71 84 97

CAPRI Score
Refined
(16,666 models)

DeepRank-GNN 23 46 53 69 84

GNN-DOVE 15 61 69 76 100
dMaSIF 15 38 53 76 92

PIsToN 38 69 76 76 100
FireDock 0 0 7 23 46

AP-PISA 0 0 7 46 53

CP-PIE 23 46 69 69 84

PyDock 0 0 0 7 30

ZRANK2 7 38 53 61 61

RosettaDock 7 38 53 69 76

SIPPER 7 46 53 69 76

HADDOCK 7 23 53 69 76

BM4
(7,600 models)

DeepRank-GNN 21 73 73 89 94

GNN-DOVE 21 68 84 100 100
dMaSIF 47 68 89 94 100
PIsToN 54 89 89 94 100
FireDock 26 84 89 89 94

AP-PISA 26 78 89 94 94

CP-PIE 52 78 84 100 100
PyDock 15 63 84 94 94

ZRANK2 42 78 89 94 94

RosettaDock 42 73 89 94 94

SIPPER 47 63 68 78 94

HADDOCK 26 89 94 94 100
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respectively. For the top 10, DeeRank-GNN and PIsToN had the highest success rates, 
with the former excelling in difficult complexes and the latter in easy targets. How-
ever, dMaSIF performed the best for both levels of difficulty in the top 25, the top 
100, and the top 200. It achieved success rates of 46 and 89% for the top 25 in difficult 
and easy complexes, respectively. For the top 100 in easy and top 200 in difficult com-
plexes, CP-PIE demonstrated the same performance as PIsToN, with success rates of 
97% and 85%, respectively.

Bold values indicate the best value for that column

Table 2 (continued)

Dataset Method Top1 Top10 Top25 Top100 Top200

BM5
(7,500 models)

DeepRank-GNN 93 100 100 100 100

GNN-DOVE 6 26 33 53 73

dMaSIF 40 80 100 100 100

PIsToN 66 93 100 100 100

FireDock 0 0 0 6 13

AP-PISA 0 6 6 13 26

CP-PIE 93 100 100 100 100

PyDock 0 0 0 6 6

ZRANK2 0 0 6 6 20

RosettaDock 13 46 53 66 80

SIPPER 60 93 93 100 100

HADDOCK 0 0 0 6 26

Dockground
(6,725 models)

DeepRank-GNN 37 53 72 100 100
GNN-DOVE 70 91 94 100 100
dMaSIF 34 75 87 100 100
PIsToN 15 55 81 100 100
FireDock 1 18 48 98 100
AP-PISA 1 6 17 98 100
CP-PIE 22 56 75 100 100
PyDock 0 8 20 93 100
ZRANK2 5 25 53 100 100
RosettaDock 3 31 56 96 100
SIPPER 43 72 89 100 100
HADDOCK 10 44 65 100 100

PDB 2023
(5,300 models)

DeepRank-GNN 36 48 67 100 100
GNN-DOVE 3 19 34 100 100
dMaSIF 51 84 94 100 100
PIsToN 88 96 98 100 100
FireDock 0 3 11 100 100
AP-PISA 0 1 5 100 100
CP-PIE 76 92 96 100 100
PyDock 0 0 3 100 100
ZRANK2 0 11 23 100 100
RosettaDock 3 17 32 100 100
SIPPER 50 75 84 100 100
HADDOCK 0 1 1 100 100
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In order to more precisely examine the effectiveness of the methods in this met-
ric and to better understand these percentages, Table 3 shows the number of times 
each method succeeded in finding a docking model with at least acceptable quality 
in the top 1 ranking. When considering only the top 1 ranking for each method, this 
count would reflect the number of complexes for which each method was successful 
in finding a correct docking model with at least acceptable quality as the top ranked 
solution.

The success rates of scoring functions on each dataset are depicted in Figure S1. The 
success rates of all scoring functions categorized by the CAPRI quality for the top 1, 
top 10, and top 100 rankings are reported in Table S4.

Evaluation of AlphaFold3 docking models

AlphaFold3 [106], developed by DeepMind, is the latest version in the AlphaFold 
series. It represents a significant advancement in protein structure and complex pre-
dictions. AlphaFold3’s underlying model uses a diffusion architecture [107], which 
enables it to predict the correct coordinates of a molecule given their noisy atomic 
coordinates. AlphaFold3 has the capability to predict the structures of different kinds 
of biomolecules, including those involving proteins, nucleic acids, small molecules, 
and ions. AlphaFold3 evaluates docking models using various metrics. The predicted 
Local Distance Difference Test (pLDDT) [108] provides a confidence score for each 
atom, indicating the reliability of the predicted structure. The Predicted Aligned 
Error (PAE) estimates the positional error between two tokens in the predicted struc-
ture. The predicted Template Modeling (pTM) score [109] evaluates the overall struc-
tural accuracy, while the interface predicted Template Modeling (ipTM) score [109] 
assesses the accuracy of the predicted interactions between subunits. AlphaFold3 was 
released during the final stages of our study. The significance of this work encouraged 

Table 3 The number of times a tool finds at least one docking model with acceptable quality in top 
1

Bold values indicate the best value for that column

Method CAPRI 
Score
v2022 
Difficult

CAPRI Score
v2022 Easy

CAPRI Score
Refined

BM4 BM5 Dockground PDB‑2023

# Complexes 44 39 13 61 176 231 53

DeepRank-GNN 6 14 3 4 13 22 19

GNN-DOVE 0 6 2 4 1 41 2

dMaSIF 6 20 2 9 6 21 27

PIsToN 8 16 5 10 9 15 46
FireDock 0 2 0 5 0 1 0

AP-PISA 0 6 0 5 0 1 0

CP-PIE 3 3 5 9 13 21 40

PyDock 0 2 0 3 0 0 0

ZRANK2 0 8 1 8 0 8 0

RosettaDock 1 9 0 8 2 7 2

SIPPER 1 10 1 9 9 27 26

HADDOCK 1 6 1 5 0 7 0
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us to include this section. The source code for AlphaFold3 is not publicly available 
yet, limiting direct access to it, although its server https:// golgi. sandb ox. google. com/ 
about was accessible for our use.

To incorporate AlphaFold3 into our work and conduct experiments, we collected data 
from the eight datasets mentioned earlier with the exception of the MaSIF-test data set. 
MaSIF-test dataset contains only one correct and one incorrect docking model per com-
plex, and due to the dataset’s large size relative to the other datasets, we randomly sub-
sampled 10% of it. After consolidating all datasets, we eliminated duplicate complexes, 
resulting in a total of 280 complexes. For these complexes, we obtained their native 
structures from the Protein Data Bank [1].

Subsequently, we submitted jobs for these complexes to AlphaFold3’s server and 
received 5 docking models for each, resulting in a total of 1400 docking models. We 
then classified these models using CAPRI quality metrics, as detailed in the labeling 
data section. We differentiated the complexes for AlphaFold3 as those for which at 
least one correct docking model was generated regardless of its quality, and those for 
which no correct docking model was generated. The experiments in this section evalu-
ate AlphaFold3 on the docking models generated with itself. The performance of others 
is reported from experiments conducted in Comparing Success Rate Measures section. 
Regarding the complexes for which AlphaFold3 was successful, we assessed its perfor-
mance compared to other tools, and the findings are summarized in Table 4. For solu-
tions of medium and high quality, AlphaFold3 demonstrated superior performance 
compared to other tools, achieving success rates of 17 and 39% for the top 1, respec-
tively. Notably, dMaSIF outperformed other tools in the top 1 category for this level of 
quality. Additionally, PIsToN outperformed all of its competitors for the top 5 success 
rate across all three quality levels.

We conducted additional experiments for complexes for which AlphaFold3 could not 
predict a correct docking model. The results are summarized in Table 5. Since AlphaFold3 
failed, we assigned zero to all of its columns. Among the top performers, GNN-DOVE 

Table 4 Success rates of all scoring functions with percentages of complexes for which AlphaFold3 
generates at least one correct docking model

Bold values indicate the best value for that column

Model Acceptable Medium High

Top1 Top5 Top1 Top5 Top1 Top5

AlphaFold3 6 11 17 24 39 41

AP_PISA 5 11 4 9 11 14

CP_PIE 5 24 14 31 22 42

DeepRank-GNN 7 24 15 28 20 32

FIREDOCK 4 10 3 12 5 17

GNN-DOVE 8 18 16 27 9 18

HADDOCK 4 15 2 15 0 16

PIsToN 10 28 17 37 33 44
PYDOCK_TOT 4 8 2 12 6 14

ROSETTADOCK 7 17 6 16 7 13

SIPPER 6 24 14 30 26 32

ZRANK2 6 12 6 15 12 14

dMaSIF 11 25 14 34 28 39

https://golgi.sandbox.google.com/about
https://golgi.sandbox.google.com/about
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had a 6% success rate for acceptable quality, PIsToN had a 13% success rate, and dMaSIF 
achieved a 32% success rate for high quality. Furthermore, dMaSIF outperformed other 
tools in both high and acceptable quality, with success rates of 37% and 20%, respectively, 
sharing the position for acceptable quality with PIsToN. For the top 5 medium-quality 
success, SIPPER, a classical method, achieved the best performance with a 30% success 
rate. We conclude that for complexes where AlphaFold3 failed to generate correct dock-
ing models, other docking methods may produce complexes of high quality. However, we 
confine our evaluations to scoring functions and not the docking methods.

Comparing run times

The running time of each scoring function was also evaluated, and the results are shown 
in Fig.  3. For this set of experiments, instead of running all the datasets, we subsam-
pled the CAPRI Score Refined dataset to randomly select one correct and one acceptable 
docking model for each complex, resulting in a smaller dataset with 26 docking mod-
els for 13 complexes. The average run times from these experiments are thus averaged 
over complexes from different tools. These experiments were performed on a machine 
equipped with a GeForce GTX 1080 Ti graphics processing unit (GPU), 256 GB of RAM, 
and a 28-core Intel Xeon central processing unit (CPU) E5-2650.

As shown in Fig. 3, dMaSIF and GNN-DOVE, both DL-based methods, exhibit impres-
sive efficiency, with average runtimes of 3 s and 7 s, respectively, surpassing the speed of 
all the classical methods. dMaSIF represents surface atoms as point clouds, calculating fea-
tures on the fly without pre-computation, and this makes it faster than its competitors. 
We note that PIsToN and DeepRank-GNN have a preprocessing component included in 
the running time calculation. If preprocessing time is discounted, PIsToN requires 0.04 s, 
while DeepRank-GNN requires 6.3 s. Furthermore, since all classical tools were run on the 
CCharPPI server, their running times are approximate. The results show that DL-based 
methods are computationally more efficient than the classical methods.

Table 5 Success rates of all scoring functions with percentages of complexes for which AlphaFold3 
failed to generate a correct docking model

Bold values indicate the best value for that column

Model Acceptable Medium High

Top1 Top5 Top1 top5 Top1 Top5

AlphaFold3 0 0 0 0 0 0

AP_PISA 2 9 6 13 13 18

CP_PIE 2 16 4 18 23 34

DeepRank-GNN 0 20 9 27 16 25

FIREDOCK 2 13 6 13 9 18

GNN-DOVE 6 13 11 27 6 23

HADDOCK 0 11 2 11 0 11

PIsToN 4 16 13 27 25 34

PYDOCK_TOT 2 9 4 13 13 18

ROSETTADOCK 0 16 6 16 7 18

SIPPER 2 16 6 30 27 30

ZRANK2 4 6 6 11 13 18

dMaSIF 4 20 6 27 32 37
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Assessing the generalizability of scoring functions

To assess the ability of DL-based methods to generalize to out-of-distribution datasets, 
we utilized USalign version 2022092470 [110] to compute the Template Modeling Score 
(TM-score) for each pair of complexes in the test dataset and any complex in the train-
ing set separately for each method. The TM-score serves as a measure of similarity to 
the training set and ranges from 0 to 1, with 1 indicating an identical structure match. 
A TM-score of ≥ 0.5 (or 0.45) signifies that the structures share the same global protein 
topology [110]. Therefore, a higher TM-score corresponds to greater similarity to the 
closest training complex and an indication of possible training bias in the testing. To 
understand this bias and to achieve a better evaluation and fair comparison, we plotted 
the distribution of TM-scores and the AUC ROC values for each method as shown in 
Figs. 4a–d. The AUC ROC values are indicated by the blue curve. It was superimposed 
on the violin plots. Note that a tool is more generalizable for a given data set if the TM 
scores are lower while the AUC ROC values are higher. The order in which the test data-
sets are shown is based on their size in terms of the number of complexes in the datasets 
(not the number of docking models), from smaller to larger (refer to Datasets section 
describing the data sets).

For the BM5 dataset, DeepRank-GNN performed the best in terms of having less simi-
larity to the test dataset and achieving higher performance. Moreover, GNN-DOVE had 
a higher AUC value for the Dockground dataset. However, its training set shows the 
highest TM-score to the complexes of the Dockground dataset, which is not ideal. This 
means we cannot conclude that GNN-DOVE has the best generalization ability com-
pared to others.

In the BM4 dataset, even though the training datasets of DeepRank-GNN and GNN-
DOVE were the least similar to the test dataset, their performance was very poor. On 

Fig. 3 Average runtime of all twelve scoring functions on a dataset subsampled from the CAPRI Score 
Refined dataset
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the other hand, dMaSIF and PIsToN had training datasets with more similar complexes 
to BM4, yet they performed much better. In fact, PIsToN had the highest AUC value 
among all competitors, indicating its superior performance in this dataset.

For the CAPRI Refined, APRI scoreset v2022 (Difficult), and APRI scoreset v2022 
(Easy) datasets, all methods had a TM-score of less than 0.5 and much wider around the 
median, except for GNN-DOVE for CAPRI Refined, which scored slightly higher than 
0.5. This indicates that the training datasets used by all methods had little to no similar-
ity to these datasets. On the other hand, dMaSIF and PIsToN demonstrated higher AUC 
values for these three datasets and outperformed DeepRank-GNN and GNN-DOVE. 
This confirmed that dMaSIF and PIsToN had very good generalization ability with the 
unseen data in these three datasets.

For PDB-2023 and MaSIF-test datasets, the dMaSIF training set showed the highest 
similarity, followed by PIsToN. However, their performance is significantly better than 
DeepRank-GNN and GNN-DOVE. The reason for this is that although dMaSIF and PIs-
ToN were trained using similar complexes to these datasets, the diversity of this similar-
ity is spread across the violin plot, indicating that it did not impact their generalizability.

We also note that the training data sets for DeepRank-GNN and GNN-DOVE were 
much smaller compared to those for dMaSIF and PIsToN. Additionally, the training data 
sets for dMaSIF is roughly the same size as that for PIsToN.

Key factors affecting the performance of DL‑based methods

To shed more light on the challenges faced by scoring functions in distinguishing 
between native and non-native docking models, we investigated the patterns of mis-
classifications of the tested docking models. We also queried what protein families 
may be involved in incorrect predictions. Additionally, the performance of DL-
based methods is impacted by both the underlying training dataset, the relationship 
between the training and the test sets, and the architecture of the model.

Fig. 4 Distribution of the TM-scores between the training sets used by each method with the eight test 
datasets, along with the corresponding AUC values attained by that method for each test dataset. The limits 
of the black boxes inside the violin plots represent the 1st and 3rd quartiles, and the vertical lines (whiskers) 
represent the 1.5×IQR interquartile range. The blue curve shows the AUC ROC values achieved by the method 
on the eight test datasets
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To this end, we performed a series of experiments with the CAPRI score v2022 
dataset. We selected this dataset because it is the largest and most diverse among all 
datasets, it includes both easy and difficult targets, and most importantly, none of 
the DL-based methods were trained on this dataset. The CAPRI score v2022 dataset 
contained 41,191 easy and 39,130 difficult models. Figures  S2 and S4 and show a 
histogram of the number of methods that incorrectly classified each docking model 
from the easy and difficult cohorts. Of these, 652 easy and 512 difficult docking 
models were incorrectly classified by all 12 methods. We will refer to these two sets 
of docking models as the AllWrongSets. The protein family distributions of these 
sets of models can be found in Figures S10 and S11.

The next significant groups were the 1147 and 1520 models from the easy and dif-
ficult sets, respectively, for which only one method was successful. We will refer to 
these two sets of models as the AllButOneWrongSets, for which we determined 
how many docking models were correctly classified by each method (Figures S3 and 
S5). Next, we examined the distribution of protein families in the AllButOne-
WrongSets (Figures S12 and S13). In addition, we repeated the analysis with only 
the 4 DL-based methods (Figures S6 - S9). Finally, since DeepRank-GNN stood out 
as having been the method successful on the most number of models from the All-
ButOneWrongSets, we plotted the distribution of protein families for the set of 
models where it was the sole correct classifier (Figure  S14 and S15). We used the 
TreeGrafter software [111] to identify the protein families to which these docking 
models belong. This software utilizes the trees in PANTHER database [112] to place 
a protein complex in the most suitable position on the phylogenetic tree.

Another factor contributing to the performance differences could be the docking 
tools and the resulting quality of the docking models used to train the models. Dif-
ferent methods employ different docking tools to generate docking models for their 
scoring tools. Therefore, it can be inferred that having high-quality docking models 
is a crucial step in developing an accurate and effective scoring function. Moreover, 
the features used to train a DL-based scoring function must be a significant factor as 
well. Important features play a crucial role in determining a model’s overall perfor-
mance, as they directly influence the model’s ability to capture meaningful patterns 
and make accurate predictions. DeepRank-GNN is the only method out of the four 
DL-based methods in this study that included the type of amino acids and Position-
Specific Scoring Matrix (PSSM) among its features. This might be one of the reasons 
for its good performance, while all other methods failed.

Similarity between the training dataset and the test dataset could be another rea-
son for differing performance among the DL-based methods. Section  Assessing 
the Generalizability of Scoring Functions investigates the similarity between this 
test dataset (CAPRI score v2022 dataset) and the training datasets of all DL-based 
methods.

Discussion and conclusions
In this study, we conducted a comprehensive comparison between state-of-the-art DL-
based and classical scoring functions. We used various popular datasets of different 
sizes. Among all classical methods, AP-PISA emerged as the top-performing method 
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across all eight datasets. Unlike other classical methods that mainly consider potentials 
from the residue level, AP-PISA re-ranks refined docking models using a combination of 
atomic and residue potentials, which helps to identify near-native poses more accurately. 
On the other hand, AP-PISA relies solely on potential features, but incorporating energy 
terms can enhance performance by leveraging empirical and knowledge-based features. 
Overall, according to the AUC metric, CP-PIE was the second-best classical method and 
the best in ranking power. CP-PIE efficiently filters out unlikely docking poses before 
performing computationally intensive scoring calculations. It discards misdocked struc-
tures by measuring the overlap area between the proteins in each docking model. One 
conclusion that can be drawn is that in the refinement stage, deleting poses that are far 
away from the correct poses may be crucial for accurately scoring docking models.

In general, PIsToN and dMaSIF performed better than their DL-based competitors 
regarding both AUC and success rate metrics across all datasets. PIsToN utilized the 
strength of Vision Transformers [93] and contrastive training technique [113] to incor-
porate all chemical, spatial, and energy features, resulting in superior performance com-
pared to other methods. However, PIsToN lagged behind its rival dMaSIF in terms of 
running time measurement due to its preprocessing step. PIsToN precomputes meshes 
for the surface of the two proteins involved in generating the complex to capture topo-
logical relationships and the geometry of their surfaces. While this precomputation ena-
bles it to be more accurate, it is a computationally intensive step. It may be beneficial for 
PIsToN to improve the preprocessing time by changing the surface representation to use 
non-Euclidean structural data like point clouds or graphs instead of meshes. In com-
parison, dMaSIF is very fast. It represents the surface atoms as point clouds, providing a 
flexible and simpler representation that can easily handle complex structures. For each 
atom, it only considers the atom type and its coordinates to calculate chemical features, 
avoiding the computation of physico-chemical features and significantly improving the 
runtime. However, dMaSIF estimates the chemical features based solely on the atom 
types and coordinates, failing to take into account the impact of other types of features 
in binding, such as energy terms, which can compromise accuracy.

Surprisingly, DeepRank-GNN, which is the third-best DL-based method in terms of 
an overall performance based on AUC values, had the most number of models in All-
ButOneWrongSets (Sect. Key Factors Affecting the Performance of DL-based Meth-
ods) for which it was the sole method that correctly distinguished near-native docking 
models from non-native ones. One factor contributing to its strong performance on the 
AllButOneWrongSets could be that DeepRank-GNN was trained on the BM5 [102] 
dataset, which was curated to have high diversity, containing all categories of protein 
complexes (antibody-antigen, enzyme-inhibitor, enzyme-substrate, etc.). The dMaSIF 
and PIsToN methods were not trained on BM5, but using a dataset extracted from the 
Protein Data Bank [1]; this training dataset was created using queries that took into 
account various chain sizes, chemical identifiers, and sequence similarity, but was not 
picked to guarantee diversity. While the use of Graph Neural Networks (GNN) in its 
architecture may be important, the fact that the other GNN-based method was not as 
successful as DeepRank-GNN on the AllButOneWrongSets suggests that the choice 
of GNN in the architecture may not be significant. More importantly, GNN-DOVE, was 
not trained on BM5, which again highlights the possibility of biases introduced by the 
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training dataset. Furthermore, the results in  Assessing the Generalizability of Scoring 
Functions section showed that the similarity between the CAPRI score v2022 test data-
set and the training datasets of all DL-based methods is low and, therefore, could not be 
a reason for the performance differential seen in our study with the models in AllBu-
tOneWrongSets. Other factors, such as biases in the test dataset, could impact the 
performance of a DL method and needs to be addressed in future work.

Our study has demonstrated that DL-based techniques have proven to be significantly 
superior to classical methods for six out of eight datasets when measured by the AUC 
metric. Classical methods have limitations due to their inability to account for the 3D 
features and nonlinear relations between energy terms. This drawback affects their per-
formance. Moreover, deep learning-based methods have consistently shown superior 
performance across all eight datasets when evaluated using the success rate metric. This 
is particularly important in fields such as drug discovery and protein engineering, where 
accurate identification of protein configurations can lead to fewer experiments and a 
decrease in experimental costs, thereby providing more reliability and cost efficiency in 
such applications.

As seen in Table 1, PIsToN and dMaSIF outperformed the other two DL-based models 
on six of the eight datasets. The superior performance of PIsToN and dMaSIF over the 
other two DL methods suggests that their models are better tuned to generalize to “out-
of-distribution” datasets. The lower performance of GNN-DOVE and DeepRank-GNN 
may be attributed to their use of K-fold cross-validation, a technique that randomly par-
titions the dataset into training and test sets without paying attention to biases caused 
by similar samples falling on both sides of the partition. This might also explain why 
they only performed well on the datasets they were trained with. As mentioned earlier, 
DeepRank-GNN is the only method out of the four DL-based methods in this study that 
included the type of amino acids and Position-Specific Scoring Matrix (PSSM) among its 
features, which may have given it the ability to be the solitary method that was correct 
on the largest number of potential outlier models in AllButOneWrongSets.

In this study, we only evaluated rigid-body methods since most researchers have pro-
posed scoring functions based on these methods. However, it might be worth exploring 
potential future directions to introduce scoring functions that also consider the flexibil-
ity of proteins during complex formation. Another potential path for future work could 
be to develop approaches for scoring multi-chain complexes and generating appropriate 
datasets to evaluate their performance.

Key points
This paper provides a review of the literature on classical and deep learning-based scor-
ing functions along with a fair comparison of the computational tools for scoring pro-
tein-protein docking. As computational biology and molecular modeling continue to 
advance through deep learning, it is crucial to evaluate both classical and DL approaches 
using various datasets to enable a consistent and fair comparison. Our study offers a 
comprehensive comparison of state-of-the-art methods using different well-known pub-
lic datasets to help researchers better understand the progress in this field.
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