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Abstract 

Traditional gene set enrichment analyses are typically limited to a few ontologies 
and do not account for the interdependence of gene sets or terms, resulting 
in overcorrected p-values. To address these challenges, we introduce mulea, an R 
package offering comprehensive overrepresentation and functional enrichment 
analysis. mulea employs a progressive empirical false discovery rate (eFDR) method, 
specifically designed for interconnected biological data, to accurately identify 
significant terms within diverse ontologies. mulea expands beyond traditional tools 
by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, 
regulatory elements, genomic locations, and protein domains. This flexibility enables 
researchers to tailor enrichment analysis to their specific questions, such as identifying 
enriched transcriptional regulators in gene expression data or overrepresented protein 
domains in protein sets. To facilitate seamless analysis, mulea provides gene sets 
(in standardised GMT format) for 27 model organisms, covering 22 ontology types 
from 16 databases and various identifiers resulting in almost 900 files. Additionally, 
the muleaData ExperimentData Bioconductor package simplifies access to these 
pre-defined ontologies. Finally, mulea’s architecture allows for easy integration of user-
defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), 
expanding its applicability across diverse research areas. mulea is distributed as a CRAN 
R package downloadable from https://​cran.r-​proje​ct.​org/​web/​packa​ges/​mulea/ 
and https://​github.​com/​ELTEb​ioinf​ormat​ics/​mulea. It offers researchers a powerful 
and flexible toolkit for functional enrichment analysis, addressing limitations 
of traditional tools with its progressive eFDR and by supporting a variety of ontologies. 
Overall, mulea fosters the exploration of diverse biological questions across various 
model organisms.
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Background
Large-scale ‘omics studies, such as transcriptomic and proteomic analyses, often 
generate extensive lists of genes, transcripts, or proteins exhibiting differential expression 
or specific characteristics. However, understanding the biological mechanisms 
underlying these gene lists can be challenging, and the analysis of individual genes can 
be insufficient for understanding complex biological processes. Overrepresentation 
analysis (ORA) and gene set enrichment analysis (GSEA) help extract meaningful and 
unbiased insights from ‘omics results by identifying shared characteristics among these 
lists of genes, transcripts, or proteins.

Early enrichment tools [1, 2] typically focussed on Gene Ontology (GO) [3] and/or 
KEGG pathway [4] enrichment, providing a way for researchers to identify overrepre-
sented functions from curated ontologies, and help researchers move from the analysis 
of single genes towards more biologically relevant insights. The development of GSEA 
[5] constituted a substantial departure from previous approaches, as instead of relying 
on a threshold to designate the significance of a set, the novel method took the distribu-
tion of all genes in a ranked list into account when determining enrichment. Over time, 
novel resources appeared [6–8], incorporating additional gene- or protein-level proper-
ties and downstream analyses [9] to offer a deeper understanding of the studied biologi-
cal systems. However, many tools still only focus on a narrow set of available ontologies 
or pathways, that are often predetermined by the developer, offering limited customi-
sation options to the user, and when a larger number of ontologies are available, they 
are usually only so for a handful of organisms (Table 1). Additionally, most enrichment 
tools rely on p-value adjustment methods that may be too conservative for interdepend-
ent biological ontologies such as GO and, therefore may exclude important biological 
insights. Prompted by the lack of such comprehensive approaches, we developed the R 

Table 1  Comparing the functionalities of mulea to other functional enrichment R packages and 
web servers

Name Type Nr. of species Nr. of 
ontology 
types

Can supply 
custom 
ontology

Empirical false 
discovery rate

mulea R package 27 22 ✓ ✓
clusterProfiler [8] R package Uses various databases ✓ ✗
Enrichr [6, 34] web server 2 227 ✗ ✗
fenr [35] R package As in the GO 

database
5 ✗ ✗

fgsea [17] R package Uses the msigdbr package [5] ✗ ✗
gprofiler2 [7] R package Uses the g:profiler database ✗ ✗
GOfuncR [36] R package As in the GO 

database
1 ✗ ✗

GOstats [37] R package 35 2 ✗ ✗
Metascape [38] web server 10 18 ✗ ✗
OpenXGR [39] web server 1 24 ✓ ✗
topGO [40] R package Undetermined 1 ✗ ✗
WebGestalt and 
WebGestaltR 
[41]

R package & web 
server

12 6 ✗ ✗
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package mulea: “multi-enrichment analysis”, which enables enrichment analyses using 
a diverse range of gene sets and ontologies for 27 model organisms, and improves the 
relevancy of the results by utilising a progressive empirical false discovery rate approach 
more appropriate for interdependent biological data.

mulea supports overrepresentation testing for a wide range of ontologies, including 
pathways, protein domains, genomic locations, GO terms, and gene expression 
regulators (such as transcription factors and microRNAs). We provide these ontologies 
from 16 publicly available databases, in a standardised GMT (Gene Matrix Transposed) 
format and through the muleaData ExperimentData Bioconductor package [10] for 27 
model organisms, from Bacteria to human. Furthermore, mulea accepts the standardised 
GMT format, allowing easy integration of other data sources, or even user-defined 
ontologies.

Traditional enrichment analysis methods suffer from the overcorrection of p-values. 
Specifically, conventional p-value adjustment methods, like the Bonferroni [11] and 
Benjamini-Hochberg [12], often fail to account for the inherent interconnectedness 
among gene sets and ontology entries, potentially missing biologically relevant terms 
with significant enrichment. To address this problem, we implemented the so-called 
“plug-in” estimate of the false discovery rate (Algorithm  18.3 of Hastie et  al. [13]) 
within the mulea package. This method is an empirical, resampling-based approach to 
calculating the false discovery rate (FDR), which we abbreviate as eFDR.

Implementation
Approaches implemented in the mulea package

The mulea R package provides two different approaches for functional enrichment 
analysis. For unranked sets of elements, such as significantly up- or downregulated 
genes, mulea employs the set-based overrepresentation analysis (ORA). Alternatively, 
if the data consists of ranked elements, for instance, genes ordered by p-value or log 
fold-change calculated by the differential expression analysis, mulea offers the gene set 
enrichment (GSEA) approach.

The unordered set‑based overrepresentation analysis (ORA)

Mulea implements a set-based enrichment analysis approach that utilises the 
hypergeometric test (which is analogous to the one-tailed Fisher’s exact test) to 
identify statistically significant overrepresentation of elements from a target set (e.g., 
significantly up- or downregulated genes) within a background set (e.g., all genes that 
were investigated in the experiment). Therefore, a predefined threshold value—such as 
0.05 for the corrected p-values and z-scores, or twofold change—has to be used in the 
preceding analysis.

Addressing multiple testing: p‑value correction and eFDR in the ORA analysis

Performing numerous statistical tests, such as evaluating enrichment across all 
ontology entries, leads to an inflated number of significant results (p-values < 0.05) 
due to chance, even if all null hypotheses are true. This phenomenon, known as 
the multiple testing problem, necessitates p-value correction. mulea offers various 
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methods, including Bonferroni and Benjamini–Hochberg p-value correction, and 
empirical false discovery rate (eFDR).

However, Bonferroni and Benjamini–Hochberg methods assume independent tests, 
which rarely holds true in functional enrichment analyses. For example, GO categories 
exhibit a hierarchical structure, potentially leading to unnecessary exclusion of 
significant results (enriched ontology entries). Therefore, mulea implements the 
robust, resampling-based eFDR, which takes into account the distribution of test 
statistics, making it better suited for analysing gene sets and ontologies typically 
employed by biologists. The eFDR implementation is based on the method described 
by Reiner et al. [14] and Hastie et al. [13].

The empirical false discovery rate (efdr)  For each ontology entry (j = 1,2,…,J) and the 
investigated target set (e.g., significantly differentially expressed genes), mulea calcu-
lates a p-value (pj) based on the hypergeometric test. To assess the unbiased statisti-
cal significance of each ontology entry, we compute the empirical false discovery rate 
(eFDRj) using a resampling-based approach.

First, we determine the rank of each ontology entry’s p-value relative to the p-values 
of all ontology entries. Rj refers to the rank of the p-value of the jth ontology entry. 
Here, we do note the indicator function with Iverson brackets: I():

To calculate the expected rank ( Rj ) of the p-value of the jth ontology entry, we apply 
a resampling strategy, where resampling steps are indexed with s = 1,2,…,S. In each 
resampling step, we generate a simulated target set with the same size as the original 
target set, but with randomly selected elements from the background set. Then 
we recalculate the hypergeometric tests and the ranks of the p-values ( Rs

j ) for each 
resampling step. Let Rj be the expectation of the Rs

j  values over s:

The eFDR of the jth ontology entry (eFDRj) is calculated as the ratio of the expected 
rank ( Rj ) to the actual rank (Rj). If the calculated eFDRj exceeds 1, it is truncated to 1.

To enhance clarity, a simplified R code illustrating the functional enrichment test 
and eFDR calculations is provided in the Supplementary Note.

Calculating the eFDR for all ontology entries is computationally demanding, 
especially for large ontologies and numerous resampling steps (mulea recommends 
at least 10,000). To significantly improve the processing speed, mulea implements 
the eFDR functionality in efficient C +  + code which can be run on multiple threads. 
While similar approaches exist in tools like Gowinda [15] and FuncAssociate [16], 
mulea offers advantages in terms of data type compatibility and offline usability.

Rj =

∑J

i=1
I
(

pi ≤ pj
)

, j = 1...J

Rj =

∑S
s=1R

s
j

S

eFDRj = min

(

Rj

Rj

, 1

)



Page 5 of 13Turek et al. BMC Bioinformatics          (2024) 25:334 	

The ranked list‑based gene set enrichment analysis (GSEA)

Mulea facilitates ranked list-based enrichment analysis using the GSEA approach. 
This method requires an ordered list of elements (e.g., genes or proteins) as input, 
where the order reflects the user’s prior analysis (e.g., p-values and/or fold-changes). 
The list should encompass all elements involved in the analysis, such as all expressed 
genes in a differential expression study. mulea leverages the Kolmogorov–Smirnov 
statistic coupled with a permutation test [5] to assess enrichment within gene sets. 
This implementation is achieved through the integration of the fgsea Bioconductor 
package [17].

Input types and formats

In the mulea, the overrepresentation analysis is implemented in the ora function 
which requires three inputs: (1) an ontology (e.g., GO) data frame that fits the 
investigated taxa and the applied gene or protein identifier type; (2) a vector 
containing the list of elements under investigation (e.g., differentially expressed 
genes), named as target set; and (3) a vector containing the background set of 
elements for the analysis (e.g., all genes that were investigated in the experiment). 
Likewise, the gsea function, which calculates the enrichment of ranked elements, 
requires three inputs: (1) an ontology data frame; (2) a vector containing the names 
or identifiers of the elements (genes or proteins); and (3) a vector containing values 
corresponding to their order (e.g., p-values or log fold-change values).

Ontologies

Mulea R package offers a rich collection of ontologies to enhance functional 
enrichment analyses. These ontologies span across diverse species: Arabidopsis 
thaliana, Bacillus subtilis, Bacteroides thetaiotaomicron, Bifidobacterium longum, 
Bos taurus, Caenorhabditis elegans, Chlamydomonas reinhardtii, Danio rerio, 
Daphnia pulex, Dictyostelium discoideum, Drosophila melanogaster, Drosophila 
simulans, Escherichia coli, Gallus gallus, Homo sapiens, Macaca mulatta, Mus 
musculus, Mycobacterium tuberculosis, Neurospora crassa, Pan troglodytes, Rattus 
norvegicus, Saccharomyces cerevisiae, Salmonella enterica, Schizosaccharomyces 
pombe, Tetrahymena thermophila, Xenopus tropicalis, Zea mays, and cover various 
biological concepts:

(1)	 Gene Ontology (GO): Ontologies are available for 13 species, ranging from 
Escherichia coli bacteria to humans, and are provided as separate ontologies for 
investigating biological processes, cellular components, and molecular functions. 
Additionally, combined versions for all three aspects are included.

(2)	 Pathway databases: Pathway information from various resources like Pathway 
Commons [18], Reactome [19], SignaLink [20], and WikiPathways [21] is 
incorporated for 14 species, providing insights into molecular networks.

(3)	 Transcription factor regulation: This category integrates data from ATRM [22], 
dorothEA [23], RegulonDB [24], TFLink [25], TRRUST [26], and Yeastract [27] 
databases, covering the regulatory influence of transcription factors for 8 species.
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(4)	 MicroRNA regulation: For 8 species, mulea offers microRNA regulation data 
sourced from miRTarBase [28], aiding in understanding microRNA-mediated gene 
regulation.

(5)	 Gene expression data: Specifically for fruit flies (Drosophila melanogaster), gene 
expression data from Flyatlas [29] and Modencode [30] is included.

(6)	 Genomic location data: This category, downloaded from Ensembl [31], provides 
detailed chromosomal location information (bands and consecutive genes) for 26 
species.

(7)	 Protein domain content: Protein domain information retrieved from the PFAM 
database [32] is available for 24 species, facilitating the identification of functional 
domains within sets of proteins.

The wide range of ontologies we provide, are stored in a standardised GMT 
format. These ontologies are also accessible through the muleaData ExperimentData 
Bioconductor package for added convenience. To cater to various research needs, the 
ontologies are available in all major gene and protein identifiers, including UniProt 
protein ID, Entrez ID, Gene Symbol, and Ensembl gene ID. We applied the API of 
UniProt (https://​www.​unipr​ot.​org/​help/​id_​mappi​ng) to map between different 
identifiers. For direct access, 879 pre-defined GMT files are hosted on a dedicated 
GitHub repository (https://​github.​com/​ELTEb​ioinf​ormat​ics/​GMT_​files_​for_​mulea).

The GMT format contains collections of genes or proteins associated with specific 
ontology entries in a tab-delimited text file. The GMT file can be read to R as a data 
frame using the read_gmt function of mulea or the ExperimentHub identifier of the 
ontology using the muleaData package. Each term is represented by a single row in 
the GMT file and in the data frame as well. Each row includes three types of elements: 
(1) The ontology identifier, referred to as “ontology_id”, which uniquely identifies the 
element within the file or data frame. (2) The ontology name or description, referred 
to as “ontology_name”, provides a user-friendly label or textual description that 
clarifies the meaning of each term. (3) A list of associated gene or protein identifiers 
(separated by spaces) belonging to each term.

Additionally, in the GMT files, comment lines starting with "#" provide 
supplementary information about the referenced ontology: e.g., type, source, 
species, version, and identifier type. Similar information is also available in the 
muleaData package when using the query function of the ExperimentHub library 
[33]. We recommend using the "primary identifiers" (listed in each GMT file and the 
Supplementary Table 1) for each ontology whenever possible. It is important to note 
that using alternative identifiers might lead to slightly different enrichment results 
due to potential inconsistencies in identifier coverage.

To enhance the biological interpretation of genomic and proteomic ndata, mulea’s 
adoption of the standardised GMT format allows the seamless integration of external 
data resources. This includes established databases like MsigDB [5] and Enrichr [6], 
as well as KEGG pathways (a conversion script is available in the https://​github.​
com/​ELTEb​ioinf​ormat​ics/​GMT_​files_​for_​mulea  GitHub repository). Notably, 
mulea accommodates user-defined ontologies, facilitates the translation between 
list variables and data frames with the list_to_gmt function, and has a dedicated 

https://www.uniprot.org/help/id_mapping
https://github.com/ELTEbioinformatics/GMT_files_for_mulea
https://github.com/ELTEbioinformatics/GMT_files_for_mulea
https://github.com/ELTEbioinformatics/GMT_files_for_mulea
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function (write_gmt) to save GMT files, for further expanding its analytical 
capabilities.

Refining enrichment analysis by  filtering ontology entries  Enrichment analysis results 
can sometimes be skewed by overly specific or too broad ontology entries. mulea empow-
ers users to address this issue by enabling the exclusion of such entries from the analysis. 
This filtering capability allows researchers to ensure that the results better match the 
expected scope.

Results
The mulea R package addresses the limitations of traditional enrichment analysis 
methods by offering a comprehensive and flexible toolkit. It tackles the issue of 
overcorrected p-values through a robust empirical false discovery rate (eFDR) method, 
specifically designed for interconnected biological data. mulea also goes beyond 
existing tools (Table 1) by incorporating a wide range of ontologies encompassing Gene 
Ontology, pathways, regulatory elements, genomic locations, and protein domains. This 
versatility allows researchers to tailor their enrichment analysis to specific questions, 
such as identifying enriched transcriptional regulators or overrepresented protein 
domains. 

Demonstrating the differences between the results when applying the eFDR and different 

p‑value correction methods

To elucidate the disparities between the eFDR and conventional p-value correction 
methods, we conducted an overrepresentation analysis using a test dataset of 
significantly upregulated Escherichia coli genes (GSE55662 Gene Expression Omnibus 
experiment [42]). The Regulon database [24], containing transcription factors 
and their target genes, provided the ontology for this analysis. We evaluated the 
overrepresentation of transcription factors targeting these upregulated genes, excluding 
those with fewer than 3 or more than 400 targets.

Utilising the ora function from the mulea package, we independently applied 
the eFDR analysis, the Benjamini-Hochberg, and the Bonferroni corrections to the 
raw p-values. A comparison of the significant results (where the eFDR or corrected 
p-value < 0.05, Supplementary Table  2) revealed that conventional p-value correc-
tions (Benjamini–Hochberg and Bonferroni) tend to be overly conservative, leading to 
a reduction in the number of significant transcription factors compared to the eFDR. 
As illustrated in Fig. 1, by applying the eFDR we were able to identify 10 transcription 
factors, while with the Benjamini–Hochberg and Bonferroni corrections only 7 and 3, 
respectively. This suggests that the eFDR may be a more suitable approach for control-
ling false positives in this context.

The eFDR method outperforms Benjamini–Hochberg p‑value correction for interconnected 

biological data

To evaluate the performance of the empirical false discovery rate (eFDR) versus the 
Benjamini–Hochberg p-value correction method in overrepresentation analysis, we 
conducted a simulation study. We generated artificial target gene sets using genes 
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from randomly selected source ontology entries. Tests were marked as true positives 
if the source ontology entries were found among significantly overrepresented results. 
Other significantly enriched ontology entries were counted as false positives.

We first identified an ontology that shows especially high overlaps (number 
of common genes) between its entries, and therefore is most affected by the 
overcorrection of p-values when applying the Benjamini–Hochberg correction. 
Our analysis identified the transcription factor—target gene interactions dataset for 
budding yeast (Saccharomyces cerevisiae) from the Yeastract database [27] as having 
the highest overlap between ontology entry pairs (mean number of overlapping genes: 
16.23, compared to the overall mean of all ontologies: 1.03).

We randomly selected 20% of the ontology entries from this dataset as source 
entries. To simulate biological data with noise, we used 85% of the genes associated 
with the source entries as the core target gene set and added other genes at vari-
ous ratios (0, 0.1, 0.2, and 0.3). In the overrepresentation analysis, all genes in the 
ontology were used as the background set. To calculate the eFDR we applied 1000 
resampling steps in each round. Finally, we investigated if the enrichment analysis 
recovered the original randomly chosen source ontology entries and calculated the 
true and false positive rates for each result in the case of the Benjamini–Hochberg 
p-value correction and the eFDR (Fig. 2). Each noise ratio scenario was repeated 1000 

eFDR

BH

Bonf.

FNR

LexA

SoxS

Rob

DnaA

FadR

NsrR

ArcA

IHF

MarA

Fig. 1  Overlap of transcription factors identified using the eFDR and different p-value correction methods. 
The Venn diagram shows the transcription factors whose target genes are overrepresented (eFDR of 
corrected p-value < 0.05) among significantly upregulated Escherichia coli genes (GSE55662 Gene Expression 
Omnibus experiment), using the Regulon database [24]. Transcription factors regulating less than 3 or more 
than 400 target genes were excluded. The diagram illustrates the overlap between transcription factors 
significantly overrepresented when using the eFDR (red), the Benjamini-Hochberg (abbreviated as BH, blue), 
and the Bonferroni (abbreviated as Bonf., green) p-value correction methods with the threshold < 0.05. The 
size of each section indicates the count of transcription factors specific to that method or shared between 
methods
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times, resulting in a total of four million individual analyses (4 noise ratios × 1000 
iterations with 1000 repeats each for eFDR calculation).

The overlapping entry calculator, simulation and plotting scripts are available on the 
https://​github.​com/​ELTEb​ioinf​ormat​ics/​mulea_​eFDR_​testi​ng GitHub repository.

Our simulations consistently revealed a significant improvement in true positive 
rates when employing the eFDR compared to the Benjamini–Hochberg method. This 
observation was statistically confirmed by one-sided paired t-tests, with all p-values 
falling below 2.2e−16 across the tested noise ratios. These results suggest that the eFDR 
method better captures the underlying structure of the data compared to the Benjamini–
Hochberg approach.

To investigate how the performance of the empirical false discovery rate compares 
to the Benjamini–Hochberg p-value correction method under varying conditions, we 

Noise ratio: 0.2 Noise ratio: 0.3

Noise ratio: 0 Noise ratio: 0.1

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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p-value correction method eFDR Benjamini-Hochbeg FDR

Fig. 2  Performance comparison of eFDR and Benjamini–Hochberg p-value correction method, using 
on a highly overlapping ontology. The scatter plot displays the true positive rate (y-axis) versus the false 
positive rate (x-axis) for different noise ratios (0, 0.1, 0.2, and 0.3), using the Yeastract database budding 
yeast transcription factor—target gene interactions GMT file which has the highest mean overlap between 
ontology entry pairs. Each data point represents the true and false positive rates of a single simulation 
experiment. Lines show local polynomial regression fits for each method, with red and blue colours 
representing eFDR and Benjamini–Hochberg results, respectively

https://github.com/ELTEbioinformatics/mulea_eFDR_testing
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repeated our previous analyses using an ontology with a low mean overlap (0.9) between 
ontology entry pairs. We employed a GMT file containing budding yeast transcription 
factor-target gene interactions, measured using small-scale methods, obtained from the 
TFLink database. Our findings revealed that while the eFDR still yielded a higher rate 
of true positives than the Benjamini–Hochberg correction, the performance differences 
between the two methods were less pronounced but remained statistically significant 
(Supplementary Figure).

Visualisation of results

Mulea offers various formats for presenting enrichment analysis results. By default, both 
ORA and GSEA results are provided in a tabular format. Additionally, users can lever-
age the mulea package to generate diverse visualisations, including lollipop and barplot 
charts, networks, and heatmaps (Fig. 3).

Discussion and conclusions
Here we present the mulea R package, offering a unique combination of features 
for functional enrichment analysis. mulea integrates two enrichment approaches 
(ORA and GSEA) with an empirical false discovery rate (eFDR) correction method, 
providing robust statistical assessments. Additionally, mulea encompasses diverse 
ontologies for enrichment analysis across multiple species, data types, and identifiers, 
catering to a broad range of research needs. While some functionalities overlap 
with existing software (Table  1), mulea presents a comprehensive solution, uniting 
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Fig. 3  Visualization examples for an overrepresentation analysis. Visualisation of transcription factors whose 
target genes are overrepresented among significantly upregulated Escherichia coli genes (GSE55662 Gene 
Expression Omnibus experiment), using the Regulon database [24]. Transcription factors regulating less than 
3 or more than 400 target genes were excluded. A Lollipop chart: visualises the distribution of eFDR values 
(x-axis) < 0.05 for enriched transcription factors (y-axis). B Network representation: nodes represent enriched 
transcription factors (coloured based on eFDR values), while edges connect nodes sharing at least one target 
gene among the significantly upregulated genes, and are weighted by the number of such shared genes. 
C Heatmap: illustrates which elements (target genes, x-axis) belong to enriched ontologies (transcription 
factors, y-axis). Cell colours correspond to eFDR values
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advanced methods and gene sets within a single package. This streamlined approach 
simplifies the analysis process and facilitates the interpretation of high-throughput 
results. While mulea shares functional similarities with tools like Enrichr, g:Profiler, 
and clusterProfiler, it offers several distinct advantages. Notably, compared to these 
tools, mulea implements a more appropriate multiple-testing correction method 
(eFDR) making the analysis more sensitive to detect significant enrichments in 
commonly used biological ontologies. Furthermore, mulea provides pre-defined gene 
sets for a broad range of organisms by including 27 species. Thus, mulea extends 
beyond an established gene set collection, MSigDB, which is limited to human and 
mouse. This broader species coverage enhances the applicability of mulea to various 
research contexts. Furthermore, mulea empowers users to incorporate their own 
ontologies using a dedicated function, enabling them to leverage datasets from diverse 
sources and extend the analytical scope beyond the default options. These unique 
features establish mulea as a versatile and user-friendly resource for researchers 
conducting functional enrichment analyses.
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