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Abstract 

Background: E. coli chemotactic motion in the presence of a chemonutrient field can 
be studied using wet laboratory experiments or macroscale‑level partial differential 
equations (PDEs) (among others). Bridging experimental measurements and chemot‑
actic Partial Differential Equations requires knowledge of the evolution of all underlying 
fields, initial and boundary conditions, and often necessitates strong assumptions. In 
this work, we propose machine learning approaches, along with ideas from the Whit‑
ney and Takens embedding theorems, to circumvent these challenges. 

Results: Machine learning approaches for identifying underlying PDEs were (a) vali‑
dated through the use of simulation data from established continuum models and (b) 
used to infer chemotactic PDEs from experimental data. Such data‑driven models were 
surrogates either for the entire chemotactic PDE right‑hand‑side (black box models), or, 
in a more targeted fashion, just for the chemotactic term (gray box models). Further‑
more, it was demonstrated that a short history of bacterial density may compensate 
for the missing measurements of the field of chemonutrient concentration. In fact, 
given reasonable conditions, such a short history of bacterial density measurements 
could even be used to infer chemonutrient concentration.

Conclusion: Data‑driven PDEs are an important modeling tool when studying 
Chemotaxis at the macroscale, as they can learn bacterial motility from various data 
sources, fidelities (here, computational models, experiments) or coordinate systems. 
The resulting data‑driven PDEs can then be simulated to reproduce/predict compu‑
tational or experimental bacterial density profile data independent of the coordinate 
system, approximate meaningful parameters or functional terms, and even possibly 
estimate the underlying (unmeasured) chemonutrient field evolution.
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Background
We study models of the phenomenon of chemotactic migration of bacteria, i.e. their 
ability to direct multicellular motion along chemical gradients. This phenomenon is cen-
tral to environmental, medical and agricultural processes [1].

Chemotaxis can be studied at several (complementary) levels [2]: extensive fundamen-
tal research focuses on understanding the cellular mechanisms behind sensing chemoat-
tractants/chemorepellents and how they induce a motility bias [3–5]. Another approach 
is to understand and simulate chemotaxis in the context of stochastic processes and 
Monte Carlo methods [6–9]. It is also possible, at appropriate limits, to employ mac-
roscopic PDEs to simulate the spatiotemporal evolution of bacterial density profiles in 
the presence of a chemoattractant/chemorepellent field [10]. In the latter approach, the 
Keller-Segel model has been historically successful [11]:

where b(x, t) denotes the bacterial density, D the diffusion coefficient and S is the spa-
tial field of the chemoattractant/chemorepellent (here considered constant in time). This 
model explicitly describes cell motility through two terms: a diffusion term (usually iso-
tropic) and a chemotactic term, which encapsulates the response of the bacteria in the 
presence of a chemoattractant/chemorepellent field. This response includes signal trans-
duction dynamics and properties of cellular chemoreceptors. In this term, the function 
χ : R → R can be tuned for different kinds of chemotactically relevant substances and 
their spatial profile. Most importantly, the sign of χ distinguishes chemoattractants vs. 
chemorepellents. In general, the dynamics of S are described by a second PDE (for the 
field S(x, t)) coupled with the one above (see Eq. 10). In this work, we will deal only with 
chemoattractants (and specifically chemonutrients).

Despite the generality and applicability of the Keller-Segel model, a quantitative 
closed-form formula for the chemotactic term is very difficult, or even impossible, to 
obtain. For example, to model the chemotactic motion of Escherichia coli (E. coli) in 
heterogeneous porous media, Bhattacharjee et al., have used an extension of the Keller-
Segel model [1] (see Eq. 10). This model includes logarithmic sensing (Weber-Fechner 
Law) an experimentally validated phenomenon [4, 12, 13] and has been used in the 
past to understand chemotaxis experiments [14, 15]. In that model, bacteria bias their 
motion towards the chemonutrient which they can consume (see second PDE in Eq. 10). 
In that process, and for initial conditions corresponding to the experimental data pre-
sented here, they exhibit a macroscopic coherent propagating “bacterial wave”.

In this work, we demonstrate a toolbox of machine learning methodologies that help 
learn different forms of the law of macroscopic chemotactic partial differential equa-
tions, either from simulations or from experimental data. These methods essentially 
help construct macroscopic surrogate models either (a) for the entire right-hand-side 
of the PDEs (black box) or (b) for some of the right-hand-side terms that are analyti-
cally unavailable/intractable while the remaining are known (gray box model). Even 
though the functional form of the PDE right-hand-side cannot be analytically recovered, 
it is efficiently approximated by machine learning algorithms guaranteeing universal 
approximation.

(1)
∂b

∂t
= ∇ · (D∇b− bχ(S)∇S),
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Understanding and predicting the behavior of such a complex system is always a 
challenge. When the single-agent dynamics are known (possibly from first principles), 
the system can be studied and simulated at the microscale. Macroscale behavior natu-
rally arises from simulating sufficiently large agent ensembles. It is sometimes possible 
to derive macroscale partial differential equations from the dynamics of the individual 
agents [9, 16]. Such PDE-level descriptions are particularly attractive, as we are usually 
interested in the evolution of only a few, important macroscopic variables, rather than 
of each individual “microscopic” agent (i.e. each individual bacterium). Importantly, one 
also needs to know which (and how many) macroscopic variables/observables are suffi-
cient to usefully construct a closed macroscopic evolution equation (e.g. [17]).

For systems of great complexity, an accurate macroscopic PDE may be out of reach. 
One could only gather (full or partial) information from experiments and/or fine-scale, 
individual based/stochastic simulations. This calls for a data-driven approach to “dis-
cover" a macroscopic law for a coarse PDE, solely from spatiotemporal data (experimen-
tal or computational movies). Such a data-driven PDE can then be exploited towards the 
following purposes: 

1 Predicting the time evolution starting from different initial conditions or in out-of-
sample spatiotemporal domains. This is particularly attractive when it is not easy to 
probe the system and extract such profiles “on demand” from experiments or simula-
tions. On the contrary, such data-driven models can provide predictions without the 
need to recalibrate/retrain for different scenarios, owing to the generalizability of the 
(learned) PDE laws. Note that, as in any data-driven modeling approach, generaliz-
ability strongly depends on the training data selection (see [9] for a discussion and 
example).

2 Reconstructing the full behavior of the system even when only partial information is 
at hand (i.e. when we do not have data for all important macroscopic variables). This 
is particularly interesting in the case where chemonutrient concentrations are dif-
ficult to observe due to experimental limitations [18].

3 If a qualitatively correct but quantitatively inaccurate macroscopic model happens to 
be available, a quantitative data-driven model can help probe and even understand 
different components of the system’s behavior [9]. This can be a way to shed light on 
the fundamental physical laws of the studied system (explainability).

Our work falls in the general category of nonlinear system identification using data-
driven, machine-learning-assisted surrogate models. Neural Networks have repeat-
edly demonstrated successes in learning nonlinear Ordinary [19] or Partial Differential 
Equations [17, 20]. More recently, with the increased accessibility of powerful computa-
tional hardware and the computational efficiency of machine learning algorithms, non-
linear system identification has attracted a lot of attention [21–24] and has motivated 
the design of novel approaches and architectures. Notable among these approaches are 
Neural ODEs [25] and Convolutional Neural Networks [26, 27], sparse identification 
[28] and effective dynamics identification [29, 30].

It is worth making a distinction between our approach and physics-informed Neu-
ral Networks (PINNS, [23]). Even though our approach allows for the incorporation of 
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some physics knowledge (i.e. part of the PDE might be known, as in our gray boxes) 
our goal remains the discovery of the law of the PDE, or terms thereof. On the contrary, 
PINNS aim at approximating the solution of the PDE knowing the law. A major differ-
ence, is that in PINNs the solution is obtained for a specific configuration of spatiotem-
poral domain, initial and boundary conditions. In principle, learning a (local, PDE) law 
instead, allows for data-driven modeling in any such configuration. A possible byprod-
uct of PINNS could be parameter estimation [23, 31] but this still differs significantly 
from system identification, as we do.

Models and results
We constructed data-driven models for two different data sources (which, however cor-
respond to the same general chemotaxis scenario): 

 (i) PDE simulation data: The Chemotactic PDE described and used in [1] was simu-
lated and data were collected for both bacterial density and nutrient concentra-
tion fields. Details about this PDE and its simulation can be found in Materials and 
Methods.

 (ii) Real-world data from chemotaxis experiments were used. These experiments were 
performed by Bhattacharjee et al. and described in [1].

The results are presented separately for each of these two categories.

Models for simulation data

PDE simulations included the integration of two coupled PDE fields, one describing the 
bacterial density b and one describing the nutrient density c (System 10). The PDE solu-
tion can be seen in Fig. 1.

Fig. 1 PDE simulations representing the ground truth of the simulations: (left) b(r, t) field and (right) c(r, t) 
field. For clarity, arrows are added to denote the direction of time
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To learn from simulation data, we considered a variety of machine-learning-enabled 
data-driven models; they are listed in Tables1 and 2; the relevant notation is summarized 
in the Table captions. In the text that follows, a representative selection (see the captions in 
Tables 1, 2) will be described in more detail; the remaining ones are relegated to the Sup-
plementary Information.

Black box data‑driven models

Consider a system described by d macroscopic scalar variable fields ( u(1), ...,u(d) ). 
Assuming a one-dimensional domain along the vector x̂ (for an example in cylindrical 
coordinates see Fig. 12) discretized through m points in space (x) and n points in time 
(t), we are given m · n data points in Rd . Using interpolation/numerical differentiation, 
we can estimate the temporal derivatives u(1)t , ...,u

(d)
t  , as well as various order derivatives 

in space (first, u(1)x , ...,u
(d)
x  , second u(1)xx , ...,u

(d)
xx  , etc). We assume that we know a priori 

the largest order of relevant spatial derivatives (here, two) [32], the coordinate system, 
and the boundary conditions (here, zero flux). We also assume that the spatiotempo-
ral discretization satisfies the necessary criteria for a numerically converged PDE solu-
tion. Given these derivatives, we can compute all relevant local operators, such as: 
∇u(i),�u(i), i ∈ {1, ..., d}.

Our objective is to learn functions fi : R3d·m → R
m, i ∈ {1, ..., d} such that:

(2)u
(i)
t = fi(u

(1), ...,u(d),∇u(1) · x̂, ...,∇u(d) · x̂,�u(1), ...,�u(d))

Table 1 Listing of all data‑driven models explored in the manuscript.

f, h denote surrogate functions for the entire RHS of the b− and c−PDE respectively, while g denotes a surrogate for the 
chemotactic term. Subscripts “GPR” and “NN” denote Gaussian Process Regression and Artificial Neural Network respectively. 
�t denotes the time delay used in all models with partial information. Only the models in rows indexed 2,3,4,6,8  will be 
presented in detail in the following sections; the rest are included in the Supplementary Information

Model Surrogate function Known fields Known RHSs Output Algorithm

Black box for 2 PDEs fGP , hGP b(r, t), c(r, t) – bt , ct GPR

fNN , hNN b(r, t), c(r, t) – bt , ct ANN

Black box for 1 PDE fGP b(r, t), c(r, t) ct bt GPR

fNN b(r, t), c(r, t) ct bt ANN

Black box, delays f
partial
GP

b(r, t), history – b(r , t +�t) GPR

f
partial
NN

b(r, t), history – b(r , t +�t) ANN

Gray box gGP b(r, t), c(r, t) ct bt − Db�b GPR

gNN b(r, t), c(r, t) ct bt − Db�b ANN

Gray box, delays g
partial
GP

b(r, t), history – b(r , t +�t)− Db�b(r , t) GPR

g
partial
NN

b(r, t), history – b(r , t +�t)− Db�b(r , t) ANN

Table 2 Summary of all data‑driven models for learning the nutrient field (denoted as c(x, t)). Only 
the second  model will be presented in detail in this section. The other model is included in the 
Supplementary Information

Surrogate function Known fields Known RHSs Output Algorithm

CGP b(r, t), history – c(r, t) GPR

CNN b(r, t), history – c(r, t) ANN
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This is a black box expression for the time derivative of a macroscopic field expressed 
as a function of the relevant lower order coordinate-independent local spatial operators, 
operating on the fields. The coordinate-independent nature of the input features, allows 
the use of such data-driven laws across different coordinate systems, as well as fusion 
of data from different coordinate systems in the training. This property, we believe, is 
of great importance as it results in versatile, generalizable models. After training (after 
successfully learning this function based on data) integrating this model numerically can 
reproduce spatiotemporal profiles in the training set, and even hopefully predict them 
beyond the training set. The arguments of fi will be the features (or input vectors) and 
u
(i)
t  will be the target (or output vector) of our data-driven model. Note that, usually, 

not all features are informative in the learning of fi (in other words, only some orders of 
the spatial derivatives appear in the PDE right-hand-side). Also, note that not all macro-
scopic variables u(i) are always necessary for learning fj , j  = i . In the spirit of the Whit-
ney and Takens embedding theorems [33, 34], short histories of some of the relevant 
variable profiles may “substitute” for missing observations/measurements of other rel-
evant variables.

Coordinate invariant learning

In Cartesian coordinates the operators used as inputs to learn right-hand sides (or, 
here, chemotactic terms) are simply related to the spatial derivatives; but in curvilin-
ear coordinates, or when the evolution occurs on curved manifolds, the relation 
between spatial derivatives and local operators needs more care. We consider physi-
cal Euclidean space R3 (regarded as a Riemannian manifold with Euclidean metric 
expressed as g = (dx)2 + (dy)2 + (dz)2 in Cartesian coordinates (x, y, z)). The gradi-
ent, grad f  , of a smooth function f : R3 → R is a vector pointing in the direction at 
which f grows at its maximal rate and whose length is said maximal rate —note that 
this definition is independent of the system of coordinates on R3 . The phase flow of a 
smooth vector field v : R3 → R

3 can be regarded as the motion of a fluid in space. The 
divergence of v, denoted by div v , is the outflow of fluid per unit volume at a given 
point. Again, the definition is coordinate frame independent; the expression 
div v = ∂v1

∂x + ∂v2
∂y + ∂v3

∂z  is valid in Cartesian coordinates. The Laplacian is the compo-
sition of the gradient followed by the divergence (in other words, � = div grad ), again 
independently of the choice of coordinates.

Note that in our specific case of cylindrical coordinates with only the compo-
nent along the radial dimension (with unit vector denoted r̂ ) being important due to 
domain-specific symmetries, the right-hand-side of a PDE will explicitly depend on 
the local radius as well. In the above formulation, this is incorporated in the Laplacian 
term �u(i) = 1

r
∂
∂r (r

∂u(i)

∂r ) . For the construction of all relevant differential operators in 
any coordinate system, it is possible to use ideas and tools from Exterior Calculus 
(see Supplementary Information). In the Supplementary Information we also include 
some case studies that demonstrate the coordinate-invariance of our proposed algo-
rithmic framework.

Black box learning of both PDEs with an ANN (from known fields b(r, t), c(r, t))
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With training data from both b(r,  t) and c(r,  t) fields, we learned a neural network 
of the form described in Eq. 3. Figures 2, 3 show how the data-driven PDEs were able 
to learn the laws of time evolution of both b(r,  t) and c(r,  t). The data-driven models 
were used to reproduce the training data and could successfully extrapolate as far as we 
attempted (here, up to t = 290s).

Black box learning of bt with ANN - ct known (with fields b(r, t), c(r, t) known)

(3)
[
bt
ct

]
=

[
f
h

]
= FNN (b,∇b · r̂,�b, c,∇c · r̂,�c)

Fig. 2 Black box learning of both PDEs with an Artificial Neural Network: (left) Integration results for the first 
data‑driven PDE (for b(r, t)) and (right) relative error (%)

Fig. 3 Black box learning of both PDEs with an Artificial Neural Network: (left) Integration results for the 
second data‑driven PDE (for c(r, t)) and (right) relative error (%)
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Figure 4 showcases learning of one of the two data-driven PDEs when the second PDE 
is known. Here, the chemonutrient (c(r,  t)) PDE is assumed known, and the bacterial 
density evolution PDE is learned with a neural network, similar to Eq.  3. The trained 
ANN is able to approximate the ground truth PDE right-hand-side in the proximity 
of the training dataset. To assess the ANN’s approximation ability, one can look at the 
norm of the difference between ground truth (“functional”) and ANN approximated 
outputs for the same inputs: ||bfunctionalt − bANNt ||22 . For a data cloud close to the training 
data ( ±10% in each direction) this norm represents an average relative error in the order 
of 2%. For comparison purposes, we also trained a Gaussian Process Regression algo-
rithm for the same task (see. Fig. 5).

Black box ANN learning of a single field evolution equation, with only partial informa-
tion (only the field b(r, t) is observed)

After the initial success of the previous section, we decided to attempt a computational 
experiment, based on the spirit of the Takens embedding for finite-dimensional dynami-
cal systems [33–38].

The idea here is that, if only observations of a few (or even only one) variables involved 
are available, one can use history of these observations (“time-delay” measurements) to 
create a useful latent space in which to embed the dynamics -and in which, therefore, 
to learn a surrogate model with less variables, but involving also history of these vari-
ables [39, 40]. There are important assumptions here: finite (even low) dimensionality 
of the long-term dynamics, something easier to contemplate for ODEs, but possible for 
PDEs with attracting, low dimensional, (possibly inertial) manifolds for their long-term 
dynamics. There is also the assumption that the variable whose values and history we 
measure is a generic observer for the dynamics on this manifold.

(4)bt = fNN (b,∇b · r̂,�b, c,∇c · r̂,�c)

Fig. 4 Black box learning with a Neural Network: (left) Integration results for the data‑driven PDE and (right) 
% relative error
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One can always claim that, if a 100-point finite difference discretization of our prob-
lem is deemed accurate (so, for two fields, 200 degrees of freedom), then the current 
discretized observation of one of the two fields (100 measurements) plus three delayed 
observations of it ( 3× 100 ) plus possibly one more measurement give us enough vari-
ables for a useful latent space in which to learn a surrogate model. Here we attempted 
to do it with much less: at each discretization point we attempted keeping the current 
b(r,  t) field measurement and its spatial derivatives, and added only some history (the 
values and spatial derivatives at the previous moment in time). The equation below is 
written in discrete time form (notice the dependence of the field at the next time step 
from two previous time steps); it can be thought of as a discretization of a second order 
in time partial differential equation for the b(r, t) field, based on its current value and its 
recent history.

with �t = tk+1 − tk , for any time point tk , k � 1.
Figure 6 demonstrates learning a data-driven (discrete in time here) evolution equa-

tion for the bacterial density b(r, t) when only data for b(r, t) are at hand (partial infor-
mation). Even though we knew the existence of another, physically coupled field, we 
assumed we cannot sample from it, so we replaced its effect on the b(r, t) field through 
a functional dependence on the history of b(r, t). Simulation of the resulting model was 
successful in reproducing the training data and extrapolating beyond them in time.

Gray box data‑driven models

A similar approach can be implemented when we have knowledge of a term/ some 
of the terms but not of the rest of the terms of the right-hand side. In the specific 

(5)b(tk+1) =b(tk)+�tf
partial
NN (b(tk), (∇b · r̂)(tk), (�b)(tk), ;

b(tk−1), (∇b · r̂)(tk−1), (�b)(tk−1)),

Fig. 5 Black box learning with Gaussian Process Regression: (left) Integration results for the data‑driven PDE 
and (right) % relative error
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context of chemotaxis, we are interested in learning just the chemotactic term, i.e. 
functions gi : R3d·m → R

m, i ∈ {1, ..., d} such that:

where D(i) is an a priori known diffusivity. This is now a gray box model for the macro-
scopic PDE, and is particularly useful in cases where an (effective) diffusion coefficient is 
easy to determine, possibly from a separate set of experiments or simulations [9]. Again, 
as for black box models, gray boxes can also be formulated in the case of partial infor-
mation, i.e. when not all fields u(i) are known, by leveraging history information of the 
known variables. Note that this framework (but also the black box one) can be adjusted 
to account for parametric dependence, which enables further downstream objectives, 
such as bifurcation studies or parameter estimation. See Eq. 8 for a demonstration of a 
gray box model used to identify the upper and lower characteristic bounds of logarith-
mic sensing [1].

Gray box learning with ANN - ct known (with fields b(r, t), c(r, t) known)

Figure  7 shows the performance of gray box models, where only the chemotactic 
term of the bacteria density PDE was considered unknown. For this gray box model, 
the effective diffusion coefficient for the bacterial density was considered known. In 
principle, one could also hardwire the knowledge of the functional form of this term in 
the loss of the neural network, and thus obtain an estimate of this diffusivity in addi-
tion to learning the chemotactic term in the PDE.

As mentioned before, the gray box framework can be adjusted to account for para-
metric dependence:

(6)u
(i)
t − D(i)�u(i) = gi(u

(1), ...,u(d),∇u(1) · x̂, ...,∇u(d) · x̂,�u(1), ...,�u(d)),

(7)bt − Db�b = gNN (b,∇b · r̂,�b, c,∇c · r̂,�c)

Fig. 6 Black box partial‑information learning with a Neural Network: (left) Integration results for the 
data‑driven PDE and (right) % relative error
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where p = (c+, c−) here describes the upper and lower characteristic bounds of logarith-
mic sensing. After generating an appropriate dataset and training an ANN (see Methods 
for details), it was possible to recover the parameter vector p used in our simulation, by 
minimizing:

Specifically, the ground truth parameter vector was p = (30, 1)µM while the recovered 
p = (31.63, 1.48)µM (average value).

Estimating the chemonutrient field–computational data.

Following up the above success in using Takens’ embeddings (and more generally, Whit-
ney embeddings) [33, 34] for low-dimensional long-term dynamics, we attempted to 
estimate (i.e. create a nonlinear observer - a “soft sensor” of ) the chemonutrient field 
from local measurements of the bacterial fields and its history [41, 42]. More specifically, 
we attempted to train a neural network to learn (in a data driven manner) c(ri, tk) as a 
function of some local space time information:

for any discretization point is space ri and time point tk , k � 1.
Indeed, if the long-term simulation data live on a low-dimensional, say m−dimensional 

manifold, then 2m+ 1 generic observables suffice to embed the manifold, and then 
learn any function on the manifold in terms of these observables. Here we attempted 
an experiment with a neural network that uses a local parametrization of this manifold, 

(8)bt − Db�b = gNN∗(b,∇b · r̂,�b, c,∇c · r̂,�c, p),

(9)L(p) = ||bt − Db�b− gNN∗(b,∇b · r̂,�b, c,∇c · r̂,�c, p)||22.

(8a)
c(ri, tk) =CNN (b(ri, tk), (∇b · r̂)(ri, tk), (�b)(ri, tk), b(ri, tk−1),

(∇b · r̂)(ri, tk−1), (�b)(ri, tk−1)),

Fig. 7 Gray box learning with a Neural Network: (left) Integration results for the data‑driven PDE and (right) 
% relative error
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testing if such a local parametrization can be learned (in the spirit of the nonlinear dis-
cretization schemes of Brenner et al [43]).

There is, however, one particular technical difficulty: because the long-term dynamics 
of our problem appear in the form of travelling waves, both the front and the back of the 
wave appear practically flat – the spatial derivatives are all approximately zero, and a 
simple neural network cannot easily distinguish, from local data, if we find ourselves in 
the flat part in front of the wave or behind the wave. We therefore constructed an addi-
tional local observable, capable of discriminating between flat profiles “before” and flat 
profiles “after” the wave. Indeed, when the data represent the spatiotemporal evolution 
of a traveling wave (as in our training/testing data set), we expect a singularity close to 
b(r, t) = 0 . Clearly, however, the c field is dramatically different on the two “flat bacteria” 
sides (see the left panel of Fig. 8). When learning such a function locally, to circumvent 
this singularity, we proposed using a transformation of two of the inputs: 
(b,∇b · r̂) →

(
b, arctan( (∇b·r̂)

b̄

)
 , where the bar symbol denotes an affine transformation 

of the respective entire feature vector to the interval [−1, 1] . This transformation brings 
points at different sides of the aforementioned singularity at different ends of a line, 
exploiting their difference in sign (see Fig. 8).

Then, the Neural Network was trained to learn the estimator (nonlinear observer) of 
the chemonutrient field as:

for any discretization point is space ri and time point tk , k � 1.
As it can be seen from Fig. 9 through the model in Eq. 8b it was possible to provide 

reasonable predictions for the chemonutrient field.

Black box model ‑ experimental data

The chemotactic motion of bacteria can also be studied through laboratory experi-
ments. As shown in [1], chemotactic motion can be tracked using confocal fluo-
rescence microscopy of E. coli populations; thus, we used the data from these prior 
experiments here. As detailed further in [1], we 3D-printed a long, cylindrical 

(8b)
c(ri, tk) =CNN (b(ri, tk), arctan

(
(∇b · r̂)(ri, tk)

b(ri, tk)

)
,

(�b)(ri, tk), b(ri, tk−1), (∇b · r̂)(ri, tk−1), (�b)(ri, tk−1)),

Fig. 8 Transformation on the inputs: (left) representative profiles of both fields b(r, t), c(r, t), (middle) 
visualization of the singularity, (right) transformed variable
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inoculum of densely-packed cells within a transparent, biocompatible, 3D porous 
medium comprised of a packing of hydrogel particles swollen in a defined rich liquid 
medium. Because the individual particles were highly swollen, their internal mesh size 
was large enough to permit free diffusion of oxygen and nutrient (primarily L-serine, 
which also acts as a chemonutrient), but small enough to prevent bacteria from pen-
etrating into the individual particles; instead, the cells swam through the interstitial 
pores between hydrogel particles.

We hypothesized that the spatiotemporal behavior of cell density observed in the 
experiments results from a PDE similar to the one used in simulations (Eq. 10). How-
ever, as the authors of [1] examine, several corrections are necessary in order to account 
for cell crowding, nutrient depletion and cell growth. In addition, spatiotempotal obser-
vations of the nutrient concentrations were not experimentally feasible to measure. Hav-
ing no measurements of the spatiotemporal evolution of the chemonutrient, we turned 
to the methodology described earlier for data-driven models with partial information.

Interpolation in time allowed for well-approximated time derivatives as we could 
choose data along t as dense as necessary. In fact, it was possible to estimate second 
order in time derivatives, which could be used to learn a second order in time continu-
ous-time PDE in lieu of a delay model [39], such as that used in Eq. 5:

This was treated as two coupled first-order PDEs, using the intermediate “velocity” field 
v(r, t):

Given the nutrient-starved/hypoxic conditions at r ≈ 0 (see Materials and methods), our 
training data were selected away from the origin. We prescribed bilateral boundary cor-
ridors to provide data-informed boundary conditions when integrating the learned PDE.

(9a)btt = f
exp
NN (b,∇b · r̂,�b, bt)

(9b)vt = f
exp
NN (b,∇b · r̂,�b,u), bt = v

Fig. 9 Learning the c‑field with a Neural Network: (left) Field prediction and (right) % relative error
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The model was validated by integration in the spatiotemporal domain of the formation 
and propagation of the traveling wave (shown in red in Fig. 10). Integration results can 
be seen in Fig. 11.

Discussion
Several observations arise from comparing results of different models or methodologies 
presented in Models and Results.

• For the model in Eq. 3, where both PDEs are data-driven it is obvious that the c(r, t) 
PDE is easier to learn and predict than the b(r,  t) PDE, both for the ANN and the 
GPR (see, for example Figs.  4, 5 or the Supplementary Information). This can be 
understood in terms of complexity of these two target functions: The bt expression 
is highly nonlinear (owing mostly to the logarithmic chemotactic term) and complex, 
as it depends on most of the input features. On the contrary the ct expression only 
depends on a handful of inputs and is less complicated.

• When learning both PDE right-hand sides (model in Eq. 3), it is straightforward to 
employ an ANN for multiple output prediction. However, multiple output GP (or 

Fig. 10 Segmentation of the pre‑processed data into: boundary corridors/ discarded data, training subset 
(the complement), subset chosen for reproduction (red rectangle)

Fig. 11 Reproduction of experimental observations using a Data‑driven Neural Network for the traveling 
wave regime: (left) Ground Truth, (middle) Neural‑Network PDE integration results, (right) % Relative Error
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cokriging) is non-trivial [44] and therefore, multiple single-output GPs are preferred 
instead.

• When comparing the ANN methodology with the GPR (for example in Figs. 4, 5 or 
in the Supplementary Information), for the same model, it can be seen that ANNs 
tend to produce more accurate predictions than GPR. This may be attributed to the 
ANN’s versatility and efficiency in capturing the nonlinearities and complexities of 
any target function. We should also mention that, due to memory constraints, GPR 
was trained only with an appropriately chosen subset of the training data. This could 
cause the loss of accuracy in long term predictions. However, it is important to note, 
that the error in GPR is always smooth, owing to the smoothness of the Gaussian ker-
nel (see Supplementary Information).

• Comparing the predictions for bt from models in Eqs.  3 and 4 it can be seen that 
when only one of the PDEs is data-driven, the predictions are more accurate. This 
may be rationalized in terms of error accumulation during integration: when both 
PDEs are data-driven, both of the PDEs contribute to prediction error which will 
propagate along the integration trajectory.

• The models with partial information were trained with a single (therefore, fixed) 
delay ( tk − tk−1 ), which imposes important restrictions on how we can advance in 
time. A natural way to do this, is with a Forward Euler scheme with a timestep equal 
to the delay used in training, as explicitly shown in Eq. 5.

Observations for models for simulations data are aligned with those for the experimental 
data: A second order model can indeed capture the dynamics of a data set with partial 
information. In this case, a deeper Neural Network is required to capture the real-world 
dynamics from experimental observations. The data-driven PDE manages to capture 
important characteristics of the traveling wave, such as its speed and amplitude. It also 
manages to capture the dynamics on the left of the traveling wave: the bacteria density 
remains stationary, as in that region the chemonutrient gradient is negligible. Note that, 
as discussed in [1], analytical models fail to capture this behavior without non-autono-
mous correction terms.

Conclusions
We demonstrated how data-driven methods are able to learn macroscopic chemotac-
tic PDEs from bacterial migration data. The methodology presented was applied either 
to data sets from fine PDE simulations or from experiments. For an example with agent-
based computations see [9]. The same task can be accomplished even when the data at 
hand are partial, noisy, and/or sparse. It is also possible to learn just one term of a PDE, or 
a certain PDE out of a set of coupled PDEs. These data-driven models were able to repro-
duce spatiotemporal profiles used for training and extrapolate further in time. This work 
showcases that data-driven PDEs are a versatile tool which can be adjusted and imple-
mented to many different problem settings, data sets or learning objectives. It can be espe-
cially useful (if not necessary) when the derivation of an analytical PDE is cumbersome, 
or when there is no capacity for a large number of simulations or experiments. In fact, 
data-driven PDEs can be used to estimate transients from different initial conditions (IC), 
for different boundary conditions (BC) or different spatial domain geometries. Apart from 
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that, learning data-driven PDEs is one of the most compact and generalizable ways to learn 
a system’s behavior from data.

Future work includes relaxing some of the assumptions used here; for example, it 
is possible to train these models in a coordinate - free way [45, 46]. This would result 
in data-driven PDEs which are valid under coordinate changes (e.g. Cartesian, polar, 
spherical). That is possible by expressing the PDE in terms of the exterior derivatives. 
Please refer to the Supplementary Information for a brief outlook on the use of differen-
tial operators arising from exterior calculus [47, 48] to create a dictionary of features in 
which to express learned operators.

In addition, it is also possible to limit the number of independent, relevant inputs in a 
data-driven way, using dimensionality reduction, automatic relevance determination or 
other feature importance methods [49, 50]. These future directions aim in more robust 
and generalizable data-driven PDEs.

Materials and methods
PDE simulations

To model chemotactic motion of E. coli in heterogeneous porous media, the following 
extension of the Keller-Segel model [1] was used:

where in radial coordinates b(r, t) is the bacterial density, c(r, t) is the chemonutrient 
concentration, Db is the bacterial diffusion coefficient, Dc is the chemonutrient diffusion 
coefficient, R (in the boundary conditions) is the overall domain radius, F1(c) = 1+c/c−

1+c/c+
 

and F2(c) = c
c+cchar

 , Jb is the bacterial density flux ( Jb = Db∇b− χ0b∇logF1(c)) and n̂ is 
the normal vector at the domain boundaries. Note that in this case, no flux boundary 
conditions imply zero gradients for both fields at the circular/cylindrical boundary. 
Experiments can be performed to individually estimate the parameters 
Db,χ0, c−, c+,Dc, cchar , γ , as in [1] (also see Table 3).

Numerical simulations of Eq.  10, to provide training data for our data-driven 
identification approach, were performed using COMSOL Multiphysics 5.5 [51], 
for the spatiotemporal domain (t, r) ∈ [0, 300] × [0, 1000] , with initial conditions 
b(r, 0) = b0e

−r2/2σ 2
, c(r, 0) = c0 . Note that for all learning cases, the training data are 

(a suitable subset) in (t, r) ∈ [200, 230] × [0, 250] (therefore, m · n ≤ 15, 801 in R2 ) and 
the model is validated by simulation in (t, r) ∈ [200, 290] × [0, 250] . with spatial resolu-
tion dr = 0.5µm with the results reported every δt = 0.1s (relative tolerance set at 10−7 ). 
Integration was performed using Finite Element Method and a MUMPS solver [51]. The 
parameters of Eq. 10 used in the simulation can be found in Table 3, while a schematic of 
the computational domain can be found in Fig. 12. Sample code can be found at https:// 
github. com/ Yorgo sPs/ Bacte rial_ chemo taxis.

(10)

∂b

∂t
= Db�b− χ0∇ · [b∇logF1(c)] + bγ F2(c)

∂c

∂t
= Dc�c − bκF2(c)

Jb(0, t) · n̂ = 0, Jb(R, t) · n̂ = 0

∇c(0, t) · n̂ = 0,∇c(R, t) · n̂ = 0,

https://github.com/YorgosPs/Bacterial_chemotaxis
https://github.com/YorgosPs/Bacterial_chemotaxis
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Parameter estimation

An artificial input dataset (r, b, c,p ) of size 104 was generated, by perturbing the val-
ues obtained from numerical simulations. Then the chemotactic term was evaluated 
across this dataset. The Neural Network in Eq.  8 was trained with similar hyperpa-
rameters as the original gray box model, while the optimization problem in Eq. 9 was 
solved with a commercial BFGS algorithm.

Description of the experiments

The cells constitutively express fluorescent protein in their cytoplasms, enabling us 
to track their motion as they expanded radially outward from the initial cylindrical 
inoculum in 3D. The fluorescence measurements were collected with spatial resolu-
tion dr = 2.48 µm and temporal resolution dt = 10 min , and were then azimuthally 
averaged, only considering signal from the transverse, not the vertical, direction. The 
fluorescence signal thereby determined is directly proportional to the density of met-
abolically-active bacteria, and is denoted as b̃(r, t) ; cells are left behind in the wake of 
the moving chemotactic front, but become immobilized and lose fluorescence as they 
run out of oxygen and nutrients. More information can be found in [1].

Table 3 Parameters used for the PDE simulation of the extended Keller‑Segel model

Parameter Value Unit

Db 2.325 µm2/s

χ0 17.9 µm2/s

c− 1 µM

c+ 30 µM

cchar 1 µM

γ 0 µM/s/µm3

Dc 800 µm2/s

κ 3000 µM/s/µm3

b0 0.95 1/µm3

σ 42.62 µM

c0 10 mM

R 17.5 mm

Fig. 12 Schematic representation of the computational domain
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Artificial neural networks

Artificial Neural Networks (ANNs) are a family of functions constructed by compos-
ing many affine and nonlinear elementary functions (activation functions). In (feed-
forward) neural networks, a universal approximation theorem [52] guarantees that 
for a single hidden layer with (sufficient) finite number of neurons, an approximation 
ỹ of the target function, y can be found. Here, approximation implies that the tar-
get and learned functions are sufficiently close in an appropriately chosen norm: for 
all ǫ > 0 there exists an ANN predicting ỹ(x) , where : |y(x)− ỹ(x)| < ǫ for all x ∈ A 
and some A ⊆ R

d . The approximate form of the target function obtained through the 
feedforward neural net can be written as:

where ψ is a nonlinear activation function, wi,bi are tunable parameters (weights and 
biases) and Nn is the number of neurons, which is decided a priori. To find optimal 
weights and biases, an optimizer is used (employing a backpropagation scheme) to mini-
mize the root-mean-square error cost function:

which typically measures the goodness of the approximation.

ANN training and integration

As an example, we mention here the training details regarding one of the models, the 
one in Eq. 3. Training was performed with a feedforward neural network consisting of 
two hidden layers, each with 18 tanh-activated neurons. An Adams optimizer [53] was 
used with a MSE loss function. The neural network hyperparameters were empirically 
tuned: 2048 epochs and 0.02 learning rate. After training, the data-driven PDE was inte-
grated with a commercial BDF integrator, as implemented in Python’s solve_ivp [54], 
with relative and absolute tolerances at (10−4, 10−7) . The initial profile for integration 
was supplied by our simulation data, and the boundary conditions set to no flux. The 
Jacobian of the data-driven PDE was provided via automatic differentiation.

Preprocessing and ANN training for experimental data

The training profiles were selected appropriately so that the traveling wave is not too 
close to the spatial boundaries, and the cylindrical coordinate system remains valid. Pro-
files were smoothed in space using a local Savitzky-Golay filter and globally using Gauss-
ian Smoothing [55, 56]. The resulting smooth profiles were interpolated in time using 
Gaussian Radial Basis Functions [57] (see Fig. 13).

The learning algorithm consists of a Deep feed-forward Neural Network with 3 hidden 
layers and 90 neurons per layer. When integrating the data-driven model, SVD filtering 
was used: ut is projected to a lower-dimensional space, defined by the dominant singular 

(11)ỹ(x) =

Nn∑

i=1

ψ(wT
i x + bi),

(12)ED =
1

n

n∑

j=1

(yj − ỹ(xj))
2,
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vectors of the the ut(r, t) data used in training [58]. This is a procedure analogous to add-
ing hyperviscosity in hydrodynamic models [59]. Here, the eight first singular vectors 
were used, containing > 99% of the variance.

Gaussian process regression

To learn a function f from data we can employ Gaussian Process Regression (GPR). GPR 
assumes that the target function f (x), f : Rn → R is distributed according to a Gaussian 
process, which can be fully specified by its mean function m(x) and covariance function 
k(x, x′) [49]:

This can be understood as setting a Gaussian prior distribution over the space of func-
tions. The mean is usually set to zero by centering the data during preprocessing. The 
covariance function k(x, x′) is commonly formulated by a Euclidean-distance kernel 
function in the input space [17]. Here, we use the Matèrn32 kernel with a constant:

where xi, xj are any two feature vectors, c is a scalar, l is a vector with number of entries 
equal to the dimension of the input space. c and l are the hyperparameters to be opti-
mized (here, collectively denoted θ).

Here, we consider the case of noisy observations: y = f (x)+ ǫ , where ǫ ∼ N (0, σ 2) is 
i.i.d. Gaussian additive noise with known variance. Given a dataset {(xi, yi)|i = 1, ..., n} 
the optimal hyperparameter vector θ∗ is the maximum likelihood estimator:

(13)f (x) ∼ N (m(x), k(x, ′)).

(14)k(xi, xj) = c
(
1+

√
3d(xi, xj; l)

)
e
−
(√

3d(xi ,xj;l)
)

,

(15)d(xi, xj; l) =

√√√√
n∑

k=1

(xik − xjk)
2

lk

(16)θ∗ = arg min
θ

{−logp(y|x, θ)}

Fig. 13 Pre‑processing of experimental measurements: (left) Smoothing in space, (right) Interpolation in 
time
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This estimator defines the posterior Gaussian Process given (x, y) . To find the Gauss-
ian distribution of the function values at test data points, we represent the multivariate 
Gaussian distribution with the covariance matrix constructed by Eq. 14 as:

where y∗ is a predictive distribution for test data x∗ , K∗ represents a covariance matrix 
between training and test data while K∗∗ represents a covariance matrix between test 
data. Finally, we represent a Gaussian distribution for the target function at the test 
points in terms of a predictive mean and its variance, through conditioning a multivari-
ate Gaussian distribution as:

and we assign the predictive mean ( ̄y∗ ) as the estimated target function for the corre-
sponding data point.
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