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Introduction
Identifying the gene or amino acid sequence of monoclonal antibodies with specific 
binding capabilities to disease-related antigen epitopes is a prerequisite for de novo anti-
body design and affinity optimization processes [1, 2]. From the perspective of protein 
function, individual antibody sequence data only provide a partial view of immunity. The 
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ability of an antibody to specifically bind to an antigen is directly related to the con-
formation of the antibody’s paratope, which is formed by the folding of complementary 
determining region (CDR) amino acid residues that are not adjacent in sequence but 
are spatially adjacent [3]. The exploration of the interaction relationship between mono-
clonal antibody sequences and antigens mainly relies on conventional experiments such 
as phage display, pseudovirus assays, and enzyme-linked immunosorbent assays [4, 5]. 
Although these antibody-antigen (Ab-Ag) interaction experimental techniques have 
been widely used in the field of antibody discovery and optimization, conducting related 
experiments is time-consuming and laborious. With the development of artificial intelli-
gence and structural biology, computational methods have received increasing attention 
[6, 7].

Antibody-antigen interactions are a very atypical case of protein-protein interactions 
because Ab and Ag do not share a similar co-evolutionary history [8, 9] like regular PPI 
partners. As the functionality of proteins is intricately linked to their three-dimensional 
conformations [10], deep learning methods leveraging known structures have made sub-
stantial strides in predicting Ab-Ag interaction interfaces and affinities. PECAN [11] 
employed Graph Neural Network (GCN) [12] to effectively predict epitope and paratope 
interfaces in the presence of high bias in positive and negative samples. CSM-AB [13] 
achieved affinity prediction for mutant antibodies based on amino acid contact maps. 
DLAB [14] accomplished binding prediction of Ab and Ag through a highly accurate 
3D grid representation of known structures and Convolutional Neural Network (CNN). 
However, DLAB primarily focuses on scoring docking poses of known or predicted par-
atope-epitope structures, which limits its applicability to cases where the antibody struc-
ture is unknown. In the context of binding prediction tasks, the input of the antibody 
side is a large-scale antibody amino acid sequence [15], and it is impractical to obtain 
accurate crystal structures.

Due to the information gap between protein sequences and their functions, sequence-
based methods for predicting Ab-Ag interactions often rely on extensive datasets of 
monospecific antibody sequences [16]. Mason [17] leveraged approximately ten thou-
sand mutants of Trastuzumab binding data with the antigen human epidermal growth 
factor receptor 2 (HER2) and then proposed one-dimensional Convolutional Neural 
Network (1DCNN) to guide antibody evolution experiments. Furthermore, employ-
ing the sequences of 5879 anti-CTLA-4 antibodies and 6218 anti-PD-1 antibodies, 
[18] constructed separate antibody binding prediction models for each antigen. How-
ever, sequence-based methods rely heavily on extensive antibody sequencing data, and 
the lack of antigen information as input prohibits their adaptation on tasks of antigen-
specific interaction prediction. Recently, AbAgIntPre [19] employed the composition of 
k-spaced amino acid pairs (CKSAAP) encoding, which is widely used in PPIs [20, 21], 
to establish feature matrix representations for the sequence of antibody/antigen amino 
acid. Building on a two-dimensional Convolutional Neural Network (2DCNN), they 
conducted Ab-Ag interaction prediction tasks, including antigenic diversity interactions 
and severe acute respiratory syndrome coronavirus (SARS-CoV) specific interactions, 
and achieved state-of-the-art performance in sequence-based approaches.

Despite the significant progress in the field of Ab-Ag interaction prediction, there are 
still challenges to address: (i) Structure-based methods heavily rely on high-precision 
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antibody and antigen structures, limiting their applicability; (ii) Sequence-based meth-
ods fail to effectively excavate implicit structural information within antibody sequences, 
resulting in limited predictive performance. Consequently, bridging the information 
gap between antibody sequences and binding specific antibody conformations poses a 
challenge in predicting Ab-Ag interactions when antibody structures remain unknown. 
Recently, in the broader domain of protein-protein interaction, SGPPI [22] utilized 
AlphaFold2 [23] to predict protein structures based on their sequences. Subsequently, 
geometric and structural features were extracted to establish a graph convolutional neu-
ral network-based PPI prediction model. The experimental results indicated that incor-
porating implicit structural information from protein sequences significantly improved 
the effectiveness of PPI prediction.

The protein structure data predicted by AlphaFold2 for naturally occurring proteins 
have been released and widely utilized [24]. However, due to the time-consuming nature 
of Multiple Sequence Alignment [25], AlphaFold2 is not suitable for large-scale predic-
tion of non-natural antibody sequence structures [26, 27]. Encouragingly, there have 
been notable advancements in structure prediction for antibody. ABlooper [28] pre-
dicted CDR loop structures and provided confidence estimates, while it struggled to 
integrate CDR loop templates. DeepAb [29] utilized the residual dilated convolutional 
neural network and a criss-cross attention module [30] to predict geometric constraints 
among residues, which were fed into trRosetta [31] to obtain the complete prediction of 
the antibody variable fragments (Fv) structure while suffering from a time-consuming 
optimization process. To address this problem, IgFold [32] achieved a fast and direct 
prediction of antibody skeletal atomic coordinates based on the pre-trained antibody 
language model AntiBERTy [33].

The increasing array of protein structure prediction methods is being employed to 
address interaction-related challenges in the absence of known protein structures. Simi-
lar to SGPPI [22], methods utilizing GNN and binary residue contact maps derived 
from predicted protein structures have been applied to multiple tasks, including the 
prediction of protein function [34], protein interaction sites [35], and protein binding 
[36]. Although these studies have inspired efforts to bridge the gap between antibody 
sequences and structures, enhancing the potential for Ab-Ag binding predictions, they 
still struggle to effectively represent potential structural features and fail to capture geo-
metric features such as relative positions and angles between residues due to limited 
available structural data for antibody-antigen interactions, particularly in the regions 
of antibody determinants characterized by flexible loop structures [10]. Therefore, it is 
desirable to explore novel approaches for representing potential structural features to 
improve the prediction of antibody-antigen interaction.

Inspired by recent strides in protein structure prediction, we propose a novel anti-
body-antigen interaction prediction neural network framework. We utilize IgFold [32] 
to obtain predicted antibody structures, using nonlinear epitope [37] candidate struc-
tures as inputs on the antigen side, but we discard the traditional approach of employ-
ing residue contact maps and GCN for structure feature extraction. Instead, for the 
first time in the field of Ab-Ag interaction prediction, we employ backbone framework 
description, which integrates rotation matrices and translation vectors to represent the 
positions of residue-heavy atoms relative to the origin, to establish antibody/antigen 
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structure description. And for the first time in the field of Ab-Ag interaction prediction, 
we use the Invariant Point Attention (IPA) [23, 38] mechanism for feature aggregation 
and updating of residue nodes on the backbone frame. We conduct experiments using 
different neural network architectures on an antigen-diverse interaction dataset and an 
antigen-specific interaction dataset. Our findings demonstrate the effectiveness of our 
approach in capturing the latent structural features of antibodies and antigens, overcom-
ing the limitations of mainstream methods based on GCNs in describing the relative 
positional relation-ships between residues (beyond distance considerations). Quanti-
tative experimental results indicate that our method excels in predicting interactions 
involving antigenic diversity interactions, as well as SARS-CoV specific interactions.

Materials and methods
We have proposed a novel deep learning framework, prediction of Antibody and Anti-
gen interaction based on backbone aware with Invariant Point Attention (AbAgIPA), 
aimed at learning the potential structural features of antigen candidate epitopes and 
antibodies for predicting their interaction relationships.

The architecture is inspired by the conformational binding characteristics of antibod-
ies and antigens. As shown in Fig. 1A, the regions determining whether an interaction 
occurs between the antigen and antibody are the antibody paratope and the antigen 
epitope. In this framework, we harness antibody structure predictions to bridge the gap 

Fig. 1  Schematic overview of AbAgIPA. (A) Problem motivation. Antibody-antigen binding is directly 
determined by paratope conformation and candidate epitope conformation. (B) Representation construction. 
Inputs are antibody sequences and candidate epitope structures, establish backbone framework for the 
antibody structure obtained by IgFold and the known antigen structure, use amino acid physicochemical 
properties as residue node features. (C) Based on the residue node feature and backbone frame, Input the 
amino acid node features and backbone frame of antibody and antigen, and utilize invariant point attention 
layer and global max pooling to get the interaction pattern feature vector of antibody and antigen, in which 
CDR region mask is used in extracting the antibody interaction pattern feature vector. Further, the interaction 
labels were obtained using feature splicing and fully connected layer
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between antibody sequences and potential structural features relevant to interactions. 
As shown in Fig. 1B, we establish a representation method incorporating a backbone 
framework describing the relative positions of residues and physicochemical features of 
amino acid nodes. Subsequently, utilizing modified invariant point attention within the 
framework, as shown in Fig. 1C, amino acid node features are propagated and updated, 
resulting in a feature representation of interaction patterns integrated with potential 
structures, enabling interaction prediction.

Problem statement: Given an antigen structure and an antibody sequence, to assign a 
label, either interact (positive class) or non-interact (negative class).

Representation construction

The interaction between antibody and antigen is primarily deter-mined by spatial com-
plementarity and matching physicochemical properties. Thus, we have established the 
geometric representation of the backbone and the physicochemical representation of the 
residue node.

Geometric representation of backbone
Our framework does not rely on residue contact maps for geometric representation. 

Instead, similar to protein prediction method AlphaFold2, we utilize a rotation matrix 
and translation vector for the backbone geometry features of amino acids with heavy 
atoms relative to the origin. Specifically, with the coordinates of heavy atoms(alpha car-
bon, beta carbon, nitrogen, and oxygen atoms), we obtain the rotation matrix Ri ∈ R

3×3 
and translation vector ti ∈ R

3×1 for each residue relative to the ideal residue positions at 
the origin, the above computation is shown in the pseudo-code of the algorithm in the 
Supplementary Fig 1 and 2. Then, a framework representation for the i-th amino acid on 
the backbone is derived. Subsequently, this Ti :=

(
Ri, ti

)
 leads to the backbone represen-

tation Tb = {Tb
i }li=1 of the antibody predicted structure and the backbone representa-

tion Tg = {Tg
i }Li=1 of the antigen candidate epitope structure. Here, i represents the i-th 

amino acid node, and p represents the heavy atom type; the superscript b denotes the 
notation for the antibody, and the superscript g denotes the notation for the antigen. 
l represents the number of antibody residues, and L represents the number of antigen 
residues.

Physicochemical representation of residue node
We established representation vectors for the residue node, denoted as xi ∈ R

10 , based 
on the types of amino acid side chains and the physicochemical properties of amino acids. 
This hybrid vector encompasses both real-value vectors and one-hot vectors. The ranges 
and indices for various features are pre-sented in (Supplementary Table 1 and 2). (i) A vec-
tor of length four consisting of isoelectric point (pI), hydrophobicity (hydro), molecular 
weight (mw), and van der Waals radius (vdw). (ii) A one-hot vector of length six indicating 
amino acid side chain type, including aliphatic side chain, aromatic side chain, neutral side 
chain, positively charged side chain, negatively charged side chain, and specialized amino 
acid side chain. Based on the aforementioned amino acid node feature encoding method, 
we obtain the feature matrices Xg = {xgi }Li=1 for antigen candidate epitope amino acid 
nodes and Xb = {xbi }li=1 for antibody amino acid nodes. Here, i represents the i-th amino 
acid node, the superscript b denotes the notation for the antibody, and the superscript g 
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denotes the notation for the antigen. l represents the number of antibody residues, and L 
represents the number of antigen residues.

Neural network

We construct a neural network consisting of an invariant point attention layer, a max-
pooling layer, and a fully connected layer to characterize antibodies and antigens sepa-
rately. This enables the extraction of interaction pattern feature vectors for classification 
prediction.

Invariant point attention
Invariant Point Attention (IPA) is an attentional mechanism that can introduce back-

bone information based on backbone representation Ti into the feature update process 
for residue nodes and edges, was first used for protein structure prediction tasks. IPA 
has been proved to be invariant under the global euclidean transformations of the above 
framework [38]. In order to efficiently incorporate the key structural information related 
to interactions under small samples, we modified invariant point attention layer to intro-
duce backbone geometric representation for Ab-Ag interface pattern feature extraction. 
The implementation architecture of modified Invariant Point Attention module is shown 
in (Supplementary Fig 3 and 4).

Firstly, perform an unbiased linear transformation on the input residue node feature 
matrix as follows:

where Wh,d ∈ R
3d×d is the learnable parameters for the node feature vector xi to 

produce qhi , k
h
i , v

h
i ∈ R

d , which are query key and value features on the h-th head, 
Wh,p ∈ R

(3×3)×d is the learnable parameters that enable the implicit layer node vec-tor 
to produce qhpi , k

hp
i , v

hp
i ∈ R

3 which are query key and value features of p-th heavy atom 
of residue i on the h-th head, they implying localized incremental translation informa-
tion on the existing backbone.

We calculate attention scores between pairs of amino acid nodes i and j are based on 
residue features, backbone frame and point features. The calculation process is shown as 
follows:

in this formulation, qh
T

i khj /
√
d represents the attention score component derived from 

the inner product of node features for nodes i and j , normalized by the dimension d . The 

term γ
hwQ

2

∑
p

∥∥∥Ti ◦ qhpi − Tj ◦ khpj
∥∥∥
2

 quantifies the distance affinity, as outlined in [23], 

which computes the sum of squared Euclidean distances between transformed coordi-
nates of heavy atoms in the backbone structure. Here, Ti ◦ qhpi  and Tj ◦ khpj  denote the 
transformed features of the p-th heavy atom from residues i and j , incorporating relative 
positional information post-transformation. The operator ◦ symbolizes Euclidean 

(1)qhi , k
h
i , v

h
i = Wh,dxi

(2)q
hp
i , k

hp
i , v

hp
i = Wh.pxi

(3)ahij = softmaxj


wM


qh

T

i khj√
d

−
γ hwQ

2

�

p

���
���Ti ◦ qhpi − Tj ◦ khpj

���
���
2





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transformations applied to frames defined by Ti = (Ri, ti) , where Ti ◦ v = Riv + ti , and v 
in R3 represents the atomic coordinates. The parameter γ h is a tunable weight that 
adjusts the influence of different attention heads, enhancing the model’s flexibility in 
learning from diverse structural data.

Furthermore, wQ =
√
2/(9NP) is a scalar used to balance the contributions of the two 

components in calculating attention scores: the inner product based on node features 
and the distance affinity. Its value depends on the number of query heavy atoms, with 
Np = 4 . wM =

√
1/3 is a scalar maintaining consistency with [23]. Subsequently, edge 

features and node features are aggregated using affinity and backbone as per the follow-
ing equation:

where ohi  is the updated hidden layer residue node feature by attention scores, ohpi  is the 
updated residue heavy atom point feature by attention scores and Euclidean transform 
by backbone frame, Wo ∈ R

d×(2d+1) is the learnable parameters to obtain the updated 
node features h̃ι ∈ R

d by attention scores.
Based on the aforementioned invariant point attention calculation process, we obtain 

the antibody representation, we obtain the antibody representation Hb = {h̃bi }li=1 and 
the antigen representation Hg = {h̃gi }Li=1 separately. In addition, based on the above IPA 
module, we have constructed both the parameter-sharing AbAgIPA-Twins framework 
and the parameter-non-sharing AbAgIPA-Paddle framework to evaluate the perfor-
mance differences between neural networks with different structures.

Pooling and classification
We perform global max pooling on the antigen representation Hg and yields the anti-

gen interaction pattern feature hginter ∈ R
d as follows:

where i represents the index of the i-th residue, and j represents the j-th dimension on 
the feature.

Similarly, we utilize the CDR indices obtained from abnumber [39] to perform max 
pooling on the antigen representation Hb to obtain the antibody interaction pattern fea-
ture hginter ∈ R

d as follows:

where SCDR represents the indices of residues belonging to the CDR area.

(4)ohi =
∑

j

ahijv
h
j

(5)o
hp
i = T−1

i ◦
∑

j

ahij(Tj ◦ vhpj )

(6)h̃ι = Wo(concath,p(o
h
i , o

hp
i ,

∣∣∣
∣∣∣ohpi

∣∣∣
∣∣∣))

(7)h
g
inter ∈ max

i∈{0,...L}
max

j∈{0,..d}
H

g
ij

(8)hbinter = max
i∈SCDR

max
j∈{0,...d}

Hb
ij
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Then, the binding label between the antigen epitope and the antibody is finally 
obtained through the concatenation layer and the fully connected (FC) layer as 
follows:

where Wh ∈ R
2d×2d and W ′

h ∈ R
2d×2 are learnable parameters of FC layers, b and b′ are 

learnable bias of FC layers. yinter is the label of interaction.

Dataset and evaluation metrics

Antigenic diversity Ab-Ag interaction dataset
(The Supplementary Fig 5) demonstrates the process of constructing the 5-fold 

cross-validation dataset from the Structural Antibody Database (SAbDab) [40]. Fol-
lowing the methodology outlined in [19] and utilizing CD-hit [41], antigens with 
sequence identity above 90% were considered identical. Correspondingly, their associ-
ated antibody-antigen interaction pairs were grouped into the same subset, resulting 
in 3800 pairs for positive samples. For each antigen represented in a positive sample, 
antibodies sampled from different subsets were employed to form the corresponding 
negative sample data, totaling 3800 pairs for negative samples. A phylogenetic tree 
for this subset collection was constructed using ClustalW [42], then divided into six 
clusters. To prevent data leakage, we ensured that the subsets to which antigens in 
the test set belonged did not overlap with those in the training set and the number of 
subsets belonging to the same cluster in the training and test sets was kept at approxi-
mately 4:1. Additionally, detailed information regarding the number of antigens and 
antibodies included in each subset for both training and test datasets has been pro-
vided in the Supplementary Table 3).Furthermore, we have included a statistical sum-
mary of antibody and antigen sequence lengths. The sequence length statistics from 
the 5-fold cross-validation experiments, including the mean, median, maximum, and 
minimum values, are detailed in Supplementary Table 4 and 5. We have also provided 
corresponding distribution histograms in Supplementary Figure  6. The antibody 
sequence lengths range from 208 to 250, while antigen sequence lengths range from 
23 to 165. The distributions of antibody and antigen sequence lengths are fairly con-
sistent across the training and test sets within each fold.

SARS-Cov specific interaction Ab-Ag interaction dataset
We collected positive and negative samples related to the interaction between 

SARS-CoV-1 and SARS-CoV-2 from the coronavirus antibody database (CoV-
AbDab) [43]. Considering that there is a high degree of similarity between antibody 
sequences that bind the same antigen or similar antigens [44], we used CD-hit [41] 
for data redundancy reduction with a commonly used threshold parameter in anti-
body structure prediction [32], i.e., 98% antibody sequence identity. This resulted 
in a dataset comprising 7491 positive samples and 1672 negative samples, with 
5561 positive samples specific to SARS-CoV-2 and 1930 positive samples specific 

(9)hinter = concat(hbinter , h
g
inter)

(10)yinter = W ′
hReLU(Whhinter + b)+ b′
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to SARS-CoV-1. Additionally, there were 708 negative samples for SARS-CoV-2 and 
964 negative samples for SARS-CoV-1. To conduct experiments, we randomly and 
evenly partitioned the positive and negative samples from SARS-CoV-1 and SARS-
CoV-2 into five folds each.

Evaluation metrics
All neural networks appearing in this paper were trained under the same condi-

tions as (The Supplementary Table  6). We evaluate the predictive performance of 
the interaction model using the area under the receiver operating characteristic 
curve (AUROC) and the area under the precision-recall curve (AUPRC). AUROC 
and AUPRC are independent of the model’s probability threshold setting. AUROC 
reflects the overall relationship between sensitivity and specificity, while AUPRC 
reflects the overall relationship between precision and recall. We also compute the 
specificity metric, representing the proportion of true negative samples among those 
predicted as negative. The precision, recall, F1 score and specificity can be calcu-
lated as follows:

where TP, FP, TN and FN denote the number of true positive, true negative, false nega-
tive samples, respectively.

Results
We have implemented an antibody-antigen interaction prediction model for anti-
genic diversity in the presence of unknown antibody structures and a SARS-CoV 
specificity prediction model based on the proposed AbAgIPA framework as well as 
the dataset constructed in this paper.

To illustrate the advantages of the constructed framework in characterizing the 
latent structures of antibodies and antigens, we conducted a comparative analysis 
with the mainstream method based on residue contact maps and graphical neural 
networks, i.e., the SGPPI method, and the results show that our framework is more 
advantageous in characterizing the latent structures. In addition, we also compare 
the performance with the best available sequence-based antibody-antigen interac-
tion method, AbAgInterPre. Ultimately, we show that the AbAgIPA framework 
provides a new and more effective approach to the problem of predicting antibody-
antigen interactions with unknown antibody structures.

(11)Precision = TP

TP + FP

(12)Recall = Sensitivity = TP

TP + FN

(13)F1 score = 2×
Precision× Recall

Precision+ Recall

(14)Specificity = TN

TN + FP
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Antigenic diversity Ab‑Ag interaction prediction

We provides a comprehensive summary of the predictive performance of different 
neural networks on an interaction dataset characterized by diverse antigen epitopes 
as Fig.  2. The analysis encompasses neural networks constructed based on various 
structures of the IPA module. Additionally, we include a comparison with the current 
top-performing methods: AbAgInterPre, which utilizes amino acid CKSAPP encod-
ing and CNN, and SGPPI, a method for general protein interactions integrating pre-
dicted residue contact maps with graph convolutional networks (GCNs).

AbAgIPA-Paddle and AbAgIPA-Twins denote interaction pattern representations 
of antigenic epitopes and antibody backbones based on two parallel IPA modules 
and two parameter-sharing IPA modules. Similarly, SGPPI-Paddle and SGPPI-Twins 
represent interaction pattern features of antigenic epitopes and antibody backbones 
based on two parallel GCN modules and two parameter-sharing GCN modules. As 
shown in Fig. 2, AbAgIPA-Paddle and AbAgIPA-Twins were optimal and suboptimal 
in AUCPR and AUCROC, respectively.

Fig. 2  Prediction performance through 5-fold cross-validation on AD-AbAg dataset. (A) AUPRC and (B) 
AUROC as the performance metric.(Wilcoxon-Mann–Whitney P-values: **P < 0.01 , *P < 0.05 , -not significant)

Table 1  Performance on the AD-AbAg database

aAll metrics shown in the table are averages of 5-fold cross-validation;b We use a decision boundary of 0.5 to determine 
TP(True Positive), FP(False Positive), TN(True Negative) and FN(False Negative); cSGPPI-Twins are SGPPI’s primitive structure, 
the GCN network layer corresponding to the two inputs is parameter shared, and SGPPI-paddle is the GCN network layer 
corresponding to the two inputs side by side, and the parameters are unshared

Method AUROCa AUPRCa Precisiona,b Recalla,b Specificitya,b F1 scorea,b

AbAgIPA-Paddle 0.721 0.781 0.810 0.555 0.865 0.654
AbAgIPA-Twins 0.701 0.770 0.7560 0.561 0.821 0.643

SGPPI-Paddle
c 0.683 0.705 0.653 0.564 0.700 0.603

SGPPI-Twins
c 0.659 0.681 0.737 0.423 0.790 0.473

AbAgInterPre 0.694 0.739 0.666 0.619 0.686 0.640
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Table 1 further quantifies the performance comparison between AbAgIPA and 
existing methods by introducing additional performance metrics, the results show 
that AbAgIPA achieves optimal performance in all metrics except Recall.

SARS‑Cov specific interaction prediction

As shown in Fig. 3, compared with the current best-performing AbAgInterPre method 
based on amino acid CKSAPP coding and CNN, and the SGPPI method based on pre-
dicted structures with GCN in common protein interactions. In the scenario of imbal-
anced positive-to-negative sample ratio (1:5) within the dataset, AbAgIPA-Twins 
method achieves an AUPRC of 0.921 and an AUROC of 0.749 in a 5-fold cross-valida-
tion experiment. These results indicate that AbAgIPA-Twins outperforms other methods 
and exhibits relatively balanced performance. As shown in the (Supplementary Table 7), 
AbAgIPA-Twins achieved near-optimal metrics on Precision and Recall.

Feature importance and antibody spatial attention heatmap

As the method states, we derived a representation vector for each residue node based 
on amino acids’ physicochemical properties and their side chains’ characteristics. To 
determine which features predominantly influence the prediction of antibody-antigen 

Fig. 3  Prediction performance through 5-fold cross-validation on SARS-Cov specific interaction dataset. (A) 
AUPRC and (B) AUROC as the prediction performance metric. (Wilcoxon-Mann–Whitney P-values: **P < 0.01 , 
*P < 0.05 , -not significant)

Fig. 4  Feature importance evaluated by decrease in AUC-ROC
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interactions, we conducted a feature permutation importance analysis [45] on the anti-
genic diversity Ab-Ag interaction prediction model, namely AbAgIPA-Paddle. By ran-
domly shuffling each feature value and calculating the decrease in AUC-ROC before and 
after shuffling, we obtained a ranking of feature importance, as depicted in Fig. 4.

Feature importance analysis revealed that hydrophobicity is the most influential 
factor in predicting antibody-antigen interactions, consistent with the recognized 
role of hydrophobic residues in driving protein interactions [46]. Following hydro-
phobicity, the type of side chains significantly influences the predictions, underscor-
ing their role in molecular recognition. In contrast, the isoelectric points of amino 
acids have minimal impact on prediction accuracy, suggesting their lesser relevance 
in the binding interfaces.

Antibody-antigen interactions are an atypical class of PPIs with different evolu-
tionary patterns, where the immunological significance of antibody interchain fea-
tures plays a pivotal role [47]. In line with the methodologies described in [47], we 
extracted attention values from the antigenic diversity AbAgIPA-Paddle model, 
focusing specifically on interactions between amino acids across the two antibody 
chains. These attention values were filtered to generate an interchain feature attention 
matrix, exclusively containing amino acid pairs that bridge the two chains. The result-
ant heatmap, displayed in Fig. 5A, visualizes these interchain interactions. To analyze 
these interactions further, we averaged the attention scores by sequence position and 
classified amino acid sites by their structural domains-CDR or FR. This classification 
allowed us to quantitatively evaluate the distribution of attention mean values, reveal-
ing a higher focus of interchain feature attention on the CDR regions than the FR 
regions, as illustrated in Fig.  5B. This analysis underscores the critical role of CDR 
regions in mediating Ab-Ag interactions. Additionally, the model proposed in this 
study demonstrates a certain level of interpretability, which is illustrated through the 
feature importance analysis and the spatial attention heatmap. These tools not only 
identify key amino acid residues influencing the antibody-antigen interactions but 
also provide visual insights into how these residues are spatially arranged to facilitate 

Fig. 5  Visualization of antibody position attention in AbAgIPA-Paddle model. H1/2/3: CDR1/2/3 of heavy 
chain. L1/2/3: CDR1/2/3 of light chain. FR: Framework Region



Page 13 of 17Gu et al. BMC Bioinformatics          (2024) 25:348 	

or inhibit interactions. This enhances our understanding of the underlying mecha-
nisms of interaction and offers valuable insights for further antibody engineering and 
design efforts.

Performance discrepancy on actual structures and predicted structures

Keeping the network structure unchanged, we build residue contact graphs for the 
SGPPI method based on the predicted structure and the actual structure, and backbone 
framework representations for AbAgIPA, respectively, and compare the performance of 
both on the antigenic-diversity Ab-Ag interaction dataset, as shown in Fig. 6 and (Sup-
plementary Table 8).

The results show that the performance of models using IgFold-predicted structures 
is significantly better than those using ESMFold-predicted structures, whether in the 
SGPPI or AbAgIPA framework. This indicates that IgFold outperforms ESMFold in pre-
dicting antibody-antigen interactions, consistent with IgFold’s ability to leverage the 
pre-trained antibody language model AntiBERTy to predict skeletal atomic coordinates, 
resulting in more accurate and faster predictions for antibody-specific regions. Further-
more, there is no significant difference in performance between models using the actual 
structures and those using the predicted structures, regardless of whether SGPPI or 
AbAgIPA is used. This suggests that both SGPPI and AbAgIPA are robust to the accu-
racy of the predicted antibody structures. In addition, AbAgIPA consistently performs 
better than SGPPI, whether based on predicted or actual structures.

Discussion and conclusion
In this paper, we introduce AbAgIPA, a novel architecture based on a modified Invari-
ant Point Attention (IPA) module. This method diverges from traditional approaches 
that rely on structural data to generate inter-residue contact maps and employ Graph 
Convolutional Networks (GCNs). Instead, AbAgIPA establishes a backbone frame-
work that uses rotation matrices and translation vectors to describe the spatial relation-
ships between amino acids. By incorporating not only distances but also relative angles 
between amino acids, this approach allows the model to extract richer geometric fea-
tures from protein structures. The IPA mechanism, which is inherently rotation-invari-
ant, further ensures that predictions remain consistent regardless of protein orientation. 

Fig. 6  Performance discrepancy on actual structures and predicted structures. (A) AUPRC and (B) AUROC 
as the prediction performance metric. The suffix “T” stands for the true structure, the suffix “E” stands for the 
ESMFold-predicted structure. (Wilcoxon-Mann–Whitney P-values: **P < 0.01 , *P < 0.05 , -not significant)
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This combination of enhanced geometric representation and rotational invariance leads 
to a significant improvement in predicting antibody-antigen interactions.

Under the antibody-antigen interaction dataset with antigen diversity where the 
antigen similarity between those in the test set and those in the training set is strictly 
controlled, compared to antibody-antigen interaction methods based on predicted 
structures and Graph Convolutional Networks, the AbAgIPA method exhibits stronger 
robustness and higher accuracy under the same amino acid feature encoding. Notably, 
even when utilizing predicted structures, the performance of the AbAgIPA method 
surpasses the former. Compared to the best existing AbAgInterPre method based on 
CKSAPP coding and CNN, AbAgIPA shows a further improvement in AUCPR, AUROC, 
Precision and Specificity on antigenic diversity interaction prediction, and a remarkable 
improvement in AUCPR and AUROC on SARS-Cov specific interaction dataset.

A key strength of AbAgIPA is its interpretability. By visualizing attention heatmaps, 
we can see that the model effectively captures critical cross-chain interactions, particu-
larly in the Complementarity Determining Regions (CDRs) of antibodies. This ability to 
identify key structural regions and interaction patterns not only enhances the model’s 
performance but also provides deeper insights into the underlying mechanisms of anti-
body-antigen binding.

Our study could benefit clinical applications by improving the accuracy of predicting 
antibody-antigen interactions, particularly in therapeutic areas like oncology and immu-
nology. This may speed up the discovery of antibodies with high affinity and specificity 
for disease-related antigens. Additionally, the model’s ability to predict specific antigen 
interactions is valuable for identifying effective antibodies against evolving pathogens 
like SARS-CoV-2, aiding in rapidly developing treatments for emerging diseases.

In summary, this paper aims to integrate the antibody structure prediction with the 
challenge of predicting Ab-Ag interactions and to provide a new alternative to the tradi-
tional amino acid contact map representation and GCN architecture. Despite the com-
petitive performance of AbAgIPA, several limitations must be acknowledged. First, the 
antigen-antibody interaction dataset constructed based on SAbDab has limited coverage 
of diverse antigen-antibody interaction modes. This restricts the generalizability of our 
model, especially in predicting interactions involving less common antigens or atypical 
antibodies. Additionally, while our model, developed on the SARS-CoV specific Ab-Ag 
interaction dataset, can predict the binding labels of antibody sequences to antigenic 
epitopes more accurately, its application is confined to SARS-Cov antibody-antigen 
pairs. This highlights a gap in the model’s capabilities, underscoring the need for a more 
comprehensive and diverse dataset to improve the accuracy and broader applicability of 
antibody design predictions.
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