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Background
Proteins are complex and essential molecules that play critical roles in various biologi-
cal functions within living organisms, including DNA transcription and replication, 
hormone transport, signal transduction, and catalyzing biochemical reactions [1–3]. 
These molecules interact with each other to regulate and coordinate intricate biological 
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processes through protein–protein interactions (PPIs). Therefore, modeling PPI net-
works is vital for identifying proteins’ roles in cellular functions [4, 5]. The study of PPIs 
also has important applications, for example in disease therapies and development of 
novel drugs [6]. Targeting specific PPIs enables the modulation of protein functions and 
the influence on pathways implicated in diseases [7, 8].

Despite significant progress in experimental techniques, detecting PPIs remains a 
challenging, time-consuming, and labor-intensive task. High-throughput experimental 
techniques such as yeast two-hybrid (Y2H), protein microarrays, and mass spectrom-
etry (MS) have significantly enhanced our ability to detect PPIs and have enabled the 
collection of extensive PPI data [9]. However, these techniques come with their own set 
of limitations. One significant challenge is the occurrence of false positives, where non-
specific interactions are incorrectly identified as true interactions, and false negatives, 
where actual interactions are missed. These inaccuracies lead to incomplete and some-
times unreliable PPI datasets, making it difficult to assess the true nature and extent of 
protein interactions [10, 11].

Numerous experimental PPI datasets are available via public online databases, such 
as BioGRID (Biological General Repository for Interaction Datasets) [12], or STRING 
(Search Tool for the Retrieval of Interacting Genes/Proteins) [13]. In STRING, data is 
collected from diverse sources and confidence scores are assigned to each interaction, 
assisting researchers in evaluating the reliability of the data. Each interaction in STRING 
is annotated based on scores from seven individual channels: experiments, database 
curation, text mining, coexpression, neighborhood, fusion, and cooccurrence. The com-
bined score is calculated by integrating the probabilities from the different individual 
channels and adjusted for the probability of randomly observing an interaction [14].

These confidence scores, typically normalized to a range between 0 and 999, offer 
a probabilistic measure of the interaction’s reliability, enabling researchers to explore 
and analyze complex networks of protein interactions effectively. The confidence 
scores in STRING are categorized based on their values, providing a tiered assess-
ment of interaction reliability. Interactions with scores greater than 900 are consid-
ered to have the highest confidence level, indicating robust supporting evidence. 
Those with scores between 700 and 900 are classified as high confidence, while scores 
between 400 and 700 are categorized as medium confidence. Scores between 150 and 
400 are considered low confidence, and scores less than 150 are very low confidence. 
As shown in Table 1, in the last three versions (11.0, 11.5, and 12.0) of STRING used 
to validate our work, only a few PPIs are considered to have high confidence levels. 
For example, as depicted in Fig.  1, the interaction between the protein pair 4932.

Table 1 Percentage of interactions for each confidence level for the three versions V11.0, V11.5 and 
V12.0 of the STRING database

Confidence level % of PPI in V11.0 % of PPI in V11.5 % of PPI 
in V12.0

Highest ( ≥ 900) 7.5 6.3 3.7

High (700–900) 5.3 5.8 3.6

Medium (400–700) 16.0 16.4 12.5

Low (150–400) 71.2 71.5 80.2
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Q0045 and 4932.Q0250 is assigned the highest confidence score of 999 in version 12.0 
of STRING. Conversely, while a PPI exists between the protein pair 4932.YAL044C 
and 4932.YDR542W, its confidence score is low, at 150.

In addition to experimental techniques, researchers have increasingly adopted and 
evolved computational methods to study PPIs. These computational approaches aim 
to reduce the number of candidate protein pairs requiring experimental validation 
by leveraging existing PPI datasets to identify potential novel interactions. Given the 
graph-like structure of PPI networks, most computational methods utilize a graph-
based representation, where nodes represent proteins and edges denote interactions 
between them as shown in Fig. 2. In a graph-like structure, the connections between 
proteins are typically represented as unweighted and binary, indicating the presence 

Fig. 1 Examples of two PPI confidence scores from STRING database (version 12.0)

Fig. 2 Subset of the PPI Network from STRING Database Version 12.0 showing the known interactions with 
protein 4932.Q0050
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(1) or absence (0) of an interaction. Detecting new interactions is thus framed as a 
link prediction task, which aims to predict unknown connections between proteins 
within the PPI network. Computational approaches for predicting PPIs can be broadly 
categorized into two main types: similarity-based methods (network-based features) 
[3, 15–17] and machine learning models, which encompass both traditional and deep 
learning techniques [18–21]. Among machine learning models, graph representation 
learning approaches are particularly well-suited for predicting interactions and rec-
ognizing complex structures in PPI networks, as they effectively capture the underly-
ing topological and relational patterns within these networks [22–26].

Similarity‑based methods for PPI prediction

Similarity-based methods constitute a class of computational techniques that leverage vari-
ous similarity indices, initially pioneered in social network analysis, to infer missing con-
nections. These methods primarily rely on existing distinct paths of length 2 between two 
nodes to predict the missing direct link between them. Within the realm of protein–protein 
interaction (PPI) prediction, researchers have adapted and tested several similarity indices 
to assess the likelihood of interactions between proteins. Notable examples include com-
mon neighbors [27], Adamic Adar [28], and preferential attachment [29]. These indices are 
designed to compute a likelihood measure for each pair of unconnected proteins, capturing 
their topological or structural similarities within the PPI network. Subsequently, these com-
puted measures are sorted in descending order to prioritize the most promising candidate 
interactions. A comprehensive exploration of these similarity indices is provided in [17]. In 
this section, we specifically focus on the similarity indices employed in our research, draw-
ing from established methods widely documented in the literature.

Common Neighbors (CN)

CN is one of the most prevalent similarity calculation indices in link prediction domains 
due to its simplicity and effectiveness in certain areas such as scientific collaboration graphs 
[29] and social networks [30]. The idea behind CN is that the probability of two nodes being 
connected in the future is influenced by the number of their common neighbors, mean-
ing two nodes are highly likely to form a link if they share more neighbors. This measure is 
defined as follows (1):

where N(X) is the set of nodes adjacent to node X, and N(Y) is the set of nodes adjacent 
to node Y.

Jaccard coefficient (CJ)

Unlike the unnormalized CN index, CJ not only considers the number of common neigh-
bors but also normalizes it by considering the total set of shared and unshared neighbors 
[31]. The formulation of this measure is as follows (2):

where TN(X, Y) is the total number of neighbors of X and Y, defined as follows (3):

(1)CN (X ,Y ) = |N (X) ∩ N (Y )|

(2)CJ (X ,Y ) =
CN (X ,Y )

TN (X ,Y )
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Adamic adar (AA)

The AA index, proposed by [28], gives more weight to relatively fewer common neigh-
bors. In the AA formula, the shared neighbors of two nodes are penalized by the loga-
rithm of their degrees as follows (4):

Preferential attachment (PA)

It has been shown by [29] that new nodes joining the network are highly likely to be con-
nected to an existing node with higher degrees rather than to a node with lower degrees. 
Thus, the PA index was proposed (5):

Resource allocation (RA)

An RA index, very similar to AA, was proposed by [15]. Some studies show that the per-
formances of RA and AA are very close when the average degree of the network is low. 
However, PA outperforms RA when the average degree of the network is high [32, 33]. 
The RA measure is defined as follows (6):

Length‑3 paths (L3)

The L3 similarity measure was introduced by [34] to predict missing links in PPI net-
works. In this study, the authors demonstrate that, unlike its performance in social net-
works, the Jaccard coefficient fails in the case of detecting new PPIs. Proteins interact 
not because they are similar to each other, but if one of them is similar to the neighbor-
ing proteins of the other. The formula for the L3 measure is as follows (7):

where aXU = 1 if proteins X and U interact, and zero otherwise.
For example, the two proteins 4932.YDL015C and 4932.YHL009C are not connected 

by a path of length 2 in STRING version 11.5. Consequently, the value of the CN meas-
ure is 0, and the proteins are considered non-relevant candidate protein pairs. How-
ever, in the same version, they are linked by 1259 paths of length 3. Figure 3 illustrates 
some of the paths of length 3 connecting these proteins. Upon examining version 12.0 

(3)TN (X ,Y ) = |N (X) ∪ N (Y )|

(4)AA(X ,Y ) =
∑

u∈N (X) ∩ N (Y )

1

log |N (u)|

(5)PA(X ,Y ) = |N (X)| ∗ |N (Y )|

(6)RA(X ,Y ) =
∑

u∈N (X) ∩ N (Y )

1

|N (u)|

(7)P(X ,Y ) =
∑

U ,V

aXU ∗ aUV ∗ aVY√
|N (U)||N (V )|
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of STRING, a new direct link between these proteins has been added with the highest 
confidence level, indicated by a combined score of 856.

L3 has been tested on several databases such as HI-II-14 [35] and the PPIs of the Sac-
charomyces cerevisiae organism in STRING [36]. Since a similarity-based method pro-
vides a measure for a pair of proteins not connected by a direct link, this value was 
directly used for predictions [34], typically by considering the top k computed meas-
ures. Note that in this case, there is no construction of a model using a training set and 
PPI collected from STRING are used without considering their confidence scores. The 
performance evaluation of the L3 method showed promising results and better perfor-
mance compared to topological measures based on paths of length 2. The performance 
of L3 has been evaluated up to paths of length 8, and the best results were detected for 
length 3.

Table 2 summarizes the various similarity measures we used in our work. Each meas-
ure is defined by its formula, the path length used, and whether or not it takes into 
account the weights of the interactions.

Some research works have also proposed approaches to predict missing links by com-
bining multiple topology-based measures. These approaches utilize the values of topo-
logical measures calculated based on the information regarding the existence or absence 
of a path of length 2. These values are subsequently fed into a supervised learning algo-
rithm to predict the existence of a potential missing link [37, 38].

Fig. 3 Paths of length 3 between the proteins 4932.YDL015C and 4932.YHL009C in STRING v12.0

Table 2 Similarity measures for link prediction

Similarity measure Formula Path length Weighted?

Common neighbors (CN) CN(X , Y) = |N(X) ∩ N(Y)| 2 No

Jaccard coefficient (CJ) CJ(X , Y) = CN(X ,Y)
TN(X ,Y)

2 No

Adamic adar (AA) AA(X , Y) =
∑

u∈N(X)∩N(Y)
1

log |N(u)| 2 No

Preferential attachment (PA) PA(X , Y) = |N(X)| ∗ |N(Y)| 2 No

Resource allocation (RA) RA(X , Y) =
∑

u∈N(X)∩N(Y)
1

|N(u)| 2 No

Length-3 paths (L3) P(X , Y) =
∑

U,V
aXU∗aUV ∗aVY√
|N(U)||N(V)|

3 No
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Machine learning models

Several researchers have proposed various machine learning models for PPI predic-
tion [39–41]. The models can be divided into three categories based on the type of 
features used: sequence-based, 3D structure-based, and hybrid methods [18].

Sequence-based methods analyze the amino acid sequences of the proteins to 
predict interactions. These methods utilize various computational and statistical 
techniques to infer interactions based on sequence information content. However, 
effectively extracting and combining these features remains a challenge. Various 
sequence-based models have been proposed using machine learning techniques, such 
as support vector machines (SVM) and random forest-based methods [42–44]. While 
these methods have demonstrated effectiveness, they require comprehensive and 
high-quality sequence data, which may not always be available, leading to incomplete 
or biased predictions.

3D structure-based prediction models rely on the three-dimensional structures of 
proteins to predict interactions. These models consider the precise conformational 
and sequence characteristics that distinguish various structures within a family. The 
use of docking simulation and modeling physical interactions provides more detailed 
and specific interaction information. Several machine learning models based on 3D 
structure have been proposed, such as the RF classifier proposed in [45], which inte-
grates several structural features to distinguish correct from incorrect PPI models. 
Additionally, [46] proposed a graph convolutional network (GCN) and graph atten-
tion network (GAT) to predict interactions between proteins using structural infor-
mation and sequence features. Although 3D structure-based methods offer more 
detailed insights into protein interactions, they are hindered by the limited number of 
known protein structures and the requirement of high computational resources [47].

Hybrid methods combine sequence-based and structure-based features with other 
functions to provide more comprehensive and accurate predictions [48]. However, 
they face challenges in effectively integrating disparate data types and addressing data 
quality and completeness issues.

While the existing proposed models have shown promising results, several limi-
tations need to be considered. One of the main challenges with these approaches 
is feature extraction and the combination of these features, which requires detailed 
information about the proteins involved. This kind of information is often incomplete 
or unavailable, leading to inaccurate predictions. Moreover, most existing machine 
learning models for PPI prediction focus on the analysis of each pair of protein 
sequences without considering the accuracy of existing interactions.

In this work, we present an original and innovative approach designed to enhance 
current PPI datasets by identifying accurate PPIs. Although our methodology is 
grounded in the graph structure of PPI networks, its uniqueness lies in the incorpo-
ration of interaction weights into a PPI-weighted graph (PPI-WG) when predicting 
missing links. This approach not only predicts missing interactions but also evaluates 
their reliability. Our contributions are multifaceted: (i) proposing a novel represen-
tation of PPI networks that integrates interaction weights; (ii) combining topologi-
cal measures with aggregation-based representations; and (iii) developing a machine 
learning model capable of making precise predictions.
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Method
To achieve our objectives, we first proposed a novel representation of PPI networks 
that represents the interactions between two nodes by aggregating all the combined 
scores from STRING in paths of length 3 between these nodes. The combined scores 
from STRING provide a probabilistic measure of the interaction’s reliability, which 
is crucial for our predictive model. Using the combined scores from STRING, our 
model leverages the confidence scores derived from all the individual channels, 
including experiments, database curation, text mining, coexpression, neighborhood, 
fusion, and cooccurrence. We then developed a new model incorporating different 
aggregation-based representations and topological measures to make accurate pre-
dictions. This multi-stage process is illustrated in Fig. 4.

Aggregation‑based representations for weighted PPI networks (WPPNs)

The majority of similarity measures proposed in the literature are defined for 
unweighted graphs and typically for paths of length 2. To meet the emerging needs of 
making predictions from a weighted PPI and considering paths of length 3, we pro-
pose a new representation based on aggregation. Our approach leverages aggregation 
functions, namely MIN, AVG, and MAX, to synthesize the values carried by inter-
mediate paths of length 3 between each pair of proteins. This process involves two 
key steps and the selection of one of the 3 aggregation functions at each step. Firstly, 
the aggregation of values for each intermediate path entails summarizing all values 
into a single score. For instance, the MIN function can be used to extract the mini-
mum value on each intermediate path of length 3, resulting in a list comprising the 
minimum scores carried by all intermediate paths. Secondly, the values obtained from 
the first aggregation are further summarized. For example, the AVG function can be 
used to compute the average of all minimum values obtained, yielding a single score 
denoted as α . The formulation of the AVGMIN measure is as follows:

Fig. 4 Stages of the proposed approach for predicting new protein–protein interactions
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Our aggregation-based representation approach thus allows us to define nine possible 
combinations (representations) that can be provided to a learning algorithm to predict 
missing interactions and their values.

Graph‑based machine learning model incorporating different representations

We propose employing the various representations obtained through aggregations, 
along with different topological similarity measures, as input to a learning algorithm. 
Our method is a five-stage process that enables the learning algorithm to integrate infor-
mation from the diverse descriptors, as follows:

Stage 1: feature extraction: training dataset

In the first stage, we used a subset of data selected from the STRING version 11.0 data-
base. Protein pairs selected for analysis were those connected by paths of length 3 and 
possessing direct interactions simultaneously. For these protein pairs, we computed six 
topological measures: CN, AA, PA, RA, TN, L3. Additionally, nine aggregation-based 
representations of interaction weights were calculated for these pairs: MIN-MIN, MIN-
AVG, MIN-MAX, AVG-MIN, AVG-AVG, AVG-MAX, MAX-MIN, MAX-AVG, and 
MAX-MAX. For each selected protein pair, these fifteen features, along with the known 
combined-scores, were fused into a single vector to represent the topological structure 
and weight of the interaction. The vectors of all selected pairs were then used as a train-
ing dataset.

Stage 2: model construction

Using the training dataset, a graph-based regression tree model was constructed to 
capture the intricate relationships between the extracted features and the known com-
bined-scores of protein–protein interactions (PPIs). This choice of a regression tree was 
motivated by its ability to handle non-linear relationships, making it particularly well-
suited for modeling the complex patterns inherent in biological networks. The regression 
tree model is designed to split the dataset recursively based on feature values, creating 
a series of decision nodes that lead to predictions of interaction scores. The aim of this 
study is not merely to identify the best algorithm but to demonstrate the value of com-
bining topological information with aggregation-based representations in enhancing the 
accuracy of PPI predictions. By leveraging this mixed approach, the model is capable of 
discerning subtle patterns and relationships within the data that may be overlooked by 
traditional methods. This comprehensive representation of interaction features enhances 
the model’s predictive power and provides deeper insights into the underlying biologi-
cal processes. Furthermore, the model was rigorously validated through cross-validation 
techniques to ensure its robustness and generalizability. This validation process helps to 
mitigate overfitting and confirms that the model’s predictions are reliable when applied 
to new, unseen data.

(8)
AVGMIN (X ,Y ) = AVG∀path p of length 3 between X and Y (MIN∀arc a of path p(score(a)))
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Stage 3: feature extraction: test dataset

After constructing the model using the training dataset, we employed another subset 
of the STRING 11.0 database to create a test dataset. For this purpose, we specifically 
selected pairs of proteins that were connected by paths of length 3 but did not have 
direct interactions. This selection criterion ensured that the pairs were not yet veri-
fied in STRING 11.0, making them potential candidates for novel PPIs. This hypoth-
esis was to be tested using our model, which is capable of predicting missing PPIs and 
assessing their accuracies. Topological and aggregation-based representations were 
combined into a feature vector for each protein pair, forming the input for the trained 
regression tree model.

Stage 4: prediction computation

In this stage, we applied the trained graph-based regression tree model to the test 
dataset to predict the combined-scores for protein pairs that lacked direct interac-
tions. The test dataset, prepared in the previous stage, consisted of protein pairs 
connected by paths of length 3, with calculated topological and aggregation-based 
features. Each feature vector in the test dataset was processed by the regression tree 
model to output a predicted combined-score, which ranges from 0 to 1000 and repre-
sents the likelihood and strength of a potential interaction between the protein pairs.

Stage 5: performance assessment

Since our predictions were made using STRING 11.0, where the selected protein pairs 
were not connected, we used the subsequent version, STRING 11.5, to verify whether 
our predicted interactions were added in this version and to assess how close our pre-
dicted scores were to the current scores in the database. This validation is challeng-
ing due to the dynamic nature of PPI networks, as some of our potential candidates 
may be highly relevant but not yet included in the database. To analyze the impact of 
this dynamic aspect in more depth, we also utilized the latest version, STRING 12.0, 
to determine the rate at which PPI predictions that were not included in STRING 
11.5 were subsequently added in STRING 12.0. This comprehensive analysis allows 
us to understand better the temporal evolution of PPI networks and the potential lag 
in database updates for significant protein interactions. We compared the predicted 
scores with actual combined-scores from STRING V11.5 versions. Performance met-
rics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean 
Relative Absolute Error (MRAE), and the Top500 predictions were used to assess the 
model’s accuracy and robustness.

Experiments and results
To conduct our experiments, we used a computer equipped with 32 GB of RAM and 
8 TB of disk storage, running Ubuntu 18.04.01 LTS. We utilized Neo4j (version 4.4.2) 
to import and store the STRING PPIs for Saccharomyces cerevisiae. To compare our 
predictions based on a subset of STRING 11.0 with the interactions in STRING 11.5, 
we created separate databases for each version. The predictions we made were added 
as new weighted links in STRING 11.5 and then compared to the actual interactions 
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in that version. All queries were written and executed in Neo4j using the Cypher 
query language. To create the training and test datasets, we used cypher to compute 
topological and aggregation-based representations. Using a graph database facilitated 
the identification of all paths of length 3 between selected protein pairs in both the 
training and test datasets. Table 3 summarizes the size of the training and test sets, 
detailing the number of paths of length 3 between proteins connected directly (train-
ing) and those not connected directly (test). It also provides the number of subscores 
from the individual channels. As shown in Table 3, most data in the training and test 
sets come from the coexpression, experimental, and text mining channels.

To compare the information provided by aggregation-based representations and 
regression model tree learning with various traditional topological measures, we used a 
metric that calculates the precision of the top 500 predictions (top500) [49]. In [34], pre-
cision is evaluated as the ratio of the number of links Lp in the Top500 to the number of 
links added in STRING 11.5. Therefore, if Lp interactions among the top500 were added 
in version STRING 11.5, precision is calculated as the proportion of these Lp predictions 
among 500.

In addition, to evaluate the ability of our model to predict accurate PPIs, we used three 
other metrics: Mean Absolute Error (MAE), Mean Relative Absolute Error (MRAE), and 
Root Mean Square Error (RMSE). The MAE and RMSE metrics calculate the average 
deviation between the predicted score and its actual value. The MRAE metric measures 
the average ratio of the absolute error between the expected score and the predicted 
score to the value of the expected score. MRAE is generally expressed as a percentage. 
For these last three metrics, we consider the regression tree model since other similarity 
measures do not compute a combined-score directly comparable to the score added in 
the STRING V11.5. Additionally, we conduct an ablation study to evaluate the contribu-
tion of our aggregation-based representations in predicting missing values. We compare 
the MAE, MRAE, and RMSE values of model trees constructed with all measures (ALL 
Features), with all measures except L3 (Without L3), with all measures except our aggre-
gation representations (Without Aggregations), and with all measures except L3 and our 
aggregation representations (Without Aggregations and L3). The objective of this study 
is to determine whether the use of our aggregation representations improves the learn-
ing performance. Let A be the actual value of the missing score in the PPI graph and E be 
the predicted score using the data extracted from the graph.

Table 3 Training and test dataset sizes across different channels

Channel Training dataset Test dataset

Combined 919,914 234,172

Coexpression 552,315 118,733

Cooccurrence 3539 29

Database 43,856 78,317

Experimental 394,274 162,880

Fusion 3916 545

Neighborhood 119,195 11,489

Text mining 693,904 177,847
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The formulas for the different metrics are as follows:

One of the significant challenges in evaluating our model is the variability in scores 
across different versions of the STRING database. Scores between versions, such as 
STRING 11.0 and 11.5, can change due to the addition of new interactions or modifica-
tions in the computation of certain subscores, such as those derived from text mining. 
Consequently, even the raw data exhibits discrepancies between versions. These changes 
introduce inherent errors, making it difficult to make highly accurate predictions of 
combined-scores for novel predicted PPIs. This issue is illustrated in the heatmap shown 
in Fig. 5, highlighting the differences in scores between STRING 11.0 and 11.5.

(9)Precision =
Lp

500

(10)MAE(A,E) =
1

n

n
∑

i=1

|Ai − Ei|

(11)MRAE(A,E) =
n

∑

i=1

|Ai − Ei|
Ei

(12)RMSE(A,E) =

√

∑n
i=1 (Ai − Ei)2

n

Fig. 5 Heatmap of the correlation between the combined score of String v11.0 and String v11.5
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Regarding the Top500 precision, our results, illustrated in Fig. 6, show that our regres-
sion model tree outperforms all traditional similarity measures. Additionally, the L3 
measure performs better than topological measures based on paths of length 2. Using 
these two representations, in addition to topological measures, could contribute to pre-
dicting missing PPI links with minimal error.

In order to evaluate the contribution of our aggregation-based representations in 
predicting accurate missing PPIs, we conducted an ablation study. The contribution 
of the nine aggregation functions was examined, with AVG-MIN identified as the 
most impactful. However, since all functions contribute to the overall performance, 
the evaluation of the complete set of aggregation-based measures was conducted to 
ensure a comprehensive analysis. Figure  7 shows that removing L3 increases MAE 
by 15.3% and RMSE by 25.2%. However, removing the aggregation representa-
tions increases MAE by 32.9% and RMSE by 52.1%. Moreover, removing L3 and the 
various aggregation representations increases MAE by 64.2% and RMSE by 85.4%. 
Additionally, the results of the MRAE metric presented in Fig. 7 show that the differ-
ence between the predicted value and the actual value increases significantly when 

Fig. 6 Precision of the Top500 Predictions across different representations

Fig. 7 Ablation study: contribution of aggregation-based representations in making accurate predictions
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removing our aggregation representations. Thus, although the contribution of the 
aggregation representations to learning is more significant than that of L3, using L3 
improves the performance of our model.

The contribution of using our aggregation-based measures in learning was also con-
firmed for individual channels. The results of our experiments illustrated in Table 4 
show that using all measures (ALL Features) yields the closest score to the value 
added in version 11.5 of STRING.

Similar results were found across all individual channels. This is illustrated in 
Table 4, which shows the errors we found when predicting missing links based only 
on individual channels. It is important to note that the value of errors for a channel 
also depends on the distribution of individual scores. For example, the coexpression 
scores are usually low in STRING, so the predicted values are also low, which led to 
low errors.

As an example of a newly predicted PPI, the two proteins 4932.YDL015C (TSC13) 
and 4932.YHL009C (YAP3) were not directly connected in STRING versions 11.0 and 
11.5. Despite this, our regression tree model identified them as relevant candidate 
proteins. Although this pair was not included in STRING version 11.5, an interac-
tion between them has been added in the latest version, STRING 12.0, as illustrated 
in Fig.  8 extracted from STRING. This example demonstrates the efficacy of our 

Table 4 MRAE of predicted scores accros STRING channels

Channel Without aggregations 
and L3

Without 
aggregations

Without L3 ALL features

Combined-score 117.01 98.00 65.19 52.88

Coexpression 88.30 61.98 44.29 33.12

Cooccurence 89.14 69.30 57.11 48.10

Database 132.76 119.21 89.51 77.31

Experimental 114.56 89.14 63.99 54.16

Fusion 44.91 34.99 24.83 12.55

Neighborhood 79.10 54.6 33.29 23.44

Text mining 137.10 111.21 99.29 86.49

Fig. 8 Example of a predicted PPI using our regression tree model, added in STRING v12.0
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predictive model: it correctly identified a potential interaction that was subsequently 
validated in a later version of STRING. It also underscores the dynamic nature of PPI 
networks, where new interactions can be discovered and incorporated over time. 
Therefore, predictions made using earlier versions of STRING, such as 11.0, may not 
appear immediately in subsequent versions like 11.5, but can emerge in later updates, 
reflecting the continuous advancements in our understanding of PPIs.

Discussion
The experiments conducted in this work confirm the hypothesis that using paths of 
length 3 for predicting missing links in PPI networks is more effective than using paths 
of length 2. In terms of Top500 precision, the use of the L3 measure allows for the pre-
diction of missing PPIs with greater accuracy compared to all traditional topological 
measures based on paths of length 2. Furthermore, incorporating paths of length 3 and 
their confidence scores into our aggregation-based learning approach achieves a preci-
sion that surpasses even the L3 measure alone. This demonstrates that leveraging the 
confidence scores carried by paths of length 3 significantly enhances prediction preci-
sion. Regarding the error between the predicted scores and the actual scores added in 
subsequent versions, our results indicate that our graph-based machine learning model 
can predict scores for missing interactions with values relatively close to those added 
in version V11.5. Given the dynamic nature of the STRING database, where scores can 
change between versions due to new data or revised computations, our approach may be 
affected by false positives in version V11.0 that are corrected in version V11.5. Despite 
this, we have demonstrated the robustness of our model. Additionally, the results 
from our ablation study reveal that all representations used in the model are informa-
tive. However, the presence of the L3 measure and our aggregation-based representa-
tions significantly contribute to minimizing prediction error. The study underscores the 
importance of using these advanced representations to capture the complex relation-
ships within PPI networks accurately.

Conclusion
In this work, we have developed a novel graph-based machine learning model that lev-
erages paths of length 3 and aggregation-based representations to predict missing pro-
tein–protein interactions (PPIs) with high precision. Our results demonstrate that using 
paths of length 3, particularly the L3 measure, significantly enhances prediction accu-
racy compared to traditional topological measures based on paths of length 2. Further-
more, incorporating confidence scores from these paths into our model has shown to 
improve precision even further. Our model’s ability to predict scores for missing inter-
actions with values closely matching those added in subsequent STRING database ver-
sions underscores its robustness and reliability. Despite the inherent challenges posed 
by the dynamic nature of the STRING database, such as changes in scores between ver-
sions, our approach has proven to be effective and resilient. The findings from our abla-
tion study highlight the importance of both topological measures and aggregation-based 
representations in capturing the complex relationships within PPI networks. The signifi-
cant contribution of the L3 measure and aggregation representations to minimizing pre-
diction error further validates our approach. While our study presents promising results, 
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several avenues for future research can be explored to further enhance and validate our 
model:

– Apply the model to PPI datasets from other organisms to assess its generalizability 
and robustness across different biological contexts.

– Incorporate other types of biological data, such as gene expression profiles, protein 
3D structures and functional annotations, to enrich the feature set and potentially 
improve prediction accuracy.

– Develop a hybrid approach that leverages the graph structure of PPIs and their asso-
ciated confidence scores, while also incorporating additional data about the proteins 
themselves, such as sequence information, post-translational modifications, and 
interaction domains. This combined approach could more effectively identify rele-
vant missing PPIs by utilizing both network-based and protein-specific information.

– The performance of our method could still be further improved. For instance, 
employing a distributed computing framework, similar to the one presented in [50], 
could significantly enhance the scalability and efficiency of our approach when deal-
ing with larger datasets.

In conclusion, our graph-based machine learning model represents a significant step 
forward in predicting accurate PPIs. By integrating diverse data sources and leveraging 
advanced representations, our approach offers a powerful tool for expanding and refin-
ing PPI datasets, ultimately contributing to a deeper understanding of the intricate web 
of protein interactions.
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