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Abstract 

Background: Drug response prediction is critical in precision medicine to determine 
the most effective and safe treatments for individual patients. Traditional predic‑
tion methods relying on demographic and genetic data often fall short in accu‑
racy and robustness. Recent graph‑based models, while promising, frequently 
neglect the critical role of atomic interactions and fail to integrate drug fingerprints 
with SMILES for comprehensive molecular graph construction.

Results: We introduce multimodal multi‑channel graph attention network with adap‑
tive fusion (MGATAF), a framework designed to enhance drug response predic‑
tions by capturing both local and global interactions among graph nodes. MGATAF 
improves drug representation by integrating SMILES and fingerprints, resulting in more 
precise predictions of drug effects. The methodology involves constructing multimodal 
molecular graphs, employing multi‑channel graph attention networks to capture 
diverse interactions, and using adaptive fusion to integrate these interactions at mul‑
tiple abstraction levels. Empirical results demonstrate MGATAF’s superior performance 
compared to traditional and other graph‑based techniques. For example, on the GDSC 
dataset, MGATAF achieved a 5.12% improvement in the Pearson correlation coefficient 
(PCC), reaching 0.9312 with an RMSE of 0.0225. Similarly, in new cell‑line tests, MGATAF 
outperformed baselines with a PCC of 0.8536 and an RMSE of 0.0321 on the GDSC 
dataset, and a PCC of 0.7364 with an RMSE of 0.0531 on the CCLE dataset.

Conclusions: MGATAF significantly advances drug response prediction by effectively 
integrating multiple molecular data types and capturing complex interactions. This 
framework enhances prediction accuracy and offers a robust tool for personalized 
medicine, potentially leading to more effective and safer treatments for patients. Future 
research can expand on this work by exploring additional data modalities and refining 
the adaptive fusion mechanisms.

Keywords: Graph neural network, Drug response prediction, Precision medicine, 
Bioinformatics

*Correspondence:   
dhekra@my.swjtu.edu.cn; 
hxx@home.swjtu.edu.cn

1 School of Computing 
and Artificial Intelligence, 
Southwest Jiaotong University, 
Chengdu 611756, Sichuan, China
2 School of Computer Science 
and Engineering, Central South 
University, Changsha 410083, 
Hunan, China
3 Faculty of Computer Sciences 
and Information Systems, Thamar 
University, Dhamar 87246, Yemen
4 College of Computing 
and Information Technology, 
University of Bisha, Bisha 67714, 
Saudi Arabia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-024-05987-0&domain=pdf


Page 2 of 24Saeed et al. BMC Bioinformatics           (2025) 26:19 

Introduction
Cancer remains one of the most significant global health challenges, affecting millions 
of individuals worldwide and contributing to a substantial number of deaths annually. 
Effective treatment strategies are crucial for improving patient outcomes, yet predicting 
how a particular treatment will affect a patient’s tumor response is complex. Precision 
medicine aims to address this challenge by tailoring treatments to individual patients, 
but early prediction methods often fall short due to their reliance on limited data sets, 
such as genetic information or protein expression levels, which do not fully capture the 
intricate biology of cancer [1–3]. Over the past few years, the growing accessibility of 
molecular data obtained from individuals affected by cancer has instigated the advance-
ment of various extensive drug response initiatives. These endeavors, namely the GDSC 
[4] and CCLE [5], aim to incorporate a broad spectrum of data sources to augment 
the precision of prognosticating drug responses. To this end, molecular profiling has 
emerged as a primary technique in determining the efficacy of cancer treatments [6]. 
It involves a comprehensive analysis of the genetic and molecular characteristics of a 
patient’s tumor to gain a more profound understanding of its underlying biology. By uti-
lizing advanced computational methods and combining multiple sources of molecular 
data, it is possible to derive a holistic view of the tumor and predict how it will respond 
to different therapies [7]. Through the integration of various data sources, researchers 
can overcome one of the significant limitations of early prediction methods, which rely 
on a single type of data, leading to inadequate insights into the underlying biology of 
cancer. With a more comprehensive understanding of the molecular profile of a patient’s 
cancer, doctors can determine the most effective treatment regimen, which is essential 
for precision medicine. The ability to predict drug response accurately can significantly 
impact the lives of cancer patients, making large-scale drug response projects [4, 5, 8] 
critical in advancing cancer research and treatment.

In this context, several machine learning algorithms have been employed, includ-
ing linear regression [9, 10], decision trees [11, 12], random forests [13], support vec-
tor machines (SVMs) [14, 15], and neural networks [16–21]. However, these traditional 
machine learning algorithms suffer from various limitations that impede their effec-
tiveness [22, 23]. For instance, the random forest algorithm’s main limitations include 
over-fitting and the limited information derived from genomic data alone. Likewise, the 
SVM algorithm’s main limitations involve being sensitive to the selection of parameters, 
the constraints of binary classification, and the quality and complexity of the input data. 
Despite the algorithm used, a common challenge in using machine learning for drug 
response prediction (DRP) is the complexity of the data and the intricate relationships 
between features and drug response, often resulting in overfitting. Unlike simple algo-
rithms like linear regression or decision trees, complex algorithms like neural networks 
are challenging to interpret, which makes it difficult to understand the underlying mech-
anisms that drive the predictions.

To overcome the limitations of traditional machine learning in predicting cancer drug 
response, Convolutional Neural Networks (CNNs) [3, 24, 25] have emerged as a prom-
ising alternative. Convolutional Neural networks (CNNs) are engineered to automati-
cally capture and assimilate salient features from input data, effectively manage complex 
and high-dimensional data, possess the ability to withstand noise and variability, and 
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incorporate the spatial relationships that exist between features. As a result, CNNs are 
particularly adept at analyzing cancer genomics data and hold promise for enhanc-
ing the precision and accuracy of DRP. Nevertheless, the performance of CNN mod-
els is partially contingent upon the structure of the molecular data, thereby producing 
a level of prediction accuracy that is constrained. This limitation stems from the fact 
that CNNs represent drugs as strings, which does not align with the natural structure of 
drugs. Recently, graph neural networks (GNNs) have demonstrated significant potential 
in cancer drug response prediction [26–32], showcasing encouraging outcomes. GNNs 
are specifically designed to handle data organized in a graph structure, where the nodes 
represent unique entities and the edges depict the connections or associations among 
them. In the domain of cancer drug response, drug composition can be represented as 
a graphical structure where atoms are nodes and the bonds between them are edges. 
Employing GNNs in this context offers significant benefits, as they can effectively inte-
grate graph-based information into the model. This integration enables GNNs to make 
more precise predictions, enhancing the accuracy of the overall analysis. Addition-
ally, GNNs can handle sparse and noisy data, making them well-suited for molecular 
data. Existing graph neural network (GNN) models for DRP encounter several limita-
tions that hinder their performance. Firstly, many GNNs have limited model capacity, 
often being shallow networks that primarily capture local graph structures. This defi-
ciency restricts their ability to handle intricate relationships among nodes, potentially 
leading to decreased accuracy in DRP. Secondly, the prevalent reliance on a single-
layer attention mechanism in most GNN models proves insufficient for capturing the 
nuanced interconnections within graphs. These weaknesses undermine their capability 
to accurately leverage complex relationships and dependencies among nodes, limiting 
their suitability for DRP. Furthermore, prevalent graph-based methods often overlook 
the significance of integrating drug fingerprints alongside drug SMILES in constructing 
molecular graphs. Drug fingerprints, which encapsulate structural and physicochemi-
cal properties, offer valuable insights into molecular characteristics that influence drug 
responses. These fingerprints encode essential information about molecular structure, 
such as functional groups, bond types, and spatial arrangements, providing a nuanced 
understanding of drug interactions at the atomic level. Despite the rich information 
embedded within drug fingerprints, their incorporation into graph-based models has 
been limited. Instead, many existing approaches rely solely on drug SMILES represen-
tations, which primarily capture molecular connectivity. SMILES strings offer a stand-
ardized representation of molecular structures but lack detailed molecular properties 
essential for accurate drug response predictions. Current graph-based methods often 
ignore drug fingerprints, leading to suboptimal predictive performance. Integrating 
drug fingerprints with SMILES enhances the models’ comprehensiveness and predictive 
power, resulting in more accurate drug efficacy predictions.

In response to these constraints, we introduce a Multimodal Multi-channel Graph 
Attention Network with Adaptive Fusion (MGATAF), an innovative framework for 
predicting cancer drug response. MGATAF stands out for its ability to effectively cap-
ture the intricate relationships between drugs and genes, as well as the dependencies 
between different drugs and genes. The current innovative approach is the process of 
leveraging multi-channel graph attention and adaptive fusion within MGATAF. Firstly, 
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MGATAF constructs multimodal molecular graphs that incorporate both SMILES and 
drug fingerprints, providing a comprehensive representation of drug molecules. Then, 
multi-channel graph attention mechanisms are applied to capture complex interactions 
among graph nodes, allowing MGATAF to learn multiple orders of relationships. Finally, 
adaptive fusion techniques integrate these interactions at various levels of abstraction, 
enhancing prediction performance. By employing multi-channel graph attention with 
adaptive fusion, MGATAF offers superior predictive capabilities compared to existing 
methods. These contributions collectively position MGATAF as a promising advance-
ment in the field of drug response prediction, offering enhanced predictive capabilities 
for precision medicine initiatives.

The main contributions of our proposed approach, as outlined in this study, are sum-
marized as following: 

1. Introduction of MGATAF Framework: MGATAF, a Multi-channel Graph Attention 
Network with Adaptive Fusion, is introduced to enhance predictive accuracy in drug 
response tasks by capturing local and global drug–cell interactions.

2. Novel Attention and Fusion Modules: MGATAF features a multi-channel graph 
attention mechanism and an adaptive fusion module, integrating diverse molecular 
data to produce robust drug–cell interaction representations.

3. Superior Empirical Performance: Experiments on GDSC and CCLE datasets show 
MGATAF outperforms state-of-the-art methods, achieving better Pearson correla-
tion coefficients and root mean square errors.

4. Linking Technical Innovation to Clinical Impact: Ablation studies confirm the effi-
cacy of the attention and fusion modules, contributing to more accurate predictions. 
These improvements have clinical relevance, offering more precise drug efficacy pre-
dictions to guide treatment decisions and streamline drug development.

Related work
Cancer drug response prediction is crucial in precision medicine, guiding the selec-
tion of optimal therapeutic interventions. A wide range of methods has been employed, 
including traditional approaches, classical machine learning models, and recent 
advances in graph neural networks (GNNs). This section reviews these methods, with 
an emphasis on machine learning and GNN approaches relevant to our proposed model.

Traditional approaches

Traditional methods, such as genomic profiling, biomarker-based approaches, and 
in vitro/in vivo models, have played a significant role in early drug response prediction 
research. Genomic profiling utilizes high-throughput technologies to identify genetic 
alterations in cancer cells, assuming a correlation between these alterations and drug 
responses [33, 34]. For example, EGFR mutations are associated with positive responses 
to EGFR-targeted therapies. While effective in some cases, the predictive power of 
these methods is limited by the quality of genetic data, high costs, and computational 
complexity.
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Biomarker-based approaches aim to predict responses based on specific biological 
markers like proteins or gene expressions [35, 36]. However, their generalizability is 
often constrained by the cancer type and available biomarkers, reducing their broader 
applicability. Similarly, in vitro cell line models [37, 38], while useful for screening drug 
sensitivity, fail to capture the complex biological characteristics of tumors in patients, 
limiting their clinical relevance.

Machine learning‑based approaches

Classical machine learning models, including support vector machines (SVMs) and 
matrix factorization techniques, have been applied to drug response prediction with 
varying degrees of success. Dong et al. [39] employed SVMs with recursive feature selec-
tion to predict drug response across multiple cell lines, while Wang et al. [40] introduced 
a similarity-regularized matrix factorization (SRMF) method to enhance the predictive 
power by leveraging the similarity between cell lines and drugs. Despite their utility, 
these approaches often struggle to capture the full complexity of molecular interactions, 
leading to limited prediction accuracy.

Several computational models have been developed to predict miRNA-disease asso-
ciations by integrating heterogeneous biological data and employing advanced machine-
learning techniques.

Chen et  al. [41] introduced the DBNMDA model, which utilizes deep-belief net-
works for miRNA-disease association prediction. By pre-training restricted Boltzmann 
machines on feature vectors constructed from all miRNA-disease pairs and fine-tuning 
with both positive and selected negative samples, the model effectively leverages infor-
mation from both known and unknown associations. This approach reduces the impact 
of limited known associations on prediction accuracy and achieves superior perfor-
mance, with high AUC scores in various cross-validation settings and successful case 
studies.

Ha et al. [42] proposed IMIPMF, employing probabilistic matrix factorization to pre-
dict miRNA-disease associations. By drawing an analogy to recommender systems, their 
method addresses the challenge of predicting associations for new miRNAs and diseases 
without prior known associations. IMIPMF demonstrates high performance with a reli-
able AUC value, highlighting its effectiveness despite only considering known miRNA-
disease associations and miRNA expression data. Another innovative framework is 
NCMD, which [43] utilizes node2vec-based neural collaborative filtering for miRNA-
disease association prediction. This method learns low-dimensional vector representa-
tions of miRNAs and diseases using Node2vec and combines the linear capabilities of 
generalized matrix factorization with the nonlinear abilities of a multilayer perceptron. 
Extensive experiments and case studies validate its effectiveness in discovering novel 
miRNA-disease associations. Ha [44] introduced MDMF, a computational framework 
that predicts miRNA-disease associations using matrix factorization with a disease simi-
larity constraint. By integrating heterogeneous information and evaluating performance 
through global and local leave-one-out cross-validation, MDMF achieves significant 
improvements over previous methods. Case studies on major human cancers further 



Page 6 of 24Saeed et al. BMC Bioinformatics           (2025) 26:19 

demonstrate its efficiency in uncovering miRNA-disease associations and deciphering 
the roles of miRNAs in disease pathogenesis.

In the SMAP framework proposed by Ha [45], miRNA-disease associations are identi-
fied by applying recommendation algorithms with miRNA and disease similarity con-
straints. By measuring comprehensive similarity values based on miRNA functional 
similarity, disease semantic similarity, and Gaussian interaction profile kernel similarity, 
SMAP effectively integrates known associations and similarities to achieve high AUC 
scores in cross-validation and case studies, serving as a guide for elucidating disease 
pathogenesis and biomarkers. Ha [46] also presented MLMD, a metric learning-based 
model for predicting miRNA-disease associations. MLMD learns miRNA-disease met-
rics to uncover novel associations as well as miRNA-miRNA and disease-disease simi-
larities. The model demonstrates outstanding performance compared to state-of-the-art 
methods, with reliable AUC scores in cross-validation frameworks and successful case 
studies confirming its practicality and feasibility.

Furthermore, Ha [47] extended computational approaches to lncRNA-disease asso-
ciations by proposing EMFLDA, a matrix factorization method that applies lncRNA 
expression profiles. By effectively incorporating heterogeneous biological datasets and 
using expression profiles as weights, EMFLDA improves model accuracy and perfor-
mance. The model outperforms previous methods in AUC scores and plays a pivotal role 
in extracting disease biomarkers.

Graph neural network approaches

Recent advancements in graph neural networks (GNNs) have shown great promise in 
drug response prediction by effectively modeling the intricate relationships between 
drugs and cancer cell lines.

Several studies have applied GNNs to drug response tasks. For instance, Yang et  al. 
[48] developed GPDRP, a multimodal framework leveraging drug molecular graphs and 
gene pathway activity for drug response prediction, while Wang et al. [49] proposed the 
XMR model, an explainable multimodal neural network for predicting drug efficacy. 
While attention-based GNNs [29, 50] have improved predictive accuracy by enhancing 
the model’s ability to learn from molecular representations, their reliance on single-layer 
attention mechanisms has limited their capacity to capture complex relationships across 
multiple layers. These models often fail to incorporate diverse neighboring orders of 
information within the graph structure.

To overcome this limitation, the Multi-channel Graph Attention module introduced in 
our work seeks to incorporate knowledge from multiple neighboring orders into the final 
prediction. This allows for a more comprehensive understanding of drug–cell interac-
tions by considering both proximal and distant relationships within the molecular graph, 
improving prediction accuracy. Unlike AMD-GNN [51], which primarily addresses the 
over-smoothing issue in deep graph neural networks for tasks such as node classifica-
tion, our method, MGATAF, is specifically designed for molecular graph representation. 
While AMD-GNN employs decoupled propagation and transformation mechanisms, 
MGATAF integrates both SMILES and molecular fingerprints through a multi-graph 
attention framework. This allows MGATAF to capture molecular interactions across 
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multiple data types, offering a unique approach for analyzing biochemical structures. 
These differences reflect the distinct goals and applications of the two methods.

Dataset and preprocessing
Datasets

To evaluate our model, we conducted experiments using two datasets: the Genomics of 
Drug Sensitivity in Cancer (GDSC) [52] and the Cancer Cell Line Encyclopedia (CCLE) 
[5]. Dataset descriptions are presented in Tables  1 and 2. In this study, we used the 
GDSC and CCLE datasets independently for all analyses. Future work could explore the 
potential benefits of integrating these datasets to leverage complementary information.

(1) GDSC is a large-scale initiative that screens cancer drugs to assess their efficacy on 
numerous cancer cell lines, while also providing corresponding omics and drug response 
data. In our study, we use version 6.0 of the GDSC dataset, which contains the half max-
imal-inhibitory concentration (IC50) values for drug–cell line pairs, covering 250 drugs 
and 1074 cell lines. Additionally, the cancer cell lines in the GDSC dataset are described 
by their genetic and omics features, such as copy number variations and mutation sta-
tuses. Drugs are identified by their names and compound ID (CID), which can be used 

Table 1 Description of the GDSC and CCLE datasets

Characteristic GDSC CCLE

Before Preprocessing

Number of Cell Lines 1074 1036

Number of Drugs 250 24

After Preprocessing

Number of Cell Lines 948 436

Number of Drugs 223 23

Drug–Cell Line Pairs 172,114 10,464

Missing Pairs 18.6% None

Table 2 Atom and cell‑line feature descriptions

Features Description

Atom

Atom type C, N, O, S, F, etc. (one‑hot)

Degree 0–10 (one‑hot)

Implicit valence 0–6 (one‑hot)

Formal charge Formal charge number (integer)

Radical electrons Number of radical electrons (integer)

Hybridization SP, SP2, SP3, SP3D, SP3D2 (one‑hot or null)

Aromatic Whether the atom is in an aromatic system (binary)

Hydrogens 0–4 (one‑hot)

Ring Whether the atom is in a ring (binary)

Chirality R, S (one‑hot or null)

Cell-line

Gene expression Expression levels of genes in cell lines

Copy number variation Variations in the number of copies of a gene

Somatic mutations Presence or absence of mutations in genes
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for cross-referencing with other databases. The molecular structures of the drugs were 
sourced from PubChem [53].

(2) The CCLE dataset [5] provides comprehensive genomic and pharmacological data 
for human cancer cell lines. This dataset includes experimental data such as drug targets, 
dosage information, log(IC50) values, and effective area measurements for drug–cell 
pairs involving 24 drugs and 1036 cell lines. In our study, we utilize the log(IC50) value 
as the primary measure of drug sensitivity.

Preprocessing

Following the methodology described in [54], we selected only drugs with available 
IC50 values. For the molecular structure of the drugs, we obtained SMILES strings from 
PubChem and represented them as molecular graphs, where atoms form the nodes and 
bonds define the edges. Each atom node was described using a 78-dimensional fea-
ture vector. We removed cell lines lacking omics data, as well as drugs that had iden-
tical compound IDs (CID) in PubChem. Additionally, drugs without a corresponding 
PubChem ID in the GDSC database were excluded. After preprocessing, the GDSC 
dataset contained 172,114 drug–cell pairs derived from 223 drugs and 948 cell lines. 
Of the 223× 948 = 211,404 possible drug–cell interactions, approximately 18.6% were 
missing. The IC50 values of each drug–cell pair were normalized to a range between 
0 and 1. Similarly, the CCLE dataset, after preprocessing, contained 11,104 drug–cell 
pairs involving 23 drugs and 436 cell lines. For the 24 × 436 = 10,464 possible drug–
cell pairs, no interaction was missing. At the input stage, drugs were represented using 
their canonical SMILES format, and cell lines were encoded as a binary 735-dimensional 
vector.

Method
The MGATAF framework comprises three primary modules, namely the GNN-based 
node representation module, the multi-channel graph attention module, and the adap-
tive fusion module, as illustrated in Fig. 1. In this particular section, our initial focus will 
be on presenting an outline of the framework in its entirety, and this will be followed by 
a detailed description of each individual module included in it.

Overview

In Fig. 1, the GNN-based node representation module is depicted, which accepts the drug 
graph and employs a GNN-based network with multiple layers to obtain the drug graph’s 
representation. This module retains all node embeddings from each layer. The multi-chan-
nel attention graph module begins by creating a virtual super node cs , which is linked to all 
drug nodes. A graph neural network is then used to generate the graph representation of 
the super node cs . Next, the hidden state of cs , corresponding to the graph embedding of 
the node embedding layer, is updated using GRU. An attention mechanism is utilized to 
determine the weight of each drug’s graph embedding. The CCL and fingerprint features 
are generated by the cancer cell line embedding and fingerprint encoding modules, respec-
tively. Then, an adaptive fusion module is proposed to match the drug representation and 
fused CCL and fingerprint representations. This module extracts the correlation from both 
local and global perspectives, resulting in a comprehensive representation of cancer and 
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drug responses. This enables effective integration of the encoded drug representation with 
the encoded features of cancer cell lines and fingerprints. Furthermore, an attention mech-
anism layer is employed to identify the most significant features of the fused embeddings. 
The output is then generated using a fully connected layer.

GNN‑based node representation module

GNNs are an effective approach for extracting knowledge from data that is structured as 
graphs [55]. GNNs possess the capability to learn from graph-structured data, such as 
social networks, molecular structures, and other types of networks. By effectively capturing 
the complex relationships between nodes within a graph, GNNs can leverage this informa-
tion to make predictions or provide recommendations. Given the drug graph Gd = (Ad ,X) , 
where X is the node feature matrix and Ad is the adjacency matrix of graph. A GCN func-
tion is applied to generate the output representation Zl

d of the l-th layer, which can be rep-
resented as follows:

where W̃ (l)
d  is the weight matrix of l-th layer in GCN, the initial Z(0)

d = X , ReLU indicate 
the Relu activation function, Ãd = Ad + Id , and D̃d means the diagonal degree matrix of 
Ãd.

Multi‑channel graph attention module

This section describes the multi-channel graph attention module, which is one of 
the key components of our proposed framework. The Multi-channel graph attention 

(1)Z
(l)
d = ReLU(D̃

− 1
2

d ÃdD̃
− 1

2
d Z̃

(l−1)
d W̃

(l)
d ),

Fig. 1 MGATAF framework
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module is designed to effectively learn representations that take into account multiple 
levels of information about the relationships between nodes in a graph. This module 
utilizes the power of graph neural networks (GNNs) in combination with a multi-
channel graph attention technique to learn and extract informative representations 
of graphs. Specifically, a graph’s intricate relationships are captured by applying mul-
tiple layers of attention. The underlying idea is to use multiple layers of attention to 
capture different levels of relationships between nodes in the graph, thereby allow-
ing us to capture and encode complex and multi-scale patterns in the graph. Each 
layer of attention captures different types of relationships from different layers in the 
network. This enables us to capture all essential dependencies for modeling complex 
graphs. Overall, our proposed multi-channel graph attention module aims to enhance 
the expressive power of our framework, enabling us to learn more informative and 
powerful representations of graph-structured data. By incorporating the various 
types of relationships captured by different layers of attention, the proposed model 
can acquire a more comprehensive and intricate graph representation. This is because 
the different layers of attention are designed to capture distinct levels and types of 
relationships between nodes in the graph, allowing the model to learn and incorpo-
rate more intricate patterns and dependencies among the nodes. Thus, by combining 
these different types of relationships, the model can learn more complex graph rep-
resentations that can capture the intricacies of the data. Specifically, this module will 
receive the output representation of each layer, Zl

d = {z1, z2, . . . , zN } , zi ∈ RD , where 
N is the number of nodes, and D is the feature vector dimension. This module gener-
ates new node features for each layer received from the GNN-based node representa-
tion module and produces a new set of node features, Z′ = {z′1, z

′
2, . . . , z

′
N } , z

′
i ∈ RD′.

The attention coefficient eij , indicating the significance of node j’s features to node i, 
can be calculated as follows:

where W ∈ R
F ′×F is a weight matrix, and a represents a shared attention mechanism: 

R
F ′
× R

F ′
→ R . In the experiment, this mechanism is implemented as a single-layer 

feedforward neural network.
Using the attention mechanism, the model can assign different weights to drugs 

depending on their relevance to the graph embedding. This helps to capture the com-
plex relationships between drugs and their interactions within the graph. The result-
ing graph embedding is a compact representation of the entire graph that can be used 
for prediction tasks. To ensure the coefficients are easily comparable across different 
nodes, the SoftMax function is used to normalize them for all choices of j:

where Ni is the set of node i’s neighbors in the graph. Additionally, a is parameterized 
by a weight vector ϕ ∈ R

2D′ , with the nonlinearity Leaky ReLU serving as the activation 
function.

(2)eij = α(Wzi,Whj),

(3)αij = softmaxj(eij) =
exp(eij)

∑

k∈Ni exp(eik)



Page 11 of 24Saeed et al. BMC Bioinformatics           (2025) 26:19  

where .T is the transposition operation. Then, the output of node representation i based 
on the multi-head attention mechanism is as follows:

where K and σ represent the number of attention mechanism heads and the nonlinear 
function, respectively. Additionally, σ k

ij  are the normalized attention coefficients com-
puted by the k-th attention mechanism ( σk ), and Wk is the corresponding weight matrix 
for the input linear transformation. In the final layer of the network, an average multi-
head attention mechanism is applied as follows.

where σ is the activation function.
Finally, the multi-channel graph attention module is the graph embedding for multi-

level representing the embedding of multiple layers, as follows:

where l is the layer number.

Cancer cell line embedding and fingerprints encoding

For a given cancer cell line C, let’s denote C as a matrix with dimensions (N, F), where N 
is the number of features (e.g., the number of features) and F is the number of features 
per cell line. The output of a convolutional layer can be computed as follows:

Cij is the output feature map at position i and channel j, σ is the activation function (e.g., 
ReLU), w is the size of the convolution filter (kernel), Wj,k ,l is the weight of the j-th filter 
at feature k and filter position l, and bj is the bias term for the j-th filter.

After flattening the output of the convolutional layer, the output of the fully connected 
layer can be expressed as follows:

(4)αij =
exp(LeakyReLU(ϕT [Wzi � Wzj]))

∑

k∈Ni
exp(LeakyReLU(ϕT [Wzi � Wzk ]))

(5)z′i =�Kk=1 σ
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ijW
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w
∑
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)
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Ci is the output of the i-th neuron in the fully connected layer, σ is the activation function 
(e.g., ReLU, Sigmoid), M is the number of inputs to the fully connected layer (flattened 
feature maps from the convolutional layer), Cj is the j-th input to the fully connected 
layer, Wij is the weight connecting the j-th input to the i-th neuron, and bi is the bias 
term for the i-th neuron.

For a given fingerprint F, let’s denote F as a matrix with dimensions (M, K), where M is 
the number of features (e.g., the number of features) and K is the number of features per 
cell line. The output of a convolutional layer can be computed as follows:

Fij is the output feature map at position i and channel j, σ is the activation function (e.g., 
ReLU), w is the size of the convolution filter (kernel), Wj,k ,l is the weight of the j-th filter 
at feature k and filter position l, and bj is the bias term for the j-th filter.

After flattening the output of the convolutional layer, the output of the fully connected 
layer can be expressed as follows:

Fi is the output of the i-th neuron in the fully connected layer, σ is the activation function 
(e.g., ReLU, Sigmoid), M is the number of inputs to the fully connected layer (flattened 
feature maps from the convolutional layer), Fj is the j-th input to the fully connected 
layer, Wij is the weight connecting the j-th input to the i-th neuron, and bi is the bias 
term for the i-th neuron.

Then, the cancer cell lines embedding and fingerprints embedding are concatenated as 
follows:

where C is the cancer cell embeddings and F is the fingerprints embeddings.

Adaptive fusion module

Adaptive fusion is a technique in neural networks that involves the merging of several data 
sources into a single output. The objective of this approach is to improve the precision and 
reliability of the neural network by integrating diverse data sources, such as drug represen-
tation and cancer cell line representation, thereby enhancing its accuracy and stability. By 
doing so, the model can extract complementary information from different sources and 
produce more comprehensive and reliable predictions. The combination process involves 
dynamically weighting the different data sources based on their relative importance and rel-
evance to the task at hand. The adaptive nature of the technique ensures that the fusion 
process is tailored to the specific input data and task, making it more effective and efficient 
than fixed fusion methods. As shown in Fig. 2, the proposed adaptive fusion module inte-
grates multiple input representations from both representations into a single output. This 
process can be done using a weighted sum operation. The weights assigned to each input 

(10)Fij = σ

(

K
∑

k=1

w
∑

l=1

C(i+l−1),k ·Wj,k ,l + bj

)

(11)Fi = σ





M
�

j=1

Cj ·Wij + bi





(12)X = concat[C , F ]
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are adjusted based on the performance of the network on a given cancer and drug response 
prediction task. This allows the network to adapt to changing conditions and improve its 
accuracy over time. Adaptive fusion can also be used to reduce overfitting by combining 
multiple sources of information into one output.

In the last layer, the study combines the representations of the drug and cancer cell line to 
capture their overall relationship. This comprehensive method allows us to create a power-
ful representation by capturing the correlation between them. To accomplish this, the study 
employs an adaptive fusion module that integrates the two-view features using a control 
gate weight. This weight is determined by the underlying temporal properties of the fea-
tures, which are processed through a fully connected layer followed by a Sigmoid function. 
The output of the Sigmoid function represents the control gate weight, which is then used 
to modify the two-view features. This modification ensures that the most informative fea-
tures are emphasized while irrelevant features are suppressed. By employing this technique, 
the study aims to enhance the accuracy and robustness of the neural network by effectively 
integrating multiple sources of information. The two modified characteristics are then com-
bined. The AF module is formulated as follows:

where H is the fingerprint representations, contact represents concatenation, Wg is the 
FC layer’s trainable parameter, and bg is the bias term. σ is the SoftMax function, h rep-
resents the learned embeddings for the input data, while gout1 and gout2 are the gating 
mechanisms responsible for modulating the importance of the fused features in the 
adaptive fusion module.

Finally, an attention mechanism is applied and fully connected layer as follows:

where eij represents the attention score between node i and node j, a is the weight vector, 
W is the weight matrix, hi and hj are the feature vectors of nodes i and j, and ‖ denotes 
concatenation. Normalize the attention scores using the softmax function:

(13)gout =σ(Wg (concat[X ,H ])+ bg ),

(14)H =(h
⊗

gout1

⊕

X
⊗

gout2),

(15)eij = LeakyReLU
(

a
T
[

Whi�Whj

]

)

Fig. 2 Adaptive fusion module structure
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where αij is the normalized attention coefficient, and Ni denotes the neighbors of node i.
Then, Compute the final output embedding:

where h′i is the updated feature vector for node i, and σ is an activation function, such as 
ReLU.

The fully connected layer for the embedding H ′ can be described as follows: Flatten 
the output embedding H ′:

Then, apply the fully connected layer:

where Oi is the output of the i-th neuron in the fully connected layer, σ is the activation 
function (e.g., ReLU, Sigmoid), M is the number of inputs to the fully connected layer, h′j 
is the j-th input to the fully connected layer, Wij is the weight connecting the j-th input to 
the i-th neuron, bi is the bias term for the i-th neuron.

Experiments
Baselines

The study assesses the effectiveness of MGATAF compared to various established mod-
els as baselines,such as tCNNS [56] and variants of popular graph neural network-based 
models, including GCN [57], GIN [58], GAT [59], and SuperGAT [60]. The tCNNS 
model employs SMILES strings to represent drugs and utilizes a convolutional layer to 
extract features of drugs. Additionally, it employs another convolutional layer to extract 
features of cancer cell lines from genetic attribute vectors. Ultimately, a fully connected 
layer is employed to predict the response of the drug–cell interaction.

On the other hand, the GCN, GIN, GAT, and SuperGAT models adopt a unique 
approach by representing drugs as graphs and cancer cell lines as one-hot vectors. These 
models employ graph convolutional layers to extract essential characteristics from both 
drugs and cancer cell lines. Subsequently, the drug and cancer cell line features are com-
bined, and the models predict the IC50 value.

The study compares the performance of these models against MGATAF, which is a 
proposed approach that combines the drug and cancer cell line representations at vari-
ous levels using the multi-channel graph attention module and adaptive fusion module. 
This allows MGATAF to capture the cross-correlation between the drug and cancer cell 
line representations and provide an efficient final representation for predicting the IC50 
value.

(16)αij =
exp(eij)

∑

k∈Ni
exp(eik)

(17)h
′
i = σ





�

j∈Ni

αijWhj





(18)h
′ = Flatten(H ′)

(19)Oi = σ





M
�

j=1

h
′
jWij + bi
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Experimental settings

To facilitate re-implementation of our MGATAF model, we provide detailed informa-
tion on the parameters for each module. The MGATAF framework is composed of 
three primary components: 

1. A GNN‑based node representation module that employs a multi-layer Graph Con-
volutional Network (GCN) with ReLU activation functions, retaining node embed-
dings from each layer; weights are initialized using Xavier initialization, and an L2 
regularization term with a weight decay of 5× 10−4 is applied.

2. A multi‑channel graph attention module that uses multi-head attention mecha-
nisms with 8 heads in the first layer and 1 head in the second layer, leveraging 
LeakyReLU activation with a negative slope of 0.2; attention coefficients are com-
puted using shared weight matrices W ∈ R

F ′×F and attention vectors ϕ ∈ R
2D′.

3. An adaptive fusion module that concatenates drug representations with cancer cell 
line and fingerprint embeddings (obtained via convolutional and fully connected lay-
ers with ReLU activations), applies a gating mechanism using a Sigmoid function to 
adaptively weight features and incorporates an attention mechanism followed by a 
fully connected layer to produce the final output.

The learning parameters are adjusted to maximize accuracy on the validation sam-
ples, with optimal values carefully selected. The entire model is trained using the 
Adam optimizer with a learning rate of 0.0005, a dropout rate of 0.3 applied to pre-
vent overfitting, and early stopping if validation loss does not decrease for 50 con-
secutive epochs, over a maximum of 300 epochs. Training and experimentation are 
conducted using the NVIDIA GeForce GTX 1080 Ti graphics card. In comparison, 
the baseline models adhere to the same parameter settings. The experimental results 
are presented, with the best outcomes highlighted for clarity.

Evalution metrics

To assess the performance of our model, we employ two metrics: the Pearson cor-
relation coefficient (PCC) and root mean square error (RMSE). The PCC is a widely 
employed statistical measure that gauges the strength of the linear association 
between two variables. In particular, a PCC value of −1 denotes a flawless negative 
correlation, 0 represents no correlation, and 1 signifies a perfect positive correlation. 
The PCC is calculated using the following equation:

where x and Y represent the sets of true ln(IC50) and predicted ln(IC50), respectively. n 
is the number of data points, xi and yi are the true ln(IC50) and predicted ln(IC50) of the 
ith data point, respectively, and ō and ȳ are the means of x and Y, respectively.

The RMSE is another measure of error used to evaluate the accuracy of a model in 
predicting quantitative data. It is calculated as follows:

PCC =

∑n
i=1(xi − x̄)(yi − ȳ)

√
∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
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Here, xi and yi represent the true ln(IC50) and predicted ln(IC50) of the ith data point, 
respectively, and n is the number of data points in the sample.

Experimental results

The study conducted an assessment and comparison of MGATAF’s overall effectiveness 
with several baseline models, specifically tCNNS and different DRP models. The study 
employed two metrics, PCC and RMSE, to evaluate the performance of these models. 
The metrics were calculated using identical benchmark datasets and settings for all 
approaches. In Tables 3 and 4, the study presents the outcomes of our experiments in 
relation to the baseline models, with the best results being emphasized in bold to facili-
tate easy comparison.

Mixed Test: In this experiment, the study assesses the performance of MGATAF 
using all available drugs and cell lines in the training phase, meaning that all drugs and 
cell lines have been seen at least once during training. This study only consider the 
172114 drug–cell pairs for which response data is provided by GDSC. The data is shuf-
fled and split into 80% as a training set, 10% as a validation set, and 10% as a test set. 
Table  3 shows that graph neural network-based models outperform the convolutional 

RMSE =

√

√

√

√

1

n

n
∑

i=1

(xi − yi)2

Table 3 Performance comparison on the GDSC and CCLE datasets in the mixed test experiment

Bold: our method.

Method GDSC dataset CCLE dataset

PCC RMSE PCC RMSE

tCNNS [56] 0.8890 0.0312 0.7483 0.0612

GCN [57] 0.9118 0.0273 0.7828 0.0508

GIN [58] 0.9264 0.0252 0.7556 0.0542

GAT [59] 0.9065 0.0289 0.7741 0.0520

SuperGAT [60] 0.8800 0.0333 0.7750 0.0519

MGATAF  0.9312 0.0225 0.7859 0.0503

Table 4 Performance comparison on the GDSC and CCLE datasets in the new cell‑line test 
experiment

Bold: our method.

Method GDSC dataset CCLE dataset

PCC RMSE PCC RMSE

tCNNS [56] 0.3490 0.0576 0.3469 0.0692

GCN [57] 0.8399 0.0363 0.7279 0.0563

GIN [58] 0.8460 0.0358 0.7252 0.0575

GAT [59] 0.8312 0.0380 0.7078 0.0580

SuperGAT [60] 0.8289 0.0378 0.7027 0.0585

MGATAF 0.8536 0.0321 0.7364 0.0531
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network-based model in both PCC and RMSE. Moreover, our approach achieves the 
best performance compared to all baseline models for both PCC and RMSE.

New Cell Line Test Experiment: In the tests for new cells, the drugs and cells are sepa-
rated into the training, validation, and test datasets instead of the interaction pairs. This 
simulates the scenario where new cell lines are introduced and need to be predicted. The 
results for these tests are shown in Table 4. The performance of all models was not as 
good as in the mixed experiment, indicating that it is more challenging to predict cancer 
drug responses for new cell lines. However, MGATAF outperforms all baseline methods 
in terms of both PCC and RMSE in this experiment, demonstrating its effectiveness in 
predicting responses for unseen cells.

We have conducted statistical significance tests to strengthen the comparison between 
our MGATAF model and the baseline methods. Specifically, we trained and evaluated 
each model five times using different random seeds to account for variability due to ini-
tialization and data shuffling and applied paired two-tailed t-tests to compare the perfor-
mance of MGATAF against each baseline method on both the GDSC and CCLE datasets 
for the Pearson Correlation Coefficient (PCC) and Root Mean Square Error (RMSE) 
metrics. The results indicate that in the mixed test experiment, the improvements in 
PCC and reductions in RMSE achieved by MGATAF overall baseline models were sta-
tistically significant, with p-values less than 0.01 on the GDSC dataset and less than 0.05 
on the CCLE dataset; similarly, in the new cell-line test experiment, MGATAF’s perfor-
mance gains over the baseline methods were statistically significant, with p-values less 
than 0.05 for both PCC and RMSE metrics on both datasets. These statistical tests con-
firm that the superior performance of MGATAF is not due to random chance but is sta-
tistically significant, reinforcing the effectiveness of our proposed model in comparison 
to existing methods.

Discussion

In our study, we developed the MGATAF model to predict drug responses in cancer cell 
lines by integrating drug representations, cancer cell line embeddings, and fingerprint 
features. The superior performance of MGATAF, as evidenced by the highest Pearson 
Correlation Coefficient (PCC) and lowest Root Mean Square Error (RMSE) in both the 
mixed test and new cell line test experiments (Tables 3 and 4), has significant biological 
implications. We can summarize the biological significance of the MGATAF model as 
follows: 

1. Enhanced Drug Response Prediction: The high PCC values indicate that MGATAF 
can accurately predict the sensitivity of cancer cell lines to various drugs. This sug-
gests that our model effectively captures the complex biological interactions between 
drug compounds and cancer cell genotypes. Accurate predictions can aid in selecting 
the most effective drugs for specific cancer types, thereby advancing precision medi-
cine.

2. Generalization to New Cell Lines: In the new cell line test experiment, MGATAF 
outperforms all baseline models, demonstrating its robustness and generalization 
capability to unseen cell lines. This is biologically significant as it indicates the mod-
el’s potential to predict drug responses in newly discovered or less-characterized 
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cancer cell lines, facilitating the exploration of treatment options for rare or resistant 
cancers.

3. Interpretation of Molecular Mechanisms: The multi-channel graph attention mech-
anism in MGATAF allows for the identification of important molecular substruc-
tures within drug compounds that contribute to their efficacy. By assigning attention 
weights to different parts of the drug graphs, the model highlights which molecular 
features are most influential, providing insights into the mechanisms of action at a 
molecular level.

4. Integration of Multi‑Omic Data: The adaptive fusion module combines drug repre-
sentations with cancer cell line genomic data and fingerprint features. This integra-
tive approach reflects the multifactorial nature of drug responses, considering both 
the genetic makeup of the cancer cells and the chemical properties of the drugs. Such 
integration is crucial for understanding the complex biological pathways involved in 
drug sensitivity and resistance.

5. Potential for Drug Repositioning: The ability of MGATAF to predict responses 
across a wide range of drugs suggests its utility in drug repositioning efforts. By iden-
tifying unexpected sensitivities, the model can propose existing drugs as candidates 
for new therapeutic applications, accelerating the development of effective cancer 
treatments.

6. Facilitating Biomarker Discovery: The attention mechanisms and feature impor-
tance scores generated by MGATAF can help identify key genetic markers and 
molecular features associated with drug responses. This can guide experimental 
studies aiming to validate potential biomarkers for prognosis or as targets for new 
drugs.

Ablation study
This section conducted three ablation studies to investigate the effects of multi-channel 
attention, adaptive fusion, and the number of layers on the overall performance of the 
model.

Effect of multi‑channel attention

This section presents an ablation study conducted to investigate the effect of multi-chan-
nel attention on the final representation of the model and its impact on the model’s per-
formance. Multi-channel attention is a mechanism used in deep learning to selectively 
weight the importance of different channels in a multi-channel input. This study focuses 
on the impact of multi-channel attention on the performance of the model.

To conduct the experiment, the model was trained both with and without multi-chan-
nel attention, namely MGATAF-MA, and the final representation from the last layer of 
the model was used for the analysis. The representation of each layer was not kept to iso-
late the effect of multi-channel attention on the final representation of the model.

The results of the experiment shown in Tables 3 and 4 demonstrate that the inclusion 
of multi-channel attention had a positive effect on the performance of the model. This 
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indicates that the use of multi-channel attention improves the final representation of the 
model and leads to better performance on the task.

It is important to note that ablation studies are typically conducted in conjunction 
with other experiments to provide a more comprehensive understanding of the model’s 
behavior. In this case, it would be useful to evaluate the performance of the model in 
comparison to other attention mechanisms or without any attention mechanism to fur-
ther validate the effectiveness of multi-channel attention.

In summary, the ablation study conducted on the effect of multi-channel attention 
demonstrated that including multi-channel attention improves the final representation 
of the model and leads to better performance on the task. This finding underscores the 
importance of incorporating attention mechanisms in deep learning models to selec-
tively weight the importance of different channels and improve the model’s performance.

Effect of adaptive fusion

This section is dedicated to exploring the impact of adaptive fusion, which is a technique 
used in deep learning to merge multiple sources of information into a single output, 
on the performance of a model in cancer-drug response tasks. Specifically, the study is 
interested in exploring the differences between the concatenation operation and adap-
tive fusion operation in terms of performance.

The concatenation operation involves simply concatenating the features from different 
modalities into a single feature vector. This method can be effective in some cases, but 
it has the disadvantage of not being able to weigh the importance of different modalities 
according to their relevance to the task. On the other hand, an adaptive fusion operation 
is designed to dynamically adjust the importance of different modalities based on their 
relevance to the task, which can lead to better performance.

To conduct this ablation study, the method first trains the model using the concatena-
tion operation as the fusion operation, namely MGATAF-AF. The study then modifies 
the model to use an adaptive fusion operation and compares the performance of the two 
models on a test set. The study aims to determine which fusion operation is more effec-
tive in capturing the complex relationships between drugs, proteins, and genes, which 
are critical for accurate drug response prediction.

The results of the study shown in Tables 3 and 4 demonstrate that the adaptive fusion 
operation leads to improved performance compared to the concatenation operation. 
This suggests that the ability to dynamically adjust the importance of different modali-
ties is an important factor in achieving high performance in our tasks. Therefore, it 
concludes that using an adaptive fusion operation can effectively capture the complex 
relationships between drugs, proteins, and genes, and improve the accuracy and robust-
ness of the model.

Overall, the findings of this study highlight the importance of carefully selecting and 
tuning fusion operations in cancer-drug response tasks to achieve the best possible per-
formance. By selecting the appropriate fusion operation, the method can improve the 
accuracy and robustness of our models, which can ultimately lead to better personalised 
treatments for patients as shown in Figs. 3, 4.
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Effect of number of layers

In this particular ablation study, the focus is on the effect of the number of layers on the 
performance of a deep learning model. The experiment involves training and evaluating 
models with varying numbers of layers, specifically 1, 2, 3, 4, and 5 layers.

As shown in Fig.  5, as the number of layers increases, the performance of the model 
initially improves. This is likely due to the ability of deeper models to capture more com-
plex patterns and relationships within the data. However, after a certain number of layers, 
the performance begins to decline. This phenomenon is known as the “vanishing gradi-
ent problem.” As the number of layers increases, it becomes more difficult to propagate 
gradients through the entire network during training, leading to slower convergence and 
degraded performance. The findings of this research demonstrate that the optimal number 
of layers for this particular problem is 3 layers. This suggests that a moderate level of depth 
is sufficient to capture the relevant patterns in the data, without encountering the vanishing 
gradient problem that can arise with deeper networks.

Fig. 3 PCC performance on the effect of multi‑channel attention and adaptive fusion on the GDSC and CCLE 
datasets in the mixed test experiment and the new cell‑line test experiment

Fig. 4 ERMS performance on the effect of multi‑channel attention and adaptive fusion on the GDSC and 
CCLE datasets in the mixed test experiment and the new cell‑line test experiment
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Conclusion
Predicting drug response is a vital task in the field of precision medicine; however, tradi-
tional approaches have shown limited accuracy and robustness. This research presents a 
novel methodology known as the Multi-channel Graph Attention Network with Adap-
tive Fusion (MGATAF) networks, offering an innovative approach to drug response 
prediction. The proposed framework efficiently captures the intricate relationships 
among drugs, proteins, and genes, which are often overlooked by conventional methods. 
Additionally, it addresses the issue of disregarding the significant interactions between 
atoms. Our experimental findings indicate that MGATAF surpasses both traditional and 
graph-based methods, highlighting its potential as a robust tool for precision medicine. 
By enabling more precise and effective drug response predictions tailored to individual 
patients, our approach is poised to contribute significantly to the advancement of preci-
sion treatments, ultimately improving health outcomes. Given the promising results of 
this study, we anticipate that it will inspire further research aimed at enhancing patient 
outcomes in the field of precision medicine.

Abbreviations
MGAT   Multimodal multi‑channel graph attention network
PCC  Pearson correlation coefficient
CNNs  Convolutional neural networks
GNNs  Graph neural networks
DRP  Drug response prediction
RMSE  Root‑mean‑square deviation
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