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Background
Copy number variation (CNV), defined here as deletions and duplications of chromo-
somal segments larger than 1 kb, are a major source of genetic variation between indi-
viduals and are an essential factor in many complex diseases, including mental illness, 
developmental disorders, and cancer [1]. In particular, distinct large (> 1000 kb) CNVs 
have been linked to rare disease phenotypes, and they may contribute to common poly-
genic diseases [2].

Numerous methods for the detection of CNVs have been established throughout 
the past decades. Initially, targeted gene panel methods such as quantitative poly-
merase chain reaction (qPCR) and multiplex ligation-dependent probe amplification 
(MLPA) were used. However, the introduction of the genome-wide approaches offered a 
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significant advance in the CNV detection methods. Microarray-based methods such as 
array-CGH (comparative genomic hybridization) and single nucleotide polymorphism 
(SNP)-array allow the investigation of CNVs [3, 4], and more recently next-generation 
sequencing (NGS) [5] data are being used for CNV detection.

Despite the evolution of NGS-based methods, microarrays are still often the first tier 
solution for whole genome studies due to their comparatively lower cost and broad 
applicability. A large number of studies have investigated rare CNVs using microarray 
based genotyping data and yielded important insights [6–12]. These investigations typi-
cally involve intricate procedures, necessitating multiple analyses, careful choice of soft-
ware, calibration of sensitivity to parameters and their thresholds, and execution setting. 
Computational and scientific outcomes therefore hinge upon automation and thorough 
documentation of implementation specifics. Standardized basic protocols for calling 
CNVs and performing association tests have been proposed by others, such as in Lin 
et  al. [13], however a comprehensive simple-to-use bioinformatic implementation has 
not been provided.

Conducting a case–control study based on rare CNVs involves several critical steps: 
(1) CNV detection, (2) quality control, (3) burden analysis, and (4) gene-set enrichment 
analysis. High-throughput genomic technologies, commonly employed in genome-wide 
association studies (GWAS), provide the signal intensity data necessary for CNV detec-
tion. Subsequently, tools like PennCNV [14] and Plink [15] are typically used for the 
case–control analysis of CNV, focusing on individual-based CNV calls, and rare CNVs, 
respectively. Conducting such analyses therefore requires adeptly applying and coor-
dinating multiple advanced bioinformatic software, but to the best of our knowledge 
a bioinformatic pipeline implementing rare CNV analysis in a structured, flexible, and 
scalable manner remains missing.

In this work, we present a generic bioinformatic solution for identifying rare CNVs 
in case–control studies. Our main goal is to provide a flexible tool that enables users to 
conduct rare CNV analysis using SNP array data from different case–control studies.

Implementation

We have employed the Snakemake workflow [16] engine to construct a robust pipe-
line consisting of two sub-pipelines: (1) calling and QC analysis and (2) rare CNV 
analysis (Fig. 1). The code is modular and rule-based, using the modular configura-
tion allowed by Snakemake (Fig. 2). Notably, if input files are missing for any rule, 
Snakemake will report it and the execution will be stopped. Files generated previ-
ously in successfully executed rules will be preserved. The next execution will start 
from the last rule completed. Moreover, if an execution error occurs, any corrupted 
output file is automatically deleted to maintain consistency. The rule-based struc-
ture enables automation while maintaining flexibility: Both sub-pipelines can be 
modified according to the nature of the study through parameters, software, or the 
addition of custom code. To illustrate this feature, instructions on how to adapt the 
input file format in the calling and QC sub-pipeline are described in the Pipeline 
Guide available in our RareCNVsAnalysis GitHub repository [17] under the section 
Input Files Specification. In addition, configuration files (such as variables.py and 
dependenciesenv.yml) are provided to facilitate the modification of the default value 
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Fig. 1  Rare CNVs workflow. The pipeline consists of two major sub-pipelines: (1) Calling and quality control 
(QC) analysis, which uses the SNP-array genotyping data (green box) as an input to retain good-quality 
samples and high-quality calls. (2) Rare CNV analysis, which takes samples and calls from the calling and QC 
sub-pipeline output, and after the data format conversion, performs the burden, rare CNV and enrichment 
analyses. Black dotted lines split each analysis in their corresponding modules, purple boxes represent a 
specific task in each module, yellow boxes show representative outputs (files and/or plots), yellow line box 
represents an external dependency, and the blue box represents external functions used by some modules. 
Dotted purple boxes are optional tasks which could be easily removed or changed to adapt the pipeline to 
the study requirements

Fig. 2  Pipeline structure based on snakemake modules. Both our sub-pipelines are organized in modules, 
each module containing one or more rules. Modules and rules can be modified, added or removed 
according to the analysis requirements. The list of modules should be included in the snakemake executable 
file and the description of variables, files and paths should be included in the variables and config files
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of parameters and the inclusion of new software (or a different version)(see Pipeline 
Guide Fig. 3 and Pipeline Guide Fig. 4 in the GitHub repository). Also, code that is 
executed in many rules can be added in the external functions.sh file to enhance 
the pipeline´s modularity, clarity and efficiency. Both sub-pipelines further generate 
execution logs, along with diagnostic plots produced using the R programming lan-
guage [18]. Most of the dependencies are managed using Conda through the Snake-
make Integrated Package Management [19]. Dependencies not available via Conda 
should be installed following the installation guide included in the GitHub reposi-
tory. The pipeline is open source, released as a permissive MIT license [20], and the 
code is available along with documentation. Additionally, a Docker version of the 
pipeline is available in the GitHub repository alongside the main pipeline code. It 
allows running both sub-pipelines via Docker with full functionality. Detailed infor-
mation regarding configuration files, input and output formats and contents for each 
module and rules are described in the pipelines guide available for download from 
RareCNVsAnalysis Github repository under manual/Rare_CNVs_pipeline_guide.
pdf.

Calling and quality control analysis

The first part of the pipeline consists of the calling and quality control analysis sub-pipe-
line (Fig.  1). This sub-pipeline executes a number of standard quality procedures and 
generates statistics and plots to guide the users when tuning the parameters to fit the 
study-specific needs and to ensure that the steps are performed as expected. It uses the 
SNP-array genotyping signal intensity values (Log R Ratio and B Allele Frequency) for 
all markers in all samples in text format (Pipeline Guide, Module Data Conversion). The 
cohort-wide signal intensity file is subsequently processed to generate an individual sig-
nal intensity file per sample which is utilized in the PennCNV calling process. Addition-
ally, the population frequency of B allele (PFB) and the GCModel files are generated in 
this step since PennCNV relies on these for accurate CNV detection (more details in 
https://​pennc​nv.​openb​ioinf​ormat​ics.​org). After CNV detection, low quality samples are 
excluded based on standard genotyping quality metrics: LRR (Log R Ratio), BAF_drift (B 
Allele Frequency drift), WF (Waviness Factor), and NumCNVs (number of called CNVs). 
The sub-pipeline generates several plots that should be used by the user to inspect the 
performance of these quality metrics in samples meeting or failing the exclusion crite-
ria and help guide the user to set their study-specific threshold values (Fig.  3). These 
thresholds, and the inclusion of other parameters (LRR_mean, LRR_median, LRR_SD, 
BAF_mean, BAF_median, BAF_SD) can be customized in the parameters file variables.
py (Pipeline Guide, Pipeline Description). Calls detected in challenging genomic regions 
such as the Human leukocyte antigen (HLA), and the regions near the centromeres and 
the telomeres are considered spurious and are removed [21]. The genomic coordinates 
of these regions must be contained in external files which will be set into the configu-
ration file config.json. Finally, the sub-pipeline merges adjacent CNV calls to mitigate 
the tendency of many CNV-callers to artificially split larger CNVs into smaller segments 
(Supplementary Fig. 1). This analysis generates a set of high-quality CNVs that will serve 
as the basis for further investigation of rare CNVs.

https://penncnv.openbioinformatics.org
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We have built the calling and QC sub-pipeline around the Illumina genotyping SNP 
array and formats, but it is possible to adapt it to support Affymetrix [22] data too. The 
user can do this by preparing input file formats according to the PennCNV requirements 
(see Pipeline Guide, Input Files Specification).

Fig. 3  Quality control plots. (A) Sample quality parameters: Red boxes show samples which fail the inclusion 
criteria based on the PennCNV QC threshold (LRR_SD < 0.3 & BAF_drift < 0.01 & |WF|< 0.05). Blue boxes show 
samples which pass the quality control. (B) The distribution of the number of CNVs per sample. Samples 
with an excessive number of CNVs should be considered for exclusion because it can indicate low data 
quality. A threshold for the number of CNVs per sample (NumCNV) can be defined through visual inspection, 
considering its distribution around the exclusion criteria threshold values based on PennCNV statistics. In 
Addison’s study (Artaza et al. [23]), samples with NumCNV > 50 were removed. Y-axis was truncated in 500 to 
improve the data visualization
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Rare CNVs analysis

After the calling and QC analysis, the rare CNVs analysis can be performed using the 
samples and calls obtained in the previous section (Fig. 1 and Pipeline Guide, Rare CNV 
pipeline). These samples and calls in PennCNV format are first converted to Plink files. 
Only core samples, defined as unrelated and genetically unstratified, are retained, in 
order to avoid confounding effects [24, 25]. This task requires the users to provide a list 
with the identifiers of the core samples. These samples can be identified with a prin-
cipal component analysis (PCA) or multidimensional scaling (MDS), while the genetic 
relatedness of the individuals can be based on identity by descent (IBD) analysis (e.g. 
π̂ ≤ 0.1 ). Small CNV calls are usually not reliably detectable by SNP arrays [26, 27], 
therefore only CNVs larger than 50 kb and covered by more than 5 probes are retained 
at this stage. Default values can be modified in the parameters file (Pipeline Guide, Pipe-
line Description).

After sample filtering and exclusion of CNV by size, a global burden test in cases ver-
sus controls is conducted using Plink software. The burden test is performed for four key 
metrics: (1) number of segments (RATE), (2) proportion of samples with one or more 
segments (PROP), (3) total kb length spanned (TOTKB), and (4) average segment size 
(AVGKB). Subsequently, CNVs are divided into deletions and duplications and pooled 
by length to calculate the CNV frequency in cases versus controls and the CNV distri-
bution within specific length intervals (Supplementary Fig.2). By default, the rare CNV 
sub-pipeline defines CNV size thresholds intervals as 50 kb, 100 kb, 200 kb, 500 kb, and 
1,000 kb. Users can customize these thresholds in the parameters file (Pipeline Guide, 
Pipeline Description).

Following the rare CNVs analysis, the sub-pipeline proceeds to extract rare deletions 
and duplications. This involves identifying common CNVs with frequencies greater than 
or equal to a user-defined threshold from a subset of healthy control individuals in the 
study cohort. To calculate the CNV frequency, the Plink overlapping strategy is used. 
It assigns a specific count to each CNV that represents the number of CNVs (including 
itself ) that overlap with at least 50% of its region. The CNV overlap definition is based 
on a union intersection approach (Supplementary Fig. 3). The subset of healthy individu-
als involved in the common CNVs identification, are subsequently excluded from fur-
ther analysis to avoid bias to the test statistics. Using the common CNVs as reference, 
common variants are filtered out from both the cases and remaining control samples 
by removing all CNVs with at least 50% overlap with common CNVs. This task is car-
ried out using the BEDTools suite [28]. Frequency histograms are generated for quality 
control of the procedure (Supplementary Fig. 4 and 5). It is important to note that our 
suggested approach to identify rare CNVs can be adapted or modified according to the 
study strategy. Following this, differences in the frequencies among cases and controls 
are first assessed for all deletions and duplications, and then, the differences are evalu-
ated for intervals of binned CNV sizes. Summary statistics are generated containing the 
frequencies for common and rare CNVs in different interval sizes, along with two pro-
portion test statistics and odds ratios (OR) estimation using R version 3.6.3 [18], spe-
cifically the stats and fmsb packages. These results are represented graphically as forest 
plots, with the confidence intervals of frequencies within each CNVs interval size, along-
side the associated p-value (Supplementary Fig. 6 and 7).
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In the final stage of the rare CNV analysis sub-pipeline, the Plink gene set enrichment 
method is employed. This test compares the rate of CNVs impacting specific gene sets 
in cases versus controls, while taking into account gene size and differences in CNV rate 
[29]. The sub-pipeline includes two tests by default: the enrichment of genic CNVs (ask-
ing the question whether there is a general enrichment of genes among case CNVs), and 
the enrichment of pathway (or a predefined list of ) genes, relative to all CNVs (determin-
ing whether there is a subset of genes enriched, relative to the whole genome). Both tests 
are based on a permutation test with N = 10,000 null permutations to generate empirical 
p-values (N can be modified inside the enrichment analysis module). The genomic coor-
dinates of the genes, as well as the pathways to be tested are provided as configuration 
files to the sub-pipeline. The enrichment test performs a generalized linear model-based 
(GLM-based) CNV burden test, and evaluates gene counts (GCNT), number of seg-
ments or CNVs (NSEG), and average size of CNVs (AVGKB) using logistic regression.

External code and logs

A rule in a specific module can include inline code in Python or shell commands. How-
ever, extensive code within a single rule might hinder the module-rule modification. 
An external file (function.sh) containing shell functions used by some modules (Fig. 1) 
is included with the pipeline utilities, making the inclusion or modification of external 
shell code clearer and simpler.

Both the calling and QC sub-pipeline and rare CNVs sub-pipeline automatically gen-
erate the log text files (inside the logs directory) with relevant information for each 
module, such as number of samples included/excluded, number of calls filtered, burden 
summary and enrichment summary. Logs can be used to create a report including over-
all information as presented in Table 1 and Supplementary Table 2 and Supplementary 
Table 3.

Performance
This pipeline executes non-parallel tasks, although Snakemake can automatically deter-
mine which parts of the workflow can be run in parallel, decreasing the execution time 
of some modules. Figure 4 shows the runtime for both the calling and QC sub-pipeline 
and rare CNV sub-pipeline, for genotyping data (from Illumina GSA) of 6,112 samples, 
700,079 markers, and 98,702 calls detected. The calling and QC sub-pipeline execu-
tion time, approximately 72 h, or approximately 0.71 min per sample, takes most of the 
total time of the execution, especially modules which perform the data conversion from 
the signal intensity values to PennCNV, and CNV calling. The per sample time usage 
was similar (0.73  min/sample) when running it on half the cohort. It should be men-
tioned that these modules will be executed only on the first run. The downstream rules, 
directly involved with samples and calls quality, can be modified and the calling and QC 
sub-pipeline can be executed again, skipping the run of the previous modules which 
decreases the execution time substantially. A similar approach is applied for the rare 
CNVs sub-pipeline.

Due to the security requirements for personally identifiable data used in this perfor-
mance testing, we used the TRE provided by the HUNT cloud secure solutions for sci-
entific cloud computing (ntnu.edu/mh/huntcloud):
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Operative system: Ubuntu 18.04.6 LTS (GNU/Linux 4.15.0–210-generic x86_64).
Architecture: x86_64.
CPU op-mode(s): 32-bit, 64-bit.
CPU(s): 32.
Model name: Intel Core Processor (Broadwell, no TSX, IBRS).
CPU MHz: 2095.074.
Memory: 64 GB.
Total runtime: 72.67 h.
Moreover, this pipeline can be run on a standard desktop computer. A basic test was 

performed using a small demo data (12 samples, 654,028 markers and 472 calls detected) 
downloaded from Illumina in an Ubuntu virtual machine (see Pipeline Execution in 
RareCNVsAnalysis Github project):

Operative system: Ubuntu 22.04.4 LTS.
Architecture: x86_64.
CPU op-mode(s): 32-bit, 64-bit.
Model name: 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80 GHz.

Fig. 4  Pipeline performance. Calling and QC analysis sub-pipeline and rare-CNVs analysis sub-pipeline for 
6,112 samples, 700,079 markers (genotyping data from Illumina GSA), and 98,702 calls detected. Time in 
seconds, in logarithmic scale, is plotted for each module-rule. Calling and QC analysis runtime was 72.31 h 
(260,320 s), and rare CNVs analysis runtime was 21.5 min (1290 s)
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Memory: 4 GB.
Total runtime: 6.21 min.

Results and discussion
We have created a versatile pipeline for detection and analysis of CNVs from SNP arrays. 
To demonstrate the use of the pipeline we applied it to a case–control study in Addi-
son’s disease where the results are presented in more detail in Artaza et. al [23]. Samples 
were genotyped with Illumina Infinium Global Screening Array 1.0. CNVs were called 
and quality controlled using the calling and QC sub-pipeline. The box plots displaying 
PennCNV statistics values (LRR_mean, LRR_SD, BAF_mean, BAF_SD, BAF_drift and 
|WF|) were generated to assess the quality of the samples (Fig. 3A). This plot illustrates 
samples meeting or failing the exclusion criteria based on the PennCNV QC thresh-
old. Reduced overlap in the side-by-side box plots signifies a robust quality predictor 
(LRR_SD in this study). Furthermore, an abnormally high count of CNVs in a sample 
(NumCNV) suggests a low quality at a sample-level; such samples should be therefore 
excluded. The NumCNV threshold (> 50 in this study) can be established by inspecting 
the correspondence among samples failing or passing QC and the NumCNV (Fig. 3B). 
After sample QC, potentially artificial CNV calls were removed from repeat-rich 
genomic regions such as HLA, telomeric, and centromeric regions, and then CNVs were 
merged to produce a set of high-quality CNV calls (Supplementary Fig. 8). Table 1 illus-
trates the main steps of the calling and QC sub-pipeline and the number of samples and 
CNVs included and excluded in each step.

After filtering samples and CNVs, the sub-pipeline for the analysis of rare CNVs was 
executed. First, the PennCNV sample files were converted to Plink format and then, only 
unrelated ( ̂π ≤ 0.1 ) individuals of European descent were retained. CNVs above 50 kb in 
length and spanning more than five markers were selected (default values can be changed 
in the sub-pipeline parameter file) and a burden test for all CNVs was performed, which 
showed no significant differences in cases compared to controls in the four metrics, 
RATE (Number of segments), PROP (Proportion of samples with one or more segment), 
TOTKB (Total kb length spanned) and AVGKB (Average segment size) (Supplementary 
Fig.  9). Continuing with the burden analysis, CNVs were classified into deletions and 
duplications, binned by length (by default 50 kb, 100 kb, 200, 500 kb and > 1,000 kb) and 
further the ratios in controls and cases were calculated (Supplementary Table 1. Once 
the burden analysis was finalized, the sub-pipeline proceeded to rare CNV analysis, in 
which the rare deletions and duplications were extracted and evaluated for differences in 
frequency between cases and controls. For this study in particular, a subset of controls 
(200 individuals) previously selected were used as a reference to identify the common 
variants. Variants with count ≥ 4 (i.e. ≥ 2% carrier frequency) were classified as common 
variants. Subsequently, any CNVs overlapping at least 50% of length with these common 
variants were excluded to retain the rare variants with a frequency below 1% (carrier fre-
quency < 2%). The carrier frequency plot distribution for rare deletions and duplications, 
generated by the sub-pipeline, enabled us to inspect these frequencies. The obtained fre-
quencies fell within the predefined threshold for this study (Supplementary Fig. 4 and 5). 
Next, the sub-pipeline evaluated the cumulative distribution of CNV frequencies across 
five interval sizes (50–100, 100–200, 200–500, 500–1,000 kb and > 1,000 kb), calculating 
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a two proportion test statistic and odds ratios (ORs). The results were then compiled in 
a summary file, alongside the forest plots (Table 2 and Table 3, and Supplementary Fig. 6 
and 7). The analysis which is described in detail in Artaza et al. [23] uncovered a higher 
frequency for the largest rare deletions (> 1,000 kb) among cases (n = 13/1182) compared 
to controls (n = 10/3810) (OR = 4.23, 95% CI 1.85–9.66, p = 0.0002). Finally, the sub-
pipeline performed the case–control gene-set enrichment test for two candidate gene-
set lists, primary immunodeficiency and congenital adrenal hypoplasia panels from the 
Genomics England PanelApp [30]. Based on the test results, no evidence supporting an 
overall enrichment of rare CNVs overlapping with immune related genes was observed 
[23] (Supplementary Fig. 10).

Conclusion
We present an automated, flexible, and scalable bioinformatic pipeline tailored for 
rare CNV analysis in case–control studies. Array technology has undergone a tremen-
dous growth in both quantity and content over recent years. Although genotyping data 
facilitate CNV analysis, the major challenges in the CNV analysis involve the manage-
ment of large volumes of data, advanced bioinformatics, and complex data interpreta-
tion. Addressing this, a pipeline that streamlines analyses, systematizing tasks, while 

Table 2  Overall rare deletions and duplications frequency distribution

The table shows data directly extracted from a summary text file. The table format can be adjusted by the user. CNV: 
CNV type, Cases/Controls: number of CNVs (deletions or duplications) in each cohort. Cases_freq/Controls_freq: CNVs 
frequencies, P.value: two proportion test p-value, OR: odds ratio, X95.C: confidence interval at 95%, P: odds ratio p-value 
associate

CNV Cases Controls Cases_freq Controls_freq P.value OR X95.CI P

DELs 827 2615 0.6997 0.6864 0.4077 1.0646 0.9236,1.2269 0.3876

DUPs 721 2367 0.6100 0.6213 0.5073 0.9535 0.8339,1.0901 0.4857

Table 3  Rare CNV frequency distribution binning by size in cases vs. controls

The table shows data directly extracted from a summary text file. The table format can be adjusted by the user. Length: CNV 
length interval, Cases/Controls: number of CNVs (deletions or duplications) in each cohort. Cases_freq/Controls_freq: 
CNVs frequencies, P.value: two proportion test p-value, OR: odds ratio, X95.C: confidence interval at 95%, P: odds ratio 
p-value associate

Deletions

Length Cases Controls Cases_freq Controls_freq P.value OR X95.CI P

50KB_100KB 435 1298 0.3680 0.3407 0.0911 1.1270 0.9837,1.2909 0.0846

100KB_200KB 260 919 0.2200 0.2412 0.1435 0.8871 0.7586,1.0372 0.1331

200KB_500KB 102 323 0.0863 0.0848 0.9174 1.0196 0.8078,1.2869 0.8703

500KB_1000KB 17 65 0.0144 0.0171 0.6158 0.8407 0.4909,1.4397 0.5269

1000KB_1000000KB 13 10 0.0110 0.0026 0.0005 4.2258 1.8481,9.6622 0.0002

Duplications

Length Cases Controls Cases_freq Controls_freq P.value OR X95.CI P

50KB_100KB 297 1050 0.2513 0.2756 0.1078 0.8821 0.7597,1.0242 0.0998

100KB_200KB 204 614 0.1726 0.1612 0.3773 1.0857 0.9125,1.2918 0.3536

200KB_500KB 157 488 0.1328 0.1281 0.7077 1.0427 0.8596,1.2646 0.6712

500KB_1000KB 48 150 0.0406 0.0394 0.9161 1.0328 0.7411,1.4391 0.8488

1000KB_1000000KB 15 65 0.0127 0.0171 0.3614 0.7406 0.4207,1.3033 0.2960
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maintaining flexibility is indispensable. Our pipeline provides the fundamental steps 
for rare CNVs analysis, enabling automation of analyses while maintaining flexibility. 
Beyond the analysis of rare CNVs, the design principles using standardized modules 
render the pipeline reusable across a broad spectrum of bioinformatic analyses .
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