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Introduction
The significance of noncoding RNAs (ncRNAs) in cellular processes has become 
increasingly prominent. Different from conventional RNA molecules, ncRNAs do not 
directly encode proteins. Mounting evidence indicates that they perform crucial within-
cell biological functions that are closely linked to health and diseases. Since the first dis-
covery of ncRNAs in the 1960s, the field of transcriptomics has steadily expanded and 
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uncovered the involvement of ncRNAs in numerous cellular processes [1]. Among them, 
circular RNAs (circRNAs) and microRNAs (miRNAs) have garnered particular atten-
tion. Many studies have reported close relationships between diseases and circRNAs or 
miRNAs [2–9]. Thus, investigations on circRNAs and miRNAs can improve our under-
standing of various diseases.

MiRNAs are a class of small noncoding RNA molecules composed of approximately 
20–25 nucleotides. The first miRNA, lin-4, was identified in Caenorhabditis elegans [10]. 
MiRNAs also regulate the expression of target genes by binding to mRNAs, playing a 
crucial role in several processes, such as cellular differentiation, development, and dis-
ease progression. CircRNAs play a unique role in regulating gene expression and cel-
lular processes due to their distinctive circular structure and diverse functional modes. 
They can also adsorb miRNAs, thereby regulating gene expression [7, 11]. CircRNAs 
can act as miRNA sponges, blocking the degradation of miRNAs on downstream target 
genes. Therefore, circRNAs and miRNAs are closely connected [12–16], and determin-
ing these circRNA–miRNA associations (CMAs) is essential. Biological experiments are 
traditional ways of identifying novel CMAs; however, they always have low efficiency 
and high cost. Given the large number of circRNAs and miRNAs, biological experiments 
are no longer suitable for determining the associations. Therefore, designing quick and 
cheap techniques to detect CMAs is urgently needed.

An increasing number of circRNA and miRNA properties have been discovered and 
collected in public databases, such as circBank [17], CircBase [18], and miRbase [19], 
providing strong data support for identifying novel CMAs. Many advanced computa-
tional methods have also been designed to efficiently process the data of circRNAs and 
miRNAs. Designing computational methods to identify CMAs has become feasible 
because of the above materials and methods. To our knowledge, some computational 
methods have already been proposed. Fang and Lei [20] proposed the model KRWRMC 
to predict CMAs. It establishes a heterogeneous circRNA–miRNA network and employs 
a K-nearest neighbor algorithm based on the random walk restart heterogeneous to pre-
dict potential associations between circRNAs and miRNAs. The other methods are all 
based on machine learning and designed in a similar way. They construct some networks 
for circRNAs, miRNAs, or both and apply existing feature extraction and fusion algo-
rithms, such as graph neural networks [21–23], network embedding algorithms [24–27], 
word embedding [27], or newly designed algorithms [28–30], to generate informative 
circRNA and miRNA features. These features are then fed into downstream prediction 
engines, including LightGBM [21, 29, 30], inner product operation [22, 23], weighted 
neighborhood regularized logistic matrix factorization [24], deep neural network [25, 
27], inductive matrix completion algorithm [26], and gradient boosting decision tree 
[28], to make a prediction. Research on CMA prediction is still at the early stage, and 
the performance of the above models is mediocre, with the area under the receiver oper-
ating characteristic (ROC) curve not exceeding 0.95. Hence, there is a great space for 
improvement.

In this study, we proposed a novel computational model named CMAGN for predict-
ing CMAs. The model first constructed two similarity networks based on the sequences 
of circRNAs and miRNAs. Together with the raw representations derived from the 
circRNA–miRNA adjacency matrix, these networks were fed into a graph attention 
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autoencoder (GATE) [31] to access the first representations of circRNAs and miRNAs. 
Then, node2vec [32] was applied to the CMA network to generate the second repre-
sentations of circRNAs and miRNAs. With these novel representations, the similarity 
networks for circRNAs and miRNAs were reconstructed. Finally, network consistency 
projection (NCP) was applied to the reconstructed similarity networks and the CMA 
network to predict latent CMAs. Five-fold cross-validation revealed that the area under 
ROC and precision–recall (PR) curves on two widely used CMA datasets exceed 0.96, 
which is higher than those of previous models. Additional tests were conducted to elab-
orate the reasonability of each part of the proposed model and uncover its strengths and 
weaknesses.

Materials and methods
Dataset

The original CMAs were retrieved from the circBank database (http:// www. circb ank. 
cn/) [17], a comprehensive database containing human annotated circRNA from dif-
ferent sources. The file named “circbank_miRNA_all_v1.zip” comprised a large number 
of CMAs, with each association containing one circRNA, one miRNA, and one score. 
Following the same operation in previous studies [21–23, 25, 28–30], associations with 
scores no less than 1000 were selected, yielding 9589 CMAs covering 2115 different cir-
cRNAs and 821 different miRNAs. This dataset is same as those used in previous studies 
[21–23, 25, 28–30].

Efficient computational methods can be designed on the basis of these known CMAs. 
For formulation, these associations can be represented by a circRNA–miRNA adjacency 
matrix denoted by AS ∈ ℜm×n , where m is the number of miRNAs and n is the num-
ber of circRNAs (m = 821 and n = 2115 in this study). If the i-th miRNA and j-th cir-
cRNA constituted an association, then AS(i, j) was set to 1; otherwise, it was defined 
as 0. The presence of zeros in AS did not necessarily indicate the absence of association 
between the corresponding circRNA and miRNA; rather, it meant that the association 
has not been observed or confirmed at present. The goal of this study was to design an 
efficient computational method to pinpoint latent CMAs in AS . In addition to the adja-
cency matrix, bipartite graph is a common way to represent CMAs. This graph has two 
node groups—one containing the circRNA nodes and the other consisting of the miRNA 
nodes. Each edge in this graph indicates a CMA, i.e., one circRNA node and one miRNA 
node are connected if and only if they can constitute an association. In the following 
text, this bipartite graph was denoted by NCM and called the CMA network.

Another CMA dataset collected by Wang et  al. [25] was employed in the present 
work, which can be obtained at https:// github. com/ 1axin/ KGDCMI. This dataset has 
9905 CMAs, including 2346 cirRNAs and 962 miRNAs, and has also been used in sev-
eral CMA prediction studies [23, 27–30]. Here, it was adopted to further test the per-
formance of CMAGN. For a clear distinction between the two datasets, this dataset was 
labeled as CMA-9905, and the above-mentioned dataset was labeled as CMA-9589.

Similarity network construction

The similarity between circRNAs or miRNAs is essential information to construct pre-
diction methods; similar circRNAs are always associated with similar miRNAs, and vice 

http://www.circbank.cn/
http://www.circbank.cn/
https://github.com/1axin/KGDCMI
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versa. The most basic similarity between circRNAs or miRNAs can be discerned from 
their sequences. Here, the Levenshtein distance was employed to measure the difference 
between two sequences and then calculate the similarity between them.

CircRNA and miRNA sequences were downloaded from three databases: CircFunBase 
(https:// bis. zju. edu. cn/ CircF unBase/) [33], CircBase (http:// www. circb ase. org/) [18], and 
miRbase (http:// www. mirba se. org/) [19]. The Levenshtein distance is an edit distance 
commonly used to measure dissimilarity between two strings and is defined as the mini-
mum number of edit operations required to transform the source string into the target 
string, allowing only three single-character operations: insertion, deletion, and substitu-
tion. In this study, the circRNA and miRNA sequences were deemed as strings to gener-
ate the Levenshtein distance between two circRNAs or two miRNAs. For formulation, 
the distance between two circRNAs ci and cj was denoted by DcircRNA(ci, cj) , and that 
between two miRNAs mi and mj was represented by DmiRNA(mi,mj) . Afterward, the 
sequence similarity of two circRNAs or miRNAs can be computed as follows:

where CSS ∈ ℜn×n is the sequence similarity matrix of circRNAs; MSS ∈ ℜm×m is the 
sequence similarity matrix of miRNAs; l(ci) and l(cj) are the sequence length of circR-
NAs ci and cj, respectively; and l(mi) and l(mj) are the sequence length of miRNAs mi 
and mj, respectively.

The similarity networks for circRNAs and miRNAs were constructed on the basis 
of the matrices CSS and MSS, respectively, and 2115 circRNAs and 821 miRNAs were 
defined as nodes. The edges in these two networks were determined by the correspond-
ing elements in CSS and MSS. Threshold T was set to CSS and MSS to discard the link-
ages with weak similarities. In CSS, if the element at the i-th row and j-th column was 
larger than the threshold, then the i-th and j-th circRNAs were connected by an edge. 
Under this operation, a similarity network for circRNAs was formed and denoted by 
NcircRNA. The network for miRNAs indicated by NmiRNA was also constructed using the 
same operation.

Representations of circRNAs and miRNAs

Correct and complete representations of circRNAs and miRNAs are essential for build-
ing efficient models to predict CMAs. Here, each representation contained two parts. 
The first part was derived from the adjacency matrix AS , where each row indicated the 
raw representation of one miRNA and each column stood for the raw representation of 
one circRNA. These raw representations were refined by GATE [31] to access the high-
level features of circRNAs and miRNAs. The second part was obtained from the CMA 
network NCM via a popular network embedding algorithm, node2vec [32]. These two 
parts contained different types of information for circRNAs and miRNAs. The first part 
focused on the local relationships of circRNAs or miRNAs because the raw representa-
tions contained only the information of the direct neighbors of circRNAs or miRNAs. 

(1)CSS(ci, cj) =
l(ci)+ l(cj)− DcircRNA(ci, cj)

l(ci)+ l(cj)

(2)MSS(mi,mj) =
l(mi)+ l(mj)− DmiRNA(mi,mj)

l(mi)+ l(mj)

https://bis.zju.edu.cn/CircFunBase/
http://www.circbase.org/
http://www.mirbase.org/
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For the second part, the entire topological structure of the CMA network NCM was con-
sidered, including the global relationships of circRNAs or miRNAs. The combination of 
these two parts can fully represent circRNAs and miRNAs.

Representations of circRNAs and miRNAs yielded by GATE

The raw feature vectors of circRNAs derived from the adjacency matrix AS were rudi-
mentary and can be improved by some advanced computational methods. The similarity 
network NcircRNA in Sect.  “Similarity network construction” indicated the relationships 
between circRNAs. Fusing the above two forms can access to the high-level features 
of circRNAs. The same problem occurred for miRNAs. In this study, GATE [31] was 
employed to reconstruct the feature vectors of circRNAs and miRNAs by using the raw 
feature vectors of circRNAs (miRNAs) derived from AS and circRNA (miRNA) simi-
larity network as the input. The reconstructed feature vectors contained essential infor-
mation regarding the raw feature vectors and the topological structure of the similarity 
networks.

GATE is an unsupervised learning method that can learn new representations of 
nodes from the topological structure of a network and the raw representations of its 
nodes. It involves two procedures, namely, encoder and decoder, which are described 
briefly as follows:

Encoder The encoder comprises several layers. The first layer adopts the raw features 
of nodes as input, and other layers use the output of the former layer as input. For clear 
descriptions, the raw feature vector of the i-th node is denoted by Fi = h

(0)
i  , and the out-

put of the k-th layer for the i-th node is represented by h(k)i  . The main idea of GATE is 
to aggregate the feature vectors of neighbors for a given node to generate the new fea-
ture vector of the node. However, it further considers the weights of neighbors, that is, 
it assigns different weights to different neighbors. To determine the weights, GATE first 
calculates the correlation between any two nodes as

where W (k) ∈ ℜd(k)×d(k−1) , V (k)
s ∈ ℜd(k) , and V (k)

r ∈ ℜd(k) are three matrices that consist 
of trainable parameters at the k-th layer; d(k) is the dimension of the output feature vec-
tors of the k-th layer; and σ is an activation function. The above correlations were then 
normalized by the softmax function defined by

where N (i) stands for the closed neighbor set of the i-th node. The outcomes of Eq. 4 
were regarded as the neighbors’ weights. The aggregation for the i-th node was con-
ducted as

(3)b
(k)
ij = Sigmoid

(

V (k)T

s σ

(

W (k)h
(k−1)
i

)

+ V (k)T

r σ

(

W (k)h
(k−1)
j

))

(4)a
(k)
ij = Softmax(b

(k)
ij ) =

exp(b
(k)
ij )

∑

l∈N (i) exp(b
(k)
il )

(5)h
(k)
i =

∑

l∈N (i)

a
(k)
il σ(W (k)h

(k−1)
l )
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where W (k) is same as that in Eq. 3. If the encoder contains L layers, then h(L)i = hi is the 
output of the encoder for the i-th node. In this study, the feature vectors of circRNAs 
(miRNAs) derived from adjacency matrix AS were used as the raw feature vectors of 
nodes and fed into the encoder procedure of GATE. The output of the last layer was 
selected as the novel feature vectors of circRNAs (miRNAs) and used in the following 
step to construct the model. The reconstructed feature vector for the i-th circRNA and 
miRNA is denoted by Cg

i  and Mg
i  , respectively.

Decoder As an unsupervised learning method, GATE contains the decoder that 
recovers the raw features of nodes, thereby testing the quality of reconstructed fea-
ture vectors yielded by the encoder. The decoder consists of the same number of lay-
ers as the encoder. The output of the encoder is selected as the input of the decoder, 
denoted by h̃(L)i  , and the output of the k-th layer is indicated by h̃(k−1)

i  . Here, h̃(k−1)
i  

was updated using the following equations:

where W̃ (k) ∈ ℜd(k−1)×d(k) , Ṽ (k)
s ∈ ℜd(k−1) , and Ṽ (k)

r ∈ ℜd(k−1) are three matrices that 
contain trainable parameters; and d(k − 1) is the dimension of the output feature vec-
tors of the k-th layer. The outcome of the last layer for the i-th node is defined as F̃i , i.e., 
F̃i = h̃

(0)
i .

Loss Function The whole GATE uses the raw feature vector of the i-th node Fi as 
input. The encoder reconstructs Fi as hi , and the decoder recovers hi into F̃i . GATE 
considers two types of loss to examine the quality of the reconstructed feature vector 
hi . The first is the distance between Fi and F̃i measured by

where N is the total number of nodes in the network. The connections in the network 
should also be considered, and the neighboring nodes should be assigned to similar fea-
ture vectors. The second type of loss is formulated as

where N (i) stands for the closed neighbor set of the i-th node. Accordingly, the final loss 
function combines the losses in Eqs. 9 and 10 as

(6)b̃
(k)
ij = Sigmoid

(

Ṽ (k)T

s σ
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W̃ (k)h̃
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i
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(k)
j

))

(7)ã
(k)
ij = Softmax(b̃

(k)
ij ) =

exp(b̃
(k)
ij )

∑

l∈N (i) exp(b̃
(k)
il )

(8)h̃
(k−1)
i =

∑

l∈N (i)

ã
(k)
il σ(W̃ (k)h̃

(k)
l )
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N
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Fi − F̃i

∥

∥

∥

2

(10)−

N
∑

i=1

∑

l∈N (i)

log(
1

1+ exp(−hTi hl)
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where � is a parameter balancing the two types of loss, Fi is the raw feature vector of the 
i-th node, F̃i is the recovered feature vector (output of the decoder procedure) of the i-th 
node, hi is the new feature vector of the i-th node (output of the encoder procedure), and 
hl is the new feature vector of the l-th node that is the neighbor of the i-th node. New 
high-quality representations of nodes can be accessed by minimizing the loss.

Representations of circRNAs and miRNAs yielded by node2vec

The above representation of circRNAs (miRNAs) were derived from their local rela-
tionships to miRNAs (circRNAs) and the circRNA (miRNA) similarity network. How-
ever, the global relationships of circRNAs to miRNAs were ignored. The same problem 
occurred for miRNAs. Therefore, additional information was employed to evalu-
ate the global associations between circRNAs and miRNAs. Known CMAs are essen-
tial for predicting novel associations. Thus, using them to measure the associations 
between circRNAs and miRNAs can help in setting up efficient models. As mentioned 
in Sect.  "Dataset", the known CMAs are represented by the CMA network NCM, from 
which the representation of circRNAs and miRNAs can be accessed. The powerful net-
work embedding algorithm, node2vec [32], was employed for this task.

Node2vec is the improved version of DeepWalk [34]. For a given network, it produces 
many paths starting from each node. Suppose the starting node is u and the current end-
point of the path starting from u is ni-1, which is the (i-1)-th node in this path. This path 
is extended to the i-th node, denoted by ni by selecting one neighbor of ni-1. However, 
the selection probability is not equal. The probability is determined using the following 
equation:

,
where πvw is the transition probability from v to w and computed as

where wvw stands for the weight on edge connecting v and w, t is the (i-2)-th node in 
the path, and dtw denotes the distance between t and w. The symbol Z in Eq. 12 is the 
sum of the transition probabilities from v to its neighbors. Evidently, the paths sampled 
by node2vec are produced by biased selection. The next node is not selected with equal 
probability. This operation can efficiently capture the structure traits of the network. The 
selection of the next node is continuously executed until the current path reaches the 

(11)Loss =

N
∑

i=1

(

∥

∥

∥
Fi − F̃i

∥

∥

∥

2
− �

∑

l∈N (i)

log(
1

1+ exp(−hTi hl)
))

(12)P(ni = w|ni−1 = v) =

{

πvw/Z if w is adjacent to v
0 Otherwise

(13)πvw = αpq(t,w) · wvw

(14)αpq(t,w) =







1/p if dtw = 0
1 if dtw = 1

1/q if dtw = 2
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predefined length. After the paths starting from each node have been sampled, these 
paths are deemed as sentences. Meanwhile, the nodes in the paths are considered as 
words. This information is fed into word2vec with skip-gram to produce the feature vec-
tors of the nodes.

This study applied the node2vec program downloaded from https:// snap. stanf ord. 
edu/ node2 vec/ to the CMA network NCM to generate the feature vectors of circRNAs 
and miRNAs. For formulation, the feature vectors of the i-th circRNA and miRNA are 
denoted by Cn

i  and Mn
i  , respectively.

For the i-th circRNA, two representations Cg
i  and Cn

i  were obtained and then com-
bined to generate the final representation of the circRNA. The same operation was 
conducted for each miRNA. The final representations of the i-th circRNA and miRNA, 
denoted by Ĉi and M̂i , respectively, were formulated as

Reconstruction of similarity networks

With these new representations of circRNAs and miRNAs, their corresponding inform-
ative similarity network can be built. Here, cosine kernel was adopted to measure the 
associations between circRNAs (miRNAs) on the basis of their new representations. For 
circRNAs ci and cj, their similarity was reformulated as.

where CS is the new circRNA similarity matrix collecting the outcomes of Eq. 17. The 
circRNA similarity network was built using CS as the weighted adjacency matrix.

The similarity network for miRNAs was reconstructed in the same way. For miRNAs 
mi and mj, their similarity was measured as follows:

where MS is the miRNA similarity matrix that stores the outcomes of Eq.  18. The 
miRNA similarity network was then established using MS as the weighted adjacency 
matrix.

NCP

With the above circRNA similarity network (represented by CS), miRNA similarity net-
work (represented by MS), and CMA network (represented by adjacency matrix AS), a 
simple and efficient network-based method named NCP was utilized to calculate the 

(15)Ĉi = [C
g
i ,C

n
i ]

(16)M̂i = [M
g
i ,M

n
i ]

(17)CS(ci, cj) =
Ĉi · Ĉ

T
j

∣

∣

∣
Ĉi

∣

∣

∣
·

∣

∣

∣
Ĉj

∣

∣

∣

,

(18)MS(mi,mj) =
M̂i · M̂

T
j

∣

∣

∣
M̂i

∣

∣

∣
·

∣

∣

∣
M̂j

∣

∣

∣

https://snap.stanford.edu/node2vec/
https://snap.stanford.edu/node2vec/
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association score for circRNAs and miRNAs. NCP has wide applications in associa-
tion predictions [35–39]. The score yielded by NCP integrates two subscores, which are 
obtained by projecting the respective circRNA and miRNA similarity networks onto the 
CMA network. For circRNA ci and miRNA mj, the subscore for projecting the circRNA 
similarity network onto the CMA network was calculated as.

where AS(i, :) represents the i-th row of AS, CS(:, j) denotes the j-th column of CS, and 
|AS(i, :)| is the length of the vector AS(i, :) . Meanwhile, the subscore for projecting the 
miRNA similarity network onto the CMA network was computed as.

where MS(i, :) is the i-th row of MS, AS(:, j) indicates the j-th column of AS, and 
∣

∣AS(:, j)
∣

∣ indicates the length of AS(:, j) . Finally, NCP integrated the above subscores as 
follows:

where NSP is the final recommendation matrix collecting all the outcomes of Eq. 21.

Outline of CMAGN

This work designed a new model named CMAGN for predicting CMAs. The architec-
ture of this model is illustrated in Fig. 1. CMAGN consists of several modules. First, the 
similarity networks for circRNAs and miRNAs were constructed on the basis of their 
sequence similarities in module A as illustrated in Fig. 1(A). Second, the raw feature vec-
tors of circRNAs (miRNAs) were extracted from the circRNA–miRNA adjacency matrix 
and fed into GATE to access new representations of circRNAs (miRNAs) in module B, 
as illustrated in Fig. 1(B). Third, the feature vectors of circRNAs and miRNAs were gen-
erated by applying node2vec to CMA network in module C, as displayed in Fig. 1(C). 
Fourth, two representations of circRNAs (miRNAs) were combined to reconstruct the 
circRNA (miRNA) similarity network in module D, as shown in Fig. 1(D). Finally, NCP 
was applied to the reconstructed similarity networks and the CMA network to yield the 
recommendation matrix in module E, as shown in Fig. 1(E).

Results and discussion
Evaluation metrics

In this study, five-fold cross-validation [40] was adopted to evaluate the performance 
of the models. When conducting the cross-validation, we denoted 9589 validated 
CMAs as positive samples. Meanwhile, the negative samples were randomly selected 

(19)CSP(ci,mj) =
AS(i, :)× CS(:, j)

|AS(i, :)|

(20)MSP(ci,mj) =
MS(i, :)× AS(:, j)

∣

∣AS(:, j)
∣

∣

(21)NSP(ci,mj) =
CSP(ci,mj)+MSP(ci,mj)

|CS(i, :)| +
∣

∣MS(:, j)
∣

∣
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from unlabeled associations, and their number was the same as that of the positive 
samples. All samples were randomly and equally divided into five sets. Each set was 
selected as a test set one by one, and the remaining sets constituted the training set. 
In every round of the five-fold cross-validation, the corresponding positions of the 
singled-out positive samples in the adjacency matrix AS were replaced with zero, and 
the corresponding edges in the CMA network were removed.

ROC and PR curves were adopted to assess the cross-validation results [41–44]. For 
this task, a group of thresholds for predicting positive samples should be set. For a 
given threshold, if the association score is higher than the threshold, then the corre-
sponding sample is predicted to be positive; otherwise, it is predicted to be negative. 
On the basis of such results, the true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN) can be counted. Subsequently, the true positive rate 
(TPR, same as recall), false positive rate (FPR), and precision [45–48] can be com-
puted as

After a set of thresholds are set, a group of TPR, FPR, and precision values can be 
obtained. The ROC curve can be plotted by setting TPR as the Y-axis and FPR as the 
X-axis, and the PR curve is plotted by defining precision as the Y-axis and recall as the 
X-axis. The area under these two curves are key measurements to evaluate a model’s 

(22)































TPR =
TP

TP + FN

FPR =
FP

FP + TN

Precision =
TP

TP + FP

Fig. 1 Entire procedures of CMAGN. A The circRNA (miRNA) similarity network is built on the basis of 
sequence similarities between them. B The similarity network and raw representations of circRNAs (miRNAs) 
derived from the adjacency matrix are fed into the GATE to generate new representations of circRNAs 
(miRNAs). C Representations of circRNAs (miRNAs) are extracted from the CMA network via node2vec. D 
The above two representations are combined to encode circRNAs (miRNAs), which are used to reconstruct 
circRNA (miRNA) similarity network. E The reconstructed similarity networks and association network are 
analyzed by NCP to produce a recommendation matrix
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performance, which were denoted as AUROC and AUPR in this study. In general, a 
high AUROC (AUPR) corresponds to high performance.

Parameter settings

CMAGN has several parameters distributed in raw similarity network construction, 
GATE, and node2vec. These parameters were determined as follows, with the final set-
tings listed in Table 1.

In the construction of the raw similarity network of circRNAs (miRNAs), threshold T 
was employed to determine the associations between circRNAs (miRNAs) according to 
their sequences as mentioned in Sect. "Similarity network construction". As suggested in 
[49], T was set to 0.8.

In GATE, the numbers of layers in the encoder and decoder were the two key param-
eters and were generally set to two, that is, two layers in the encoder and decoder. The 
sizes of each layer are also important. We set 128 and 64 neurons in the two encoder lay-
ers and corresponding decoder layers. The learning rate was set to 0.001. The parameter 
dropout, which is a probability to temporarily inactive neurons, was set to 0.5. Finally, 
the parameter � in the loss function (Eq. 11), which balances the contributions of two 
types of loss, was set to its default value of 1.

When using node2vec to access the second representations of circRNAs and miRNAs, 
we set the feature dimension as 128, which is the default value in node2vec. The other 
parameters were also set to their default values: the number of paths starting from each 
node was set to 10, the length of the path was set to 80, and parameters p and q were set 
to 1.

Performance of CMAGN on the CMA‑9589 dataset

According to Sect.  "Parameter settings", the selected parameters of CMAGN were 
set, and this model was evaluated by fivefold cross-validation on the CMA-9589 data-
set. Table 2 lists the AUROC and AUPR under each fold, along with the mean AUROC 
and AUPR. The ROC and PR curves are illustrated in Fig. 2. The AUROC values across 
the five folds were 0.9740, 0.9694, 0.9764, 0.9756, and 0.9733, with a mean AUROC of 
0.9737. The AUPR values across the five folds were 0.9780, 0.9728, 0.9792, 0.9783, and 

Table 1 Parameter settings of the CMAGN model

Module Parameter Setting

Similarity network construction Threshold T 0.8

GATE Number of layers 2

Number of neurons 128, 64

Learning rate 0.001

Dropout 0.5

� 1

Node2vec Dimension 128

Number of paths 10

Length of paths 80

p 1

q 1
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0.9799, with a mean AUPR of 0.9776. These results indicate that CMAGN performs well 
in predicting CMAs and exhibits almost the same performance on different folds (simi-
lar AUROC and AUPR values on different folds), suggesting that it was stable through-
out the validation.

Utility of node2vec and GATE

CMAGN adopted two powerful methods (node2vec and GATE) to access the represen-
tations of circRNAs and miRNAs. We conducted some ablation tests to assess their key 
constructions for building the CMAGN.

First, node2vec and GATE were removed from CMAGN. The raw similarity networks 
of circRNAs and miRNAs derived from their sequences were directly fed into NPC to 
yield the recommendation matrix. This model was evaluated by five-fold cross-valida-
tion. The results are listed in Table  3, and the corresponding ROC and PR curves are 
illustrated in Fig.  3. The AUROC and AUPR of this model were 0.9019 and 0.9026, 

Table 2 Five‑fold cross‑validation results of CMAGN on the CMA‑9589 dataset

Measurement Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

AUROC 0.9740 0.9694 0.9764 0.9756 0.9733 0.9737

AUPR 0.9780 0.9728 0.9792 0.9783 0.9799 0.9776

Fig. 2 ROC and PR curves to illustrate the performance of CMAGN on the CMA‑9589 dataset. A ROC curves; 
B PR curves. The ROC and PR curves are nearly perfect, and the AUROC and AUPR values vary within a small 
range

Table 3 Comparison of the models when one part is removed or replaced

Original item Replacement item/Removed AUROC AUPR

GATE + Node2vec Removed 0.9019 0.9026

GATE 0.9346 0.9546

Node2vec 0.9678 0.9711

Cosine kernel GIP kernel 0.9659 0.9715

Jaccard kernel 0.8788 0.8769

Network consistency projection KATZ 0.9567 0.9599

WKNKN 0.9584 0.9625
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respectively, which were lower than those of CMAGN. The ROC and PR curves were 
always under those of CMAGN, and gaps between the ROC curves or PR curves of the 
two models were evident. All these findings suggested that this model exhibits lower 
performance than CMAGN, proving the valuable contributions of node2vec and GATE. 
These two methods aid the construction of accurate similarity networks of circRNAs 
and miRNAs, thereby supporting NCP in yielding an accurate recommendation matrix.

Second, we removed node2vec from CMAGN. In this case, the similarity networks 
of circRNAs and miRNAs were constructed only from the representations yielded by 
GATE. The model was also evaluated by five-fold cross-validation. The AUROC and 
AUPR for this model are listed in Table 3, and the corresponding ROC and PR curves 
are illustrated in Fig. 3. The AUROC and AUPR values were 0.9346 and 0.9546, respec-
tively, which are lower than those of CMAGN. This finding suggests that the removal of 
node2vec decreases the performance of CMAGN. Furthermore, the ROC and PR curves 
were always under those of CMAGN, further confirming the above conclusion. All these 
results indicated the importance of node2vec.

Third, the importance of GATE was investigated in a similar way: by removing it from 
CMAGN. The similarity networks were set up using only the features yielded by node-
2vec. Five-fold cross-validation yielded the AUROC of 0.9678 and AUPR of 0.9711 as 
listed in Table 3, which are also lower than those of CMAGN. The ROC and PR curves 
in Fig. 3 further confirmed that the removal of GATE weakens the performance. These 
results suggest the importance of GATE.

On the basis of the above arguments, node2vec and GATE provide essential contri-
butions for building CMAGN. This result was reasonable because they generated the 
features of circRNAs and miRNAs from different aspects. GATE generated the features 
focusing on the local relationships of circRNAs (miRNAs) to miRNAs (circRNAs) and 
the relationships between circRNAs (miRNAs), and node2vec produced the features 
containing the global relationships of circRNAs (miRNAs) to miRNAs (circRNAs). The 
combination of these features can fully describe the essential information of circRNAs 

Fig. 3 ROC and PR curves to illustrate the performance of CMAGN when one part is removed or replaced. 
A ROC curves; B PR curves. The model “Without GATE or N2V” indicates the model by removing GATE and 
node2vec (N2V) from CMAGN. Three parts of CMAGN are considered, namely, GATE + N2V, cosine (COS) 
kernel, and NCP, in other models, which are removed or replaced with other methods. Their names in cutline 
consist of the used methods, connected by the symbol “‑”. Each part provides key contributions for building 
CMAGN because removal or replacement decreases the performance



Page 14 of 21Yin et al. BMC Bioinformatics          (2024) 25:336 

(miRNAs), allowing the model to exhibit high performance. Compared with that when 
GATE was removed, the model showed lower AUROC and AUPR when node2vec was 
removed, implying that node2vec was more important than GATE. Accordingly, the fea-
tures yielded by node2vec can capture more essential properties of circRNAs and miR-
NAs compared with those yielded by GATE.

Utility of cosine kernel when reconstructing similarity networks

The cosine kernel was adopted to measure the linkage of circRNAs (miRNAs) when 
reconstructing similarity networks. To prove that this selection is reasonable, we 
replaced it with other two popular kernels: Gaussian interaction profile (GIP) and Jac-
card kernels. The models using these two kernels were assessed by five-fold cross-vali-
dation. As illustrated in Fig. 3, the obtained ROC and PR curves were always under the 
corresponding curves of CMAGN, which used cosine kernel. The AUROC and AUPR 
are listed in Table 3. The model using GIP kernel yielded an AUROC of 0.9659 and an 
AUPR of 0.9715. Using the Jaccard kernel generated lower AUROC and AUPR of 0.8788 
and 0.8769, respectively. All these values were lower than those of CMAGN, proving that 
using the cosine kernel to measure the similarity of circRNAs (miRNAs) is reasonable.

Utility of NCP

In CMAGN, the recommendation matrix was generated by NCP. We also used other 
powerful methods to access the recommendation matrix, including KATZ [50] and 
weighted K-nearest known neighbor [51]. The models that use these methods to gen-
erate recommendation matrix were constructed and evaluated by five-fold cross-vali-
dation. The cross-validation results are listed in Table 3. The AUROC values for these 
models were 0.9567 and 0.9584, and the AUPR values were 0.9599 and 0.9625. All these 
values were lower than those of the model that uses NCP to produce the recommenda-
tion matrix (i.e., CMAGN). The ROC and PR curves illustrated in Fig. 3 also verified the 
relatively low performance of these two models. These results confirmed the utility value 
of NCP.

Analysis of CMAGN for different circRNA–miRNA associations

CMAGN exhibited a high overall performance. However, its performance for different 
CMAs may not be the same, that is, CMAGN can provide reliable predictions for some 
CMAs but unsatisfying predictions for other CMAs. To uncover the strengths and weak-
nesses of CMAGN in this regard, we equally divided the circRNAs (miRNAs) into two 
groups according to the number of CMAs that they involved. The first group contained 
circRNAs (miRNAs) with high numbers, and the second group contained the rest of the 
circRNAs (miRNAs) with low numbers. For convenience, these two groups were called 
high and low groups. Accordingly, all the CMAs were divided into four groups, namely, 
high (circRNA)–high (miRNA), high (circRNA)–low (miRNA), low (circRNA)–high 
(miRNA), and low (circRNA)–low (miRNA) groups. The high (circRNA)–high (miRNA) 
group consisted of CMAs involving the circRNAs and miRNAs from the high groups. 
The other three CMA groups were constructed in the same way. For the cross-validation 
results of CMAGN, the AUROC and AUPR were individually counted for the above four 
CMA groups as listed in Table 4. The corresponding ROC and PR curves are displayed 
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in Fig. 4. The performance of CMAGN in the high (circRNA)–high (miRNA) and high 
(circRNA)–low (miRNA) groups was evidently higher than in the other two groups. 
The AUROC values on these two groups were higher than 0.97, and the AUPR values 
exceeded 0.98. By contrast, the AUROC and AUPR values for the other two groups were 
approximately 0.96 and 0.94, respectively. This finding indicated that the model yielded 
reliable predictions for circRNAs that can interact with many miRNAs. However, its 
predictions for circRNAs interacting with few miRNAs had relatively low credibility. 
For miRNAs, such influence was not as evident. Given the circRNAs in the same group, 
CMAGN’s performance on the miRNAs in the high or low groups was almost the same. 
These results suggest that CMAGN is more sensitive to circRNAs than to miRNAs.

Computation time analysis

According to Sect.  "Outline of CMAGN", CMAGN has five modules (modules A–E), 
whose computation times must be analyzed to understand the bottleneck of this model. 
For one five-fold cross-validation, the computation time of the five modules is listed in 
Table 5. Module A needed the most time, occupying 91.6%. The function of module A 
is to construct miRNA and circRNA similarity networks. A similar calculation was con-
ducted on the basis of the Levenshtein distance. In general, dynamic programming is 

Table 4 Performance of CMAGN on different CMA groups

CircRNA‑miRNA association group AUROC AUPR

High (circRNA)‑high (miRNA) group 0.9792 0.9867

High (circRNA)‑low (miRNA) group 0.9779 0.9858

Low (circRNA)‑high (miRNA) group 0.9595 0.9483

Low (circRNA)‑low (miRNA) group 0.9610 0.9471

Fig. 4 ROC and PR curves to illustrate the performance of CMAGN on different CMA groups. A ROC curves; 
B PR curves. The performance of CMAGN in the high (circRNA)‑high (miRNA) and high (circRNA)‑low (miRNA) 
groups is higher than in the other two groups

Table 5 Computation time of each module in  CMAGNa

a: The time listed in this table is obtained by a computer with CPU i7‑12,700 and 40 GB memory. The modules A‑E are 
explained in Sect. "Outline of CMAGN"

Module Module A Module B Module C Module D Module E

Time 5018.66 s 131.12 s 326.22 s 0.32 s 2.29 s
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used to compute the Levenshtein distance between two strings. Its computational com-
plexity is O(m × n), where m and n are the lengths of two strings. Given that most circR-
NAs are extremely long, computing the Levenshtein distance between two circRNAs is 
time consuming. This phenomenon was the main reason module A required so much 
time. Meanwhile, modules B and C contained GATE and node2vec, respectively. Their 
computation procedures can be parallelized and the input networks were not very large; 
hence, these two modules did not take much time. Modules D and E involved easy com-
putation that required minimal time. Thus, reducing the computation time for the Lev-
enshtein distance is the key to improving the efficiency of CMAGN.

Comparison of existing models

Several models have been proposed to predict CMAs, as introduced in Sect.  "Intro-
duction". We compared CMAGN with previous models to prove the superiority of our 
model. For pairwise comparison, we selected the following seven models set up on the 
CMA-9589 dataset and evaluated by five-fold cross-validation: CMASG [21], KGDCMI 
[25], GCNCMI [22], SGCNCMI [23], JSNDCMI [28], BioDGW-CMI [29], and BER-
OLECMI [30]. The AUROC and AUPR values of the above models, which were directly 
obtained from their corresponding papers, are listed in Table 6. GCNCMI, JSNDCMI, 
BioDGW-CMI, and BEROLECMI outperformed the other three models, yielding 
AUROC and AUPR values higher than 0.93. KGDCMI and SGCNCMI were in the sec-
ond rank, generating AUROC and AUPR of approximately 0.90. CMASG showed the 
lowest performance, with AUROC and AUPR lower than 0.89. For easy comparison, the 
performance of our model CMAGN is also listed in Table 6. CMAGN exhibited higher 
performance than all the above models, with AUROC and AUPR values that were all at 
least 2.4% higher than those of these previous models, proving its superiority. CMAGN 
adopted two representations of circRNAs and miRNAs to fully describe the relation-
ships between circRNAs, miRNAs, and circRNAs–miRNAs. The similarity network of 
circRNAs (miRNAs) can widely measure their associations based on such representa-
tions. The accurate and powerful method NCP was applied to the circRNA and miRNA 
similarity networks to access a reliable recommendation matrix. All these steps resulted 
in the high performance of CMAGN.

A paired Student’s t-test was also conducted on CMAGN and previous models. All 
the p-values listed in Table  7 were lower than the 0.05 confidence level, suggesting 

Table 6 Performance of different models for predicting CMAs on the CMA‑9589 dataset

Model AUROC AUPR

CMASG [21] 0.8804 0.8629

KGDCMI [25] 0.9041 0.8937

GCNCMI [22] 0.9320 0.9396

JSNDCMI [28] 0.9415 0.9403

SGCNCMI [23] 0.9015 0.9011

BioDGW‑CMI [29] 0.9476 0.9416

BEROLECMI [30] 0.9491 0.9431

CMAGN 0.9737 0.9776
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significant differences between CMAGN and previous models. This finding proved 
that CMAGN performs significantly better than previous models do.

Performance of CMAGN on the CMA‑9905 dataset

To fully examine the performance of CMAGN, we further employed another CMA 
dataset called CMA-9905, as mentioned in Sect. "Dataset". The five-fold cross-valida-
tion results of CMAGN on this dataset are shown in Table 8. The five AUROC values 
were 0.9614, 0.9540, 0.9616, 0.9613, and 0.9674, and the mean AUROC was 0.9611. 
The AUPR values across five folds were 0.9725, 0.9655, 0.9728, 0.9717, and 0.9735, 
yielding a mean AUPR of 0.9712. Such performance was slightly lower than that on 
the CMA-9589 dataset but was nevertheless still very high, proving the powerful pre-
diction ability of CMAGN.

Previous CMA prediction models were also applied to the CMA-9905 dataset, 
including KGDCMI [25], WSCD [27], SGCNCMI [23], JSNDCMI [28], BioDGW-
CMI [29], and BEROLECMI [30]. Their five-fold cross-validation results (AUROC and 
AUPR) are listed in Table 9. These previous models exhibited almost similar perfor-
mance. In detail, the AUROC values changed between 0.89 and 0.92, and the AUPR 
values varied in the interval [0.87, 0.91]. BEROLECMI gave the highest performance 
among these previous methods. The performance of CMAGN is also provided in 
Table 9 for easy comparison. CMAGN evidently outperformed all the above previous 
models, with an AUROC that was at least 5% higher and an AUPR that was at least 
6% higher. This superiority was more evident compared with that on the CMA-9589 
dataset. We also conducted a paired Student’s t-test on CMAGN and the above previ-
ous models on the CMA-9905 dataset. The results are provided in Table 10. Similar 
to the findings in Table 7, all p-values were lower than the 0.05 confidence level. This 
outcome also proved that CMAGN is significantly superior to the previous models 

Table 7 Paired Student’s t‑test results of the CMAGN and other models on the CMA‑9589 dataset 
under five‑fold cross‑validation

Model P‑value

AUROC AUPR

KGDCMI [25] 4.85×10−39 6.48×10−40

GCNCMI [22] 7.79×10−35 1.89×10−33

JSNDCMI [28] 1.02×10−32 2.68×10−33

SGCNCMI [23] 2.42×10−39 3.70×10−39

BioDGW‑CMI [29] 5.32×10−31 5.20×10−33

BEROLECMI [30] 1.62×10−30 1.15×10−32

Table 8 Five‑fold cross‑validation results of CMAGN on the CMA‑9905 dataset

Measurement Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

AUROC 0.9614 0.9540 0.9616 0.9613 0.9674 0.9611

AUPR 0.9725 0.9655 0.9728 0.9717 0.9735 0.9712
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on the CMA-9905 dataset. Combined with the previous results on CMA-9589, these 
findings indicated that CMAGN is currently the best model for predicting CMAs.

Limitations of this study

The proposed model CMAGN exhibited high performance in predicting CMAs. How-
ever, some limitations must be addressed. The circRNA–miRNA adjacency matrix AS 
was directly fed into NCP to generate the recommendation matrix. The members in this 
matrix were either 0 or 1. Given that the strengths of different CMAs may not be the 
same, this representation was not perfect. Our model can be improved by employing 
quantitative representations of CMAs to the adjacency matrix. As a recommendation 
system, CMAGN can only predict novel CMAs from the involved circRNAs and miR-
NAs. For a circRNA or miRNA that is not in this system, CMAGN cannot identify its 
related CMAs. We had to discard the current model and rebuild a model that includes 
this circRNA or miRNA. The applicability of CMAGN was not good. In the future, we 
will expand this study by focusing on the above two aspects to design robust CMA pre-
diction models.

Conclusions
This study proposed a novel computational model called CMAGN to predict CMAs. It 
contained a complex procedure to extract informative representations of circRNAs and 
miRNAs, thereby building extensive similarity networks. These networks were then pro-
jected onto the CMA network by NCP to generate a reliable recommendation matrix. 
Ablation tests confirmed that the main parts of CMAGN are essential. The performance 

Table 9 Performance of different models for predicting CMAs on the CMA‑9905 dataset

The number with bold and underline is the highest number in the corresponding column

Model AUROC AUPR

KGDCMI [25] 0.8930 0.8767

WSCD [27] 0.8923 0.8935

SGCNCMI [23] 0.8942 0.8887

JSNDCMI [28] 0.9003 0.8999

BioDGW‑CMI [29] 0.9026 0.8962

BEROLECMI [30] 0.9104 0.9086

CMAGN 0.9611 0.9712

Table 10 Paired Student’s t‑test results of the CMAGN and other models on the CMA‑9905 dataset 
under five‑fold cross‑validation

Model P‑value

AUROC AUPR

KGDCMI [25] 1.33 ×  10−40 1.93 ×  10−43

WSCD [27] 1.09 ×  10−40 8.20 ×  10−42

SGCNCMI [23] 1.86 ×  10−40 2.60 ×  10−42

JSNDCMI [28] 1.16 ×  10−39 4.26 ×  10−41

BioDGW‑CMI [29] 2.43 ×  10−39 1.61 ×  10−41

BEROLECMI [30] 3.78 ×  10−38 5.16 ×  10−40
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of CMAGN was superior to that of existing models on two widely used CMA datasets, 
and it was more sensitive to circRNAs than miRNAs. This model can be a useful tool 
to identify potential CMAs. The codes and data used in this study can be accessed at 
https:// github. com/ brill iant- plus/ CMAGN.
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